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Cobordism group for embedded graphs

Abstract. We construct a cobordism group for embedded graphs using se-
quences of two basic operations, called “fusion” and “fission”, which in terms of
cobordisms correspond to the basic cobordisms obtained by attaching or removing
a 1-handle.
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1 - Introduction

The construction of the cobordism group for links and for knots and their relation
is given in [2]. We then consider the question of constructing a similar cobordism
group for embedded graphs in the 3-sphere. We show that this can actually be done
in two different ways, both of which reduce to the same notion for links. The first one
comes from the description of the cobordisms for links in terms of sequences of two
basic operations, called “fusion” and “fission”, which in terms of cobordisms corre-
spond to the basic cobordisms obtained by attaching or removing a 1-handle. We
define analogous operations of fusion and fission for embedded graphs and we in-
troduce an equivalence relation of cobordism by iterated application of these two
operations.

The second possible definition of cobordism of embedded graphs is a surface
(meaning here 2-complex) in S® x [0, 1] with boundary the union of the given graphs.
While for links, where cobordisms are realized by smooth surfaces, these can always
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be decomposed into a sequence of handle attachments, hence into a sequence of
fusions and fissions, in the case of graphs not all cobordisms realized by 2-complexes
can be decomposed as fusions and fissions, hence the two notions are no longer
equivalent.

2 - Knots and links cobordism groups

A notion of knot cobordism group and link cobordism group can be given by using
cobordism classes of knots and links to form a group [1],[2]. The link cobordism
group splits into the direct sum of the knot cobordism group and an infinite cyclic
group which represents the linking number, which is invariant under link cobordism
[2]. In this part we will give a survey about both knot and link ecobordism groups. In a
later part of this work we will show that the same idea can be adapted to construct a
graph cobordism group.

2.1 - Knot cobordism group

We recall the concept of cobordism between knots introduced in [1]. Two knots K;
and K are called knot cobordic if there is a locally flat cylinder S in S* x [0, 1] with
boundary S = K; U —K, where K; C 8* x {0} and K, C S® x {1}. We then write
K ~ Ks. The critical points in the cylinder are assumed be minima (birth), maxima
(death), and saddle points. In the birth point at some ¢ there is a sudden appearance
of a point. The point becomes an unknotted circle in the level immediately above .
At a maxima or death point, a circle collapses to a point and disappears from higher
levels.

For the saddle point, two curves touch and rejoin as illustrated in Figure 2.

These saddle points are of two types: negative if with increasing ¢ the number of
components of the cross sections decreases and positive if the number increases.
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Fig. 1. Death and Birth Points.
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Fig. 2. Saddle Point.

A transformation from one cross section to another is called negative hyperbolic
transformation if there is only one saddle point between the two cross sections and if
the number of components decreases. We can define analogously a positive hyper-
bolic transformation.

Definition 2.1. [2] We say that two knots K; and K, are related by an ele-
mentary cobordism if the knot K, is obtained by » — 1 negative hyperbolic trans-
formations from a split link consisting of K; together with » — 1 circles.

What we mean by split link is a link with % components (K;,i =1....n) in $*
such that there are mutually disjoint » 3-cells (D;,i=1....n) containing
Ki,i = 1,2 (S

Lemma 2.2. [2] Two knots are called knot cobordic if and only if they are
related by a sequence of elementary cobordisms.

It is well known that the oriented knots form a commutative semigroup under the
operation of composition #. Given two knots K; and Kz, we can obtain a new knot by
removing a small arc from each knot and then connecting the four endpoints by two
new arcs. The resulting knot is called the composition of the two knots K; and K, and
is denoted by K; # Ks.

Notice that, if we take the composition of a knot K with the unknot O then the
result is again K.

Lemma 2.3. The set of oriented knots with the connecting operation # forms a
semagroup with identity O).
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Fox and Milnor [1] showed that composition of knots induces a composition on knot
cobordism classes [K] # [K']. This gives an abelian group Gg with [ O ] as identity and
the negative is — [K] = [ — K], where the — K denotes the reflected inverse of K.

Theorem 2.4. The knot cobordism classes with the connected sum operation
# form an abelian group, called the knot cobordism group and denoted by Gg.

2.2 - Link cobordism group

For links, [2] the conjunction operation & between two links gives a commutative
semigroup. L; & L is a link represented by the union of the two links /; U I where [
represents L; and [ represents Lg with mutually disjoint 3-cells D; and Dy contain [y
and [y respectively. Here “represents” means that we are working with ambient
isotopy classes L; of links (also called link types) and the [; are chosen re-
presentatives of these classes. In the following we loosely refer to the classes L; also
simply as links, with the ambient isotopy equivalence implicitly understood. The zero
of this semigroup is the link consisting of just the empty link. The link cobordism
group is constructed using the conjunction operation and the cobordism classes. We
recall below the definition of cobordism of links.

Band (B)

D) D

Knot (K) K+B

Fusion

Fission

Fig. 3. Band.
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Let L be a link in S* containing r-components ki, ..., k. with a split sublink
Ly=kiUkoU...Uk;, t<7r of L. Define a knot K to be ki +ks+ ... +k+
OBy1 + 0Byio + ... + OB, where {By,1,B;.2,B.3....,B,} are disjoint bands in s
spanning L; [2]. The operation + means additions in the homology sense. Put
Li=LsUki 1 Uko.... Uk, and Ly = Ku ki1 Ukgyo.... U k.. Now, the operation of
replacing Ly by Ly is called fusion and Ly by L; is called fission.

Definition 2.5. [2] Two links will be called link cobordic if one can be obtained
from the other by a sequence of fusions and fissions. This equivalence relation is
denoted by ~. [L] denotes the link cobordism class of L.

Theorem 2.6. [2] The link cobordism classes with the conjunction operation
form an abelian group, called the link cobordism group and denoted by Gy,

Proof. For two cobordism classes [1,1] and [Lz] the multiplication between
them is well defined and given by

[L1]1& [Le] = [L1 & L2].

The zero of this operation is the class [ (O] which is the trivial link of a countable
number of components. The negative of [L]is —[L] = [ — L], where —L denoted the
reflected inverse of L. O

Lemma 2.7. For any link L, a conjunction L & — L is link cobordic to zero.

To study the relation between the knot cobordism group G and link cobordism
group Gy, define a natural mapping f : Gx — G, which assigns to each knot co-
bordism class [k] the corresponding link cobordism class [L] where L is the knot k
viewed as a one-component link. We claim that f is a homomorphism. f is well defined
from the following lemma

Lemma 2.8. [2] Two knots are link cobordic if and only if they are knot
cobordic.

Now, K; # Ks is a fusion of K; & K» then K7 # Ko is cobordic to K; & Ko, therefore
f is a homomorphism. Again by using the lemma 2.8, if a knot is link cobordic to zero
then it is also knot cobordic to zero, and hence ker(f") consists of just O.

Lemma 2.9. fis an isomorphism of Gg onto a subgroup of Gy,
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Theorem 2.10. [2] f(Gg) is a direct summand of Gr, and it is a subgroup of
G, whose elements have total linking number zero. The other summand is
isomorphic to the additive group of integers.

3 - Graphs and cobordisms

3.1 - Graph cobordism group

In this section we construct cobordism groups for embedded graphs by ex-
tending the notions of cobordisms used in the case of links.

Definition 3.1. Two graphs £ and E are called cobordic if there is a surface
S have the boundary 9S = E1 U —E; with E; =S n (S3 x {0}, E2 =Sn (S3 x {1}
and we set E7 ~ Ey. Here by “surfaces” we mean 2-dimensional simplicial com-
plexes that are PL-embedded in S? x [0,1]. [£] denotes the cobordism class of the
graph E.

By using the graph cobordism classes and the conjunction operation &, we can
induce a graph cobordism group. £ & E is a graph represented by the union of the
two graphs E;UFEy with mutually disjoint 3-cells D; and Ds containing (re-
presentatives of) £y and Ey, respectively. Here again we do not distinguish in the
notation between the ambient isotopy classes of embedded graphs (graph types) and
a choice of representatives.

Lemma 3.2. The graph cobordism classes in the sense of Definition 3.1 with the
conjunction operation form an abelian group called the graph cobordism group and
denoted by Gg.

Proof. For two cobordism classes [£1] and [E2] the operation between them is
given by
[E1]1&[E2] = [E, & Es].

This operation is well defined. To show that : Suppose £ ~ F1, for two graphs E; and
Fi. Then there exists a surface S; with boundary 0S; = E7 U —F;. Suppose also,
Ey ~ Fy, for two graphs Ey and Fs. Then there exists a surface Sy with boundary
0Ss = E5 U —F5. We want to show that £y & Es ~ F1 & Fs, i.e. we want to find a
surface S with boundary oS = (£ & Es) U —(F'; & Fy).

Define the cobordism S to be S; & So where S; & Se represents S; USy with
mutually disjoint 4-cells Dy x [0,1] and Dy x [0, 1], containing S; and Sy respectively
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with D; x {0} containing E;, Dy x {0} containing F';, D; x {1} containing Ky and
Dy x {1} containing F». The boundary of S is given by,

0S =081 &8S3) =051 & 0Ss = 0S1 UOSs =
(E1U—-F1)UHE2U—F3) = (B, & E2) U —(F1 & F?).

Then the operation is well defined. The zero of this operation is the class [®]whichis
the trivial graph of a countable number of components. The negative of [E] is
—[E]=[— E], where —E denoted the reflected inverse of . O

3.2 - Flusion and fission for embedded graphs

We now describe a special kind of cobordisms between embedded graphs,
namely the basic cobordisms that correspond to attaching a 1-handle and that give
rise to the analog in the context of graphs of the operations of fusion and fission
described already in the case of links. Let £ be a graph containing n-components
with a split subgraph E; = G; U G2 U Gs... U G;. We can define a new graph E to be
G+ G2+ Gs... + Gy + OBy o1 + OByyo + ... + OB,, where {BHLBHQ,BHg....,Bn}
are disjoint bands in SH spanning ;. The graph E depends on K and on a choice of
a vertex in each G, see Figure 4. The operation + means addition in the homology
sense. Put E; =E;UGi1UGye....UG, and E;= E+ Gi1 + Gigo.... + Gy,
Now, the operation of replacing E; by E; is called fusion and Es by E; is called
fission.

Band

&)

Graph G Graph G+Band

Fig. 4. Attaching a Band to a Graph.

Notice that, in order to make sure that all resulting graphs will still have at
least one vertex, one needs to assume that the 1-handle is attached in such a
way that there is at least an intermediate vertex in between the two segments
where the 1-handle is attached, as the Figure 4, hence the dependence on the
choice of vertices.
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Fig. 5. Attaching a Band does not change the number of graph components.

Remark 3.3. Unlike the case of links, a fusion and fission for graphs does not
necessarily change the number of components. For example see the Figure 5.

We can use the operations of fusion and fission described above to give another
possible definition of cobordism of embedded graphs.

Definition 3.4. Two graphs will be called graph cobordic if one can be ob-
tained from the other by a sequence of fusions and fissions. We denote this
equivalence relation by ~, and by [E] the graph cobordism class of E.

Thus we have two corresponding definitions for the graph cobordism group. One
can check from the definition of fusion and fission that they give the existence of a
cobordism (surface) between two graphs £, and Es.

Lemma 3.5. Two graphs Ei and E5 that are cobordant in the sense of
Definition 3.4 are also cobordant in the sense of Definition 3.1. The converse,
however, is not necessary true.

Proof. As we have seen, a fusion/fission operation is equivalent to adding or
removing a band to a graph and this implies the existence of a saddle cobordism
given by the attached 1-handle, as illustrated in Figure 2. By combining this co-
bordism with the identity cobordism in the region outside where the 1-handle is
attached, one obtains a PL-cobordism between £; and Es. This shows that cobordism
in the sense of Definition 3.4 implies cobordism in the sense of Definition 3.1. The
reason why the converse need not be true is that, unlike what happens with the
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cobordisms given by embedded smooth surfaces used in the case of links, the co-
bordisms of graphs given by PL-embedded 2-complexes are not always decom-
posable as a finite set of fundamental saddle cobordism given by a 1-handle. Thus,
having a PL-cobordism (surface in the sense of a 2-complex) between two embedded
graphs £; and Ey does not necessarily imply the existence of a finite sequence of
fusions and fissions. In fact, observe that the number of vertices is preserved under
fusions and fissions and the number of edges is also preserved, so the Euler char-
acteristic is also preserved. Then one obtains an example by considering a cobordism
by a PL embedded 2-complex that does not preserve the euler characteristic such as
the figure below.

Fig. 6.
O

Lemma 3.6. The graph cobordism classes in the sense of Definition 3.4 with the
conjunction operation form an abelian group called the graph cobordism group and
denoted by Gp.

Proof. The proofisthe same as the proof on lemma 2 since fusion and fission are
a special case of cobordisms. |

The result of Lemma 3.5 shows that there are different equivalence classes
[E1] # [E2] in Gy that are identified [E1] = [E2] in Gg. Thus, the number of co-
bordism classes when using Definition 3.1 is smaller that the number of classes by
the fusion/fission method of Definition 3.4.
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