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Splitting parabolic manifolds

Abstract. We study the geometric properties of complex manifolds possessing a
pair of plurisubharmonic function satisfying Monge-Ampere type of condition. The
results are applied to characterize complex manifolds biholomorphic to CV viewed
as a product of lower dimensional complex Euclidean spaces.
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1 - Introduction

A well known theorem of Stoll ([6], see also [2, 5, 7]) characterizes C" (in fact the
pair (C" 7, = || - Hz) up to biholomorphic map as the unique unbounded 7n—dimen-
sional strictly parabolic manifold i.e. n—complex manifold M equipped with a C*
strictly plurisubharmonic exhaustion p : M — [0, 4+ oc0) such that the function logp
satisfies the complex homogeneous Monge-Ampére equation (ddlogp)” =0 on
p > 0. Such a p is called a (unbounded ) strictly parabolic exhaustion of M and the
pair (M, p) (unbounded ) strictly parabolic manifold. Indeed,if (M, p) is an n—di-
mensional (unbounded) strictly parabolic manifold, there exists a biholomorphic map
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F:C" — M such that p(F(2)) = ||Z H2 = 1,(Z). Notice that here we do not require in
the definition of strictly parabolic exhaustion the logp is plurisubharmonic as in [6]
because it was observed by Wong ([7]) that it is a property that follows from the other
assumptions.

In this paper we are interested in the characterization of (CV, y) as product of
unbounded strictly parabolic manifolds i.e. of (C*, ) and (C, 7)) for k,1 >= 0 with
N = k + 1. More precisely we like to look at C¥ and characterizing it from the fol-
lowing point of view.

For N >2 and k,l >0 with k+1=N, let 7,:CY —[0,4+00) and 7;: Y —
[0, +o0) be defined for Z = (21, .. ., 2k, 2k 1, - - - 2N) Yespectively by

(1) @) =+ Ja and (@) =zl + L Jen
One checks easily that the following properties hold true:

i) 7, m € PSHCN) N C(CN),

i) (dd°logn;,)" = 0 on {n, >0} and (dd‘logn)’ = 0 on {5, > 0},
iii) (ddn)* A (dden)' > 0 on CV,
iv) i, + ; is an exhaustion of V.

It is also straightforward to verify that

V) (dden)¥ A di, Adéy, =0 and  (dden,)" Y A dig, Adly, # 0,
V') (ddy)' Admgy Adény =0 and  (dd’n)! "t Adm Adn £ 0

and that each level set of #,, and #; are foliated respectively by closed I-dimensional
submanifolds (in fact l-complex affine subspaces) and by closed k-dimensional sub-
manifolds (in fact k-complex affine subspaces). Indeed the level sets of 7, and 7; are
respectively foliated by the I-complex affine subspaces tangent to the annihilator of
dd‘n;. and the k-complex affine subspaces tangent to the annihilator of dds;. While
all other level sets of #;, and #; are Levi flat smooth real hypersurfaces foliated by the
leaves of the u foliation and by the leaves of the v foliation, the minimal sets {7, = 0}
and {7, = 0} are exceptional: they consists only respectively of one » leaf and of one v
leaf and therefore, in particular are closed complex analytic submanifolds of C¥.

We like to show how these properties may be used to characterize up to biholo-
morphic maps the triple (CV, 7., 5;,). In order to state our main result, we need the
following:

Definition. Let M be a complex manifold of dimension N =k +1 > 2 for
some k,0 >0 and u,v: M — [0, +00). We say that the triple (M, u,v) is a (k,[)-
splitting parabolic manifold if the following conditions hold:
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(A1) u,v € PSH(M) N C>(M),

(A2) (clolclogu)’c =0on {u >0} and (dd* logv)l =0on {v > 0},
(A3) (dd°w)* A (dd“v)' > 0 on M,

(A4) u + v is an exhaustion of M.

Using the theory of complex Monge-Ampeére foliations, it is possible to re-
construct the geometry of splitting parabolic manifolds. In particular we show that
there exist foliations 7, and F, of M respectively by [-dimensional submanifolds and
distribution Ann(ddcu)k and by closed k-dimensional submanifolds and distribution
Ann(dd”v)l such that

— u 1s constant along each leaf of F,, and F, restricts to a foliation of any level
set of u;
— v1is constant along each leaf of F, and F, restricts to a foliation of any level set

of v.

Under additional global assumptions on these foliations, more can proved and it
turns out that for (k, l)—splitting parabolic manifolds one may reconstruct almost
entirely the geometric picture of CV as product lower dimensional complex
Euclidean spaces. In fact, assuming that the 7, and F, foliations have closed leaves,
one shows that:

— each leaf of the L, foliation is biholomorphic to C' and each leaf of the L,
foliation is biholomorphic to C* and both the L, foliation and the L, foliation
are holomorphic;

— the set Ly = {u = 0} is complex analytic of dimension l and it is a leaf of the
L, foliation as well as the set L = {v = 0} is complex analytic of dimension k
and it is a leaf of the L, foliation;

— for every leaf L of the L, foliation, there exists a unique point Oy, such that
LN Ly = {0} and for every leaf L' of the L, foliation, there exists a unique
point Or, such that L' N L§ = {Or, }.

The existence and the properties of the foliations F,, F, under the global to-
pology assumption on their topology, namely the closeness of the leaves, allows to
characterize CV with this kind of product structure:

Characterization Theorem. Let M be a complex manifold of dimension
N=k+1>2for somek,l >0 and u,v: M —[0,+00) such that the triple (M,u,v)
1s a (k, )-splitting parabolic manifold. Then the leaves of the foliations F, and F,
are closed if and only if there exists a biholomorphic map F : C¥ — M such that for
Z € CN one has w o F(Z) = ny(Z) and w o F(Z) = n(Z).
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2 - Geometry of splitting parabolic manifolds

We now describe the geometry of splitting parabolic manifolds and provide the
steps necessary to prove our main result. We start with two technical remarks which
sprout directly from the assumptions.

Lemma 2.1. Let M be a complex manifold of dimension N with N = k + [ for

some k,l > 0. Suppose that there exist functions w,v: M — [0,4+00) such that
(A1), (A2),(A3) hold. Then:

(ddu)* A du A du =0 on M,
2)
2
(dduw)* ™ Adu A diu # 0 on {u > 0};
(ddv)' A dv Adv=0on M,
(3)
3
(ddv)"' A dv A dv #0on {v>0}
(4) (ddw)™ =0 with (ddw)* # 0 on M;
(5) (ddv)™ =0 with (ddv)' # 0 on M;
(6) du #0on {u >0}, with dv#0on{v>0}.

Proof. One has immediately:
(1) udd’u = u?dd°logu + du A d°u,
so that, taking exterior powers and using (A42), one has on {u > 0}:
(8) wP(ddw)® = ku®* D dd logu)* ' A du A dou.

On {u = 0}, the minimal set of u, we have du = 0 so that (dd°u)" A du A du = 0. On
the other hand (dd°u)" A du A du = 0 on {u > 0} is an immediate consequence of (8).
Furthermore from (A3) it follows that (ddcu)k = 0, so that , from (7) and (8), we get

W (ddew) N Adu A deu = uBddlogu + du A dw) A du A deu
(9) = w2E-D(ddlogu) ! A du A du
= llcuk(ddcu)k £0

so that we have proved (2). The same applied for v, gives (3). From (7), taking the
(k + 1)—exterior power one has (ololcu)}€+l = 0 while, as we observed, from (43) it
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follows (ddcu)]c # 0 so that (4) holds. The same argument shows (5). Finally (6) is
immediate from the second part of (2) and (3). O

Lemma 2.2. Let M be a complex manifold of dimension N with N=k+1
for some k,l > 0. Suppose that there exist functions u,v : M — [0, +o0) such that
(A1),(A2),(A3),(A4) hold. Then t = u + v is a strictly plurisubharmonic exhaus-
tion of M which, therefore, is a Stein manifold.

Proof. Since u and v are plurisubharmonic, we have dd‘t >0 on M. It is
therefore enough to show that (ddcr)N # 0. This, using (4), (56) and (A3), is con-
sequence of the following:

N /N . .
ddt)N = (dd°u + ddv)N = Z (j )(ddcuy A (ddev)N
(10) §=0
N c, \k ¢\l
= (dd’u)” A (dd‘v) > 0.
O

The main geometric feature of a (k, [)—splitting parabolic manifold (M, u, v) is the
existence of foliations associated to the functions « and v which can be proved even
under milder conditions:

Proposition 2.1. Let M be a complex manifold of dimension N with
N =k +1 for some k,l > 0. Suppose that there exist functions u,v : M — [0, +o0)
such that (A1), (A2),(A3) hold. Then there exist two foliations L,, L, of M with the
following properties:

(@) L, is a foliation in complex I-dimensional complex manifolds whose asso-
ciated distribution is given by the annihilator of the form ddu. Furthermore
the function u is constant along each leaf of L, and, for allt > 0, L, defines a
foliation in l-dimensional complex manifolds of the Levi flat real hypersur-
face {u =t}.
(1) L, 1s a foliation in complex k-dimensional complex manifolds whose asso-
ciated distribution is given by the annihilator of the form dd®v. Furthermore
the function v is constant along each leaf of L, and, for all s > 0, L, defines a
foliation in k-dimensional complex manifolds of the Levi flat real hy-
persurface {v = s}.

Proof. Under the assumptions (A1), (A2),(43) we have the conclusions of
Lemma 2.1. It is well known (see Theorem 2.4 of [1] for instance) that, as a con-
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sequence of (4), the annihilator of the form dd‘u is of (complex) rank [ and defines a
foliation £, in I-dimensional complex submanifolds and, as a consequence of (5), the
annihilator of the form dd‘v is of (complex) rank k and defines a foliation £, in k-
dimensional complex submanifolds. On the other hand, since (2) holds on {# > 0} and
(2) holds on {v > 0}, from Theorem 5.3 and Corollary 5.4 of [1] we get that the
function u is constant along each leaf of £,, and, for allt > 0, £,, defines a foliation in [-
dimensional complex manifolds of the Levi flat real hypersurface {u =t} and that
the function v is constant along each leaf of £, and, for all s > 0, £, defines a foliation
in k-dimensional complex manifolds of the Levi flat real hypersurface {v =s}. O

Under the more stringent topological requirement that the leaves of the £,, £,
are closed, it can be shown that the leaves are all parabolic and that, consequently,
the foliations are holomorphic:

Theorem 2.1. Let M be a complex manifold of dimension N = k + [ for some
k,0>0 and u,v: M — [0,+00) such that the triple (M,u,v) is a (k,1)-splitting
parabolic manifold such that the leaves of the foliations L,, L, of M are closed.
Then:

@) If L 1s a leaf of the L, foliation, then (L,v) is an l-dimensional unbounded
strictly parabolic manifold and if L' in a leaf of the L, foliation, then (L', u) is
a k-dimensional strictly parabolic manifold;
(i) each leaf of the L, foliation is bikolomorphic to C' and each leaf of the L,
foliation is bikolomorphic to CF;
(122) the L, foliation and the L, foliation are holomorphic.

Proof. (¢):If Lisaleafof the £, foliation, since L is closed, the restriction of the
exhaustion u + v to L is an exhaustion of L. On the other hand L is contained in a level
set of u, hence the restriction of v to L is an exhaustion of L. On the other hand the
directions tangent to a leaf of the £, foliation are in the annihilator of dd°u so that in
order to have assumption (A3) satisfied, the plurisubharmonic function v must have
strictly plurisubharmonic restriction on each leaf of the £, foliation. Finally since
(A2) holds, it follows that the restriction of v is a strictly parabolic exhaustion of every
leaf of the £, foliation. The same argument works for the case of the leaves £, fo-
liation.

(27): Because of (z), Stoll’s theorem holds for on for each leaves of both £,, foliation
and each leaf of the £, foliation.

(212): According to (i7) all the leaves of both £, foliation and each leaf of the £,
foliation are biholomorphic to a complex Euclidean space. The conclusion then is
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direct consequence of [4] where it is shown that in any codimension parabolic locally
Monge-Ampeére foliation are holomorphic. O

The final piece of information needed to proceed is the observation that the
minimal sets of  and v are complex analytic and are leaves of the £,, foliation and of
the £ foliation respectively:

Proposition 2.2. Let M be a complex manifold of dimension N =k + [ for
some k,l >0 and u,v: M — [0,+00) such that the triple (M,u,v) is a (k,1)-
splitting parabolic manifold such that the leaves of the foliations L,, L, of M are
closed. Then:

(¢) the set Ly = {u = 0} is complex analytic of dimension | and it is a leaf of the

L, foliation,

(17) the set L = {v = 0} ts complex analytic of dimension k and it is a leaf of the
L, foliation,

(112) For every leaf L of the L, foliation, there exists a unique point Oy, such that
Ln Lg = {OL },’

() For every leaf L' of the L, foliation, there exists a unique point O, such that
L'nLy ={0n}.

Proof. We start proving (¢). The set Lj = {« = 0} is closed and, since the fo-
liation is holomorphie, for each p € Ljj there exists a neighborhood U and co-

ordinates 21, ...,25,%k11,- - -, 2p 0N U so that the intersection of a leaf with U is
given by z; = ¢y, ...,2; = ¢ for suitable constants c¢y,...,¢; and 2.1, ...,254 are
leaf coordinates. In these coordinates one has that on U the Levi matrix of « is as
follows:

0 0 0 0
1) (tr5) 0 0 ... 0

Uys) = )
Y 0 0 mm o Ukiikw

0 e 0 uka ce ukJrU;Jrl
from which it follows that the functions u4,...,u; are holomorphic on U. Since
uy = --- =u, = 0 along Li N U, it follows that Lf is an analytic set of dimension /.

Since every point of Lj is contained in a leaf of the £,,, the analytic set L{ is indeed a
leaf. The same argument works for L = {v = 0} and therefore (¢7) holds.
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As for (i47) and (iv), they are consequence of the fact that « and v are strictly
parabolic exhaustions respectively for each leaf L’ of the £, foliation and of each leaf
L of the L, foliation. It is known that a key ingredient of the proof of Stoll’s Theorem
is the fact that the zero set of a strictly parabolic exhaustion reduces to one single
point (see Theorem 2.5 of [6]). This implies both (i72) and (). O

3 - A characterization theorem and final remarks

For N > 2andk,l > Owithk + [ = N, recall that z,: CY — Rand 5;: CV — R are
the functions defined for Z = (24, .. ., 2k, 241, - - - 2n) Tespectively by

(12) ) =P+ ..zl and  (2) = gl + . Jen [

With these notations, we now state our characterization result:

Theorem 3.1. Let M be a complex manifold of dimension N =k +1 > 2 for
some k,l > 0 and u,v: M — [0, +o00) such that the triple (M, u,v) is a (k,l)-split-
ting parabolic manifold. Then the leaves of the foliations F, and F, are closed if
and only if there ewxists a bikolomorphic map F:CN — M such that for
Z =21y, 2% Rls1,---RN) € CN one has

(13) woF(Z)=nZ) and woF(Z)=n2).

Proof. 1In one direction the result is obvious: if for a (k, [)—splitting parabolic
manifold (M, u,v) there exists F : CN 5 M such that (13) holds, then F' maps the
leaves of the foliation of C associated to 7, and the leaves of the foliation of 'V
associated to #; respectively onto the leaves of the £, foliation and the £, foliation of
M and therefore the leaves of these are closed.

Suppose nowthat (M, u, v)is a (k, [)—splitting parabolic manifold such that the leaves
of the foliations F,, and F, are all closed. Then the conclusions of Proposition 2.1 and of
Proposition 2.2 hold true and we shall use the notations introduced there. Furthermore
weset Ly N L§ = {0} and, for any p € M, denote by L*(p) and L"(p) the unique leaves
respectively of the F,, foliation and of the F, foliation passing through p. Notice that
with that, in this case we have L*(0) = L{ and L"(0) = L{ and we shall insist with the
notations L{ and L for these special leaves. Thus, there exist maps of class C*

(14) @ Clx L) — M and @ CFx LY — M
such that for all x € L and for all y € L{ the maps
(15) @Y, x): CF — L¥(x) and &"(-, y): C! — L*(y)
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are biholomorphic and such that for all v € L{ and for all y € L;
16) vo & (wy ..., w,y) = |wi + ... |w|* and
16
uod(2y...,2,%) = |zl\2 + ... |zk|2.

The existence of these maps, (15) and (16) follows exactly from the content of Stoll’s
characterization ([6]) of unbounded strictly parabolic manifolds. The smoothness of
the maps defined in (14) is consequence of the construction needed to prove Stoll’s
theorem. In fact the map that provides the biholomorphism with the complex
Euclidean space, once the latter is identified with the tangent space at the center of
the manifold is exactly the exponential map of the Kéhler metric whose potential is
the strictly parabolic exhaustion (see [6], [2] and [5]). In our case the stricly parabolic
exhaustions are the restriction of v for the leaves of the F, foliation and of u for the
leaves of the F, foliation. As » and v are of class C* then the smoothness of @" and
@" follows as a consequence. We need some piece of notation. Define projection maps

(17 m:M — Ly and I°’-M — L§
by imposing for p € M:
(18) II"(p) = L*(p) N Ly and II*(p) = L"(p) N L.

Since the F,, and the F, foliations are holomorphic, the maps I7* and I7°, which are
well defined by Proposition 2.2, are also holomorphic. Finally we denote by
&y = D"(-,0) and ¢ = ?°(-, 0) the parametrization of the special leaves L{ and L.
We can now proceed and defining a map G: M — C** = C¥ that turns out to be the
inverse of the required map F: CN — M. We set

(19) G(p) = (@) " o II"(p), ()" o IT"(p)) € CF = CV,

By construction, G is bijective and holomorphic since its k—component and /—com-
ponent are composition of holomorphic maps. It follows that G is biholomorphic.
Furthermore, again by construction and using the fact that the map of Stoll’s the-
orem preserves strictly parabolic exhaustions, if G(p) = (z,w), then u(p) = HZHZ =

.z, w) and v(p) = ||w||l2 = (2, w) where | - ||, and || - ||, denote respectively the
norms of C* and C'. But then F = G~! has all the properties required by the claim of
the theorem. O

Remark 1. Using the notation Z=(,w)=(1...,25, w1 ..., w;) € CRH =N,

a—posteriori, we have that the map F: C¥ — M satisfies the following:

(20) F(Z) = F(z,w) = &'z, " (w, 0)) = " (w, D' (2, 0))
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where the second equality it is equivalent to the non trivial fact that the flows as-
sociated to the F, and to the F, foliations do commute.

Remark 2. As a consequence of Theorem 3.1, it follows that if (M, u,v) is a
(k, D)—splitting parabolic manifold such that the leaves of the foliations F, and F,
are closed then u + v is a strictly parabolic exhaustion for M and in particular that
(dd“(u +v))N=0 on M\ {O}. Because of the high non linearity of the equation
involved, this cannot be derived directly from the assumptions (A2) and (A3).

A key element of the proof of Theorem 3.1 is the fact that if the leaves of the
foliations F, and F, are closed then the leaves are unbounded strictly parabolic
manifolds and hence biholomorphic to complex Euclidean spaces. This, in turn, be-
cause of the results of [4], implies that the the foliations F,, and F, are holomorphic.
There is no corresponding result for Monge-Ampere foliation with hyperbolic leaves:
in fact most Monge-Ampere foliation with hyperbolic leaves are not holomorphie.
Because of this there is no hope for straightforward extensions of the results of this
paper to the characterization of products of balls

@21)  BFR) x BURy) = {(z,w) e L= OV | ||l < B2, ||w|? < Rg}

of complex Euclidean spaces. With the techniques developed in this paper and some
obvious adaptations, it can be shown only the following much weaker result:

Proposition 3.1. Let M be a complex manifold of dimension N =k +1> 2
for some k,l >0 and u : M — [O,Rﬁ) u,v: M — [O,Rg) such that (A1), (A2), (A3),
(A4) hold. Then if the leaves of the foliations F, and F, are closed and the foliations
Fo and F, are holomorphic then there exists a biholomorphic map F : BF(Ry) x
BYRz) — M such that for Z € CN one has u o F(Z) = n(Z) and u o F(Z) = n/(Z).
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