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(lobal existence for a nonlinear model of 1D

chemically reacting viscoelastic body

Abstract. In this paper we show existence of a global classical solution to a
quasilinear hyperbolic integrodifferential equation of non-convolutionary type for
small data. We apply the result to show global existence for a one-dimensional model
of a chemically reacting viscoelastic body.
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1 - Introduction

Recently, flows in materials with a stress-strain relation dependent on an ex-
ternal factor (e.g. concentration of a chemical) started to have been studied in-
tensively, see Bulicek, Malek and Rajagopal [3] and references therein. An integral
model for a viscoelastic material was introduced by Rajagopal and Wineman in [6]
and applied by Barta in [1], [2] to parabolic models of viscoelastic fluids.

In this paper, we consider the following system

t

1) w = 1€, Ug Ny + Jk(c’(t, ©),t — )y (u(s)),ds + g,
0
Ct = Cug-

A one-dimensional viscoelastic body is represented by the interval Q = [0, 1],
x € [0, 1]. The displacement of a particle x at time ¢ is denoted by u(t, «) and c(t, x) is a
concentration of a chemical in (£, x). Function g represents an external force. Since
we assume that difusivity is independent of u, the two equations are not coupled.

Since we can get ¢ from the second equation and insert it to the first equation, we
will be interested in equations of the form

t
(IDE) g = x(t,0, U YUy + Jas(t, &t — S (uy(s)),ds + g
0

(here ay is the derivative of @ with respect to the third variable). Equations similar to
this one were studied by Dafermos and Nohel [4], Hrusa and Nohel [5], Renardy,
Hrusa and Nohel [7] and others.

Unlike the works mentioned in the previous paragraph, in our case the functions
x and a depend explicitly on ¢ and & and a is not a convolution kernel any more.
However, we will assume that the dependence on ¢ and « is not very strong and a is
almost convolution kernel. In this case, we show existence and uniqueness of classical
solutions by the same methods as in the above mentioned papers.

Let us mention that Rajagopal and Wineman introduced a model with

k(e(t, @), t — s) = D),

see [6], where 4 is a positive function. If 1 is smooth and 4 > ¢ > 0, then for small
changes of concentration the kernel k is almost convolutionary, as was shown in [1].
We consider the following initial and boundary conditions.

(Cu) u(oa ) - uO, ut(07 ) - ula u('7 0) - u('? 1) - 0
(CC) C(O7 ) = Co, C.T('ao) = 6?0('7 1) =0.
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2 - Notation and the main results

Let us start with introducing another form of (IDE). Let us apply integration by
parts to the integral in (IDE). We obtain

t
(IDE]-) Uy = w(tv X, u”c)u%‘x + Ja(tv X, t— S)Vl(ux(sv x))xt dS +f(ta 90),
0

where
f@t,x) = g, ©) + at, x, Oy’ (ug(@))ug ()
and
o, x, uy) = (&, 2, u) — at, 2, O (uy(t, ).

For the function y = y(t, x, u,(t, x)) we will denote y;, resp. y,, the derivatives with
respect to the first, resp. second variable, the derivative with respect to the third
variable is denoted by y/(¢, x, u,.(t, x)). Similarly for the function ¢p. Fora : J x Q x J
we will denote the partial derivatives with respect to first, second and third variable
respectively by a;, a,, as.

In the following, Q =[0,1] and J := [0, Tyqe] oF J :=[0,+00) =R,. For a
function u : J x 2 — R we will often use notation w(?) :=u(t, ) and ||u@)|, :=
[[u(t, )| 12(@)- On the other hand, by ||u||, we mean |||,z -

We say that a kernel a : J x Q x J — R is of strong positive type (or strongly
positive definite), if there exists ¢ > 0 such that

Qa,T,v) > cQe, T, v)
for allv € C(J,L?(Q)) and all T € J, where

Tt
Q,T,v) = Jjja(t, x,t — s)v(s,x)ds v(t,x)dx dt
020

Q

and Q(e, T, v) similarly with a replaced by e(t,x,t — s) := ¢/,

Throughout the paper, C > 0will be a generic constantand Z : R, — R, willbe a
generic function which is continuous nondecreasing and Z(0) = 0.

Our aim is to show global existence for small data and small values of u,. So, let us
fix a small neighborhood of 0 and denote it by B.

Let us introduce our assumptions.

(A1) y, ¢ € C3(J x 2 x B), y € C3(B) and all derivatives of y, ¢, v (up to second
resp. third order) are pointwise bounded by C, and y, ¢, %' > ¢, > 0onJ x Q x B,
resp. B.
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(Az) a < C%(J X Q2 X J) Wlth gty Qs € LI(JZ(LOO(Q)))’ CLS(O,O, ) S LZ(J)) gy As,
a’xS(Ta B T - ) S Ll(J7LOO(Q))-

(A3) ug € H3(Q), uy € HX(Q), uo(0) = up(1) = u1(0) = u1(1) = 0.
(AD) 9,9:,9t € Co(J,LX(Q)), g, s 91, g € LT, LA(Q)).

(AD) ' (up(0))ug(0) + (0, 0) = #'(ug(1))ug (1) + g(1,0) = 0.

(A6) a is of strong positive type.

Let us introduce several quantities measuring the data

@) Usluo,ur) = Juﬁ S + W + P+ 02+ )P + Y da
Q

(3)  F(f):=sup J (F2+f2+ 12 ) de + J AR R+ D) dedt
ted
Q J Q

and similarly F(g). We will often write F' instead of F(f) + F(g) and Uy instead of
Uoy(ug, u1). Let us define

(4) &p = J@Si(B{(”t?(”tw(og?(”ttw(”;w(0207(021&}7
(5) &y = JIPS‘EB{%’thlgﬂXttw)dwx;;wlz/ft’XxL

(6) &, :=sup (&t(t, 0) + J |ay(t,t —s)|ds + Jdts(t, 8) 4 s (t, ) ds)
t
7

J

+”|dtt<t,s>\ 4 Jans(t,5)] ds dt,
J J

where a; means sup,, a;. Further we introduce two quantities measuring the solution

(7) V() = pomax (W +u, +u?)2(s, 1)

E(t) = m[%)t(] J(vﬂ ol U Ul ok ud Al ol +ud, 4+ ud) (s, x) da
BISIA
Q

t
+ J J(vf Ul uf U, A+ ud, ol ud, Ul ud, ) (s,a) deds.
00
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Theorem 2.1. Assume (Al) — (A6) hold. There exists u > 0 such that for
every ug, U1, g, x and ¢ satisfying

(8) Uo(uo,u1) + F(g) + &, + &, < i,
the initial-boundary value problem (IDE) has a unique solution u: 2 x J — R
with

Wy U, Wty Uagae s Wt Uity W, Wiavae, Wk, Uitt € Cb(Ja LZ(Q)) N LZ(J7L2(-Q))-

If J =R, then
Uy Uy Uty Wiz, Wity Ut — 0

uniformly on Q ast — + oo.

Denote

© Colco) = Jcﬁ (P + ()P + (I + (Y da.
Q

Let U C R be a neigborhood of zero. Consider the following assumptions

(A1) y € C%(U xJ),y € C;j’(B) and all derivatives of y,  (up to second resp. third
order) are pointwise bounded by C, and y(t,2,0) >0, y'(0) > 0 and x(¢,,0) —
a(t,x, 0w/'(0) > 0.

(A2) k € C%(U x J) with k, K, k", ks, k., € L*(J, L=(U)).

(A3) ug € H3(Q), uy € HA(Q), up(0) = uo(1) = u1(0) = u1(1) = 0, ¢y € H{(Q).
(A4) = (A4)

(AR) = (A5)

(A6) (t,s)— k(c(t,x),s) is of positive type for every c € C,% with ||¢;||,, small
enough.

The assumption (A6’) is not easy to verify, but Theorem 2.4 and Example 2.8
in [1] give sufficient conditions under which (A6’) holds. In fact, the assumption
(A6) is satisfied if k(z,-) is of #-strong c-positive type for all z € U, ¥'(2,0) =

lim Kz )= slierook;(z,s) =0, and |k.(z,0), |K(z, |, and |k.(z, )], are

$—+ 00
bounded by a constant independent of z.

In particular, if k(e x),t —s) = e “tE=9) where J is a smooth function
with values in [o, ], « > 0, then (A6’) holds (see Example 2.8 and the third
section of [1]).
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Theorem 2.2. Assume (Al’) — (A6’) hold. There exists 1 > 0 such that for
every uo, U1, Co, g and y satisfying
Uluo, u1) + F(g) + Colco) + &, < i,
the system (1) has a unique solution (u,c) : J x Q — R? with
Uy Uy, Uy o, Ut Ut W, Uty Ut et € Cp (R, LAD) N LAR ., LA(I)).

IfJ =R, then
Uy Uy, Wty U, Uty Ut — 0
uniformly on Q ast — + oco.

Remark 2.3. (1) If y does not depend on c (i.e., the instant response does not
depend on concentration) then &, =0 and Theorem 2.2 yields global existence
provided the initial values and the external force g are small enough.

(2) If moreover k(c(t,x),0) is independent of c (e.g. in the case k(c(t,x),t —s) =

e M=) then also ¢, = 0. In this case, the proof would be shorter since many
terms in the estimates disappear.

3 - Local existence

We will generalize Theorem II1.5 from [7]. Consider the following equation
¢
(10) Uy = A, 2, U Uy + JK(t,t — 8,2, Up($))r(s)ds + F(2)
0

with initial and boundary conditions
(11) w(0,) = ug, w(0,-) =u1, ut,0)=wu1)=0.
Assume
(SDHAe€C3J x Qx U).
(S2) ug € H3([0,10), w1 € H23([0,1]), Vaug(x) € U for all x € [0, 1].
(S3) F € (1] CYk(J, H¥(Q)), Fy € L'(J,L*(Q)).
(84) K ekC’:ZO(J2 x Qx U).
(S5)A>e4>00nJ x Q2 x U.
(86) fu(-,0) = dFu(-,1) =0 for k =0,1,2.
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Theorem 3.1. Let 3(Sl) — (S6) hold. Then there exists T € (0, Tq,] such that

(10) has a solution u € () C37*([0, T), H*(Q)). Moreover, if
k=0

(12)  sup Juz(t) +ul@t) + ul,(t) + ud, (@) + uZ@) + u, @) + uz,, () de < + oo,

te[0,1)
Q

then T = The.

Proof. The proof is very similar to the proof of Theorem IIL.5 in [7] where
the same statement is proved with A, K independent of (¢,%). Therefore, we will
just give the main idea and point out differences.

We consider the linearized equation

t
et = A, b Wiy + JK(t,t — 5,0, wa(5)s(s) ds + F D).
0

m
It has a solution u € |J C"™ ([0, Tuar], H*(€)) for each w by Lemma I11.3 in [7]. We

k=0
show that the mapping S : w+ u is a contraction on X(7”, M) for 7" small and M
large enough, where
3
X(.M) = {we (YW k(0.7 4 (@)
k=0 3
OF0l-.0) = 01k = 0.1.2 3 il i < ),
k=0

where || - [|,,; is the norm of W*>([0, 7"], H/(Q)).

To show that S : X(T', M) — X(T, M) for appropriate T, M one can use the same
procedure as in Lemma IT1.8 in [7], there only appear several new terms that can be
easily estimated. In fact,

t
J IOLAG, -, w,(s, D ds < C,
0

t
JK(t, t— s, we(s, Nwye(s-)ds|| <C+T-PWM),
0 Ht
and
t
%JK(Lt — 8, -, We(S, NWye(s - )ds|| <C+T-PM)
0 2

hold by the same argument as in [7] (P(M) is a generic continuous function of M).
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To show that S is contractive in the metric
d(w, ) := (|[w = w|[5 + [[w = @[[F ; + [ — w]|50)"/*

we estimate as in [7]. Taking the difference of equations for w, u := Sw and w,
u = Sw, differentiate w.r.t. ¢, multiply by Uy := uy; — 4y and integrate over space
and time we obtain some extra terms that will be of lower order than the terms
already present. So, they can be estimated via Holder and Young inequalities as
in [7], Lemma IIIL.9.

The moreover-part follows by the standard continuation argument. If T < T4,
then tlir%l (u(t), uy(t)) exists and it belongs to (H?, H?), so it can be considered as a new

initial condition and the solution can be extended to [T, T + 9). O

Corollary 3.2. Let (A1)-(A5) hold. Then there exist T € (0, Tya:] such that
3

(IDE), (Cu) has a unique solution u € () C>7*([0,T), H*(Q)). If (12) holds, then
T= Tmax- k=0

Proof. It is easy to see that (A1)-(A5) imply (S1)-(S6). |

4 - Global existence for small a

To show global existence on the interval J, it is sufficient to show that E(T) will
not escape to infinity. This will follow from the key estimate
(13) E(T) <CZ(Uy) 4+ CZ(F) + C(s)eﬁ +CE(T)(e+ ¢y + &, +&a)
+CE(T)** + CE(T)*.
More precise formulation is contained in the following lemma.

Lemma 4.1. Let (A1)-(A6) hold. Then there exists a continuous function Z
satisfying Z(0) = 0 and a constant C > 0 such that (13) holds for all T € J.

The proof of this lemma is contained in Lemmas 4.3 - 4.8. Now we show global
existence theorem with an additive assumption that derivatives of @ are not very
large.

Theorem 4.2. Let (13) hold with &, < 1/C. Then Theorem 2.1 holds.

Proof. Since we have local existence by Corollary 3.2, it is sufficient to show
that condition (12) is satisfied. It will follow from (13).
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Take ¢, ¢,, ¢ so small that C(e + ¢, + éx + &) =1 — 0 < 1. Then we have

C C C()z

E(T) < S ZWU0) + < Z(0F) + =~ + E(T)3/2+ E(T)

for ¢t € J. Take y > 0 so small, that % 312 < y/4 and —yZ < y/4 and then Uy, F

C(e) 2

and ¢, so small that CZ(U0)+ Z(F)+ ) < y/4 and E©0) <y. Let T, :=

sup{T' € J : Et) <yVte[0,T]}. Then Et) < Sy on [0,T,). Hence, T, = Tyqx by
Corollary 3.2. O

Now we will prove six lemmas that together with Remark 4.9 give a proof of
Lemma 4.1.

Lemmad4.3. Let(Al) - (A6) hold andu € ﬂ C37%([0, Ty), H*(Q)) is a solution
to IDE), (Cu). Then

(14) e (D)3 + Nt ()15 + Q@ T, (1))
< CZ(Uy) + CZ(F) + CE(T)*? + C(e, + e)E(T).

Proof. Multiply IDE1) by w(uy).: = w" (e )ttty + W' (Uz)tzy and integrate
over [0,1] x [0, T']. We obtain

T 1
d[1
J[uttl//(ux%]izo - J% [5‘//(“90)“?4 + 9" (i, dac it
0 0
(rdr 1 1 1
= ”% [écﬂ(t,x,ux)w/(ux)ui } 5 P Uy = SO U, + 5 oy U g
00

+Q(a L) + [ [fo(us)

Hence,

DO =

1
Ju/wx)umm ot (2, (T) A2+ Q(a, T (ot
0

DO —

1
jw%ua)(u’l)z (0,2, )y () ()
0

T1

1 1
JJW ux (ptl// um - é(p W uxtum +5 2 (pl// umuxt +fl//(MX)~ct da dt.
00
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Estimating ¥’ and ¢ on the left-hand side from below and the derivatives of ¢, ¥
on the right-hand side from above and using Hélder and Young inequality we
obtain (14). O

3
Lemma4.4. Let(Al)—(A6) hold andu € () C37*([0, T1), H*(Q)) is a solution
to (IDE), (Cu). Then k=0

.1
(15) ||utt%(T)||§ + ||utxx(T)||§ + }11111(1) ﬁQ(OL’ T, Ay () 1)
< CZ(Uo) + CZ(F) + C(e)é2 + CE(T) (e + ¢, + eq) + CE(T)** + CE(T)".

Proof. Applying 4, to (IDE1) we obtain (using Lemma 6.4)

t
(16)  Myun(t) = Mot @, us(?)), + Ja(t, 0,0 = )My (Ue) (1) AT + A f (1)
0

+at+h,x,t +h —s)y(uy),(s)ds

+ | a4+ h,x,t —s) —a(t,x,t — s)|w(us),. (s + k) ds.

C——— oo =

We multiply both sides by 4,y (u,),;) and integrate over [0,1] x [0, T']. Denote

1
the six terms we obtain by Iy, ..., Is. We will compute the limits lim — I; =: L;.
h=0 h?
Let us start with the first term.

~
iy

\

\

[y (W) ] A2t dic A

1 '/ !
W () ()], — 5" (1)t [Mue]? + Ay (e Yotz (t + R) Ay, de

DO| —

S o

I
|
e O N oty

W' () ()] (0) dee

DO —
DO|

1
W/ () (A4 2)(T) e — J
0

2 ‘//H (e ) Ut [Ahutx]z + Ah‘///(ux)utoc(t + h) Ay, dac di.

\
S —
Y S
[e—y
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After dividing by A? and taking the limit for # — 0 we obtain L; equal to

l// (u6)ut2t% (0)

]

DO —
DO —

1 1
an - j W (1 (T) 2, (T) + j
0 0

W (U gt + [/ (e )] 2ttty dac A2

(= e L
DO =

The second term in (16) gives

(18) I, = M|, (t, e, uy) + ¢ (F, 2, ) U] A [ (W) U], die At

O e N3
(= —

[An9, (t, 2, %) 4 0 (E, 20, ) At + A (8,2, Ui ) Ui (E 4 )] AR [0 (Ui )] i It

O%’ﬂ
o

The most problematic term in (18) gives

“ |

@' (t, 2, ) Ay A [ (U ) U], i AE

O —

T 1
= J Jw (t, @, ) At () Ayt + @ (8, 20, 20) At A1 0" (w0 )i ]
00

+ ' (t, 2, Uar) Ay Uare ' (U ) Ut (t 4 1) e .

Here the first term on the right-hand side is

[0 (t, 20, 2 )/ () (Ahumc)z]t

O —— 3
C—
DO|

1

-0/ )y ()] () i = |

0
1
0

[0/ (t, 20, 2 )9/ () (M) ) () e

DO —

[0/ (2, 200 ) (102 (A 200 )°) (0)

Al

DO —

(8, 28, e W ()] (At )P i .

NI»—A
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After taking the limit
0 1 0 1

20) | 10/ e (T o — | 51w )i, )(0) A
0 0

0 (t, 2, U W' ()] thtr)? e dit.

1l

The remaining terms on the right-hand side in (19) give

[} S
l\'JIn—A

T 1
J J(p (t, 2, ) Ap U A [ (uw) o+ 0 (8, ) AU Ay (U ) (t + ) dac dt
00

and the limit is

(21) W,(ta x>ux)utxx [1// (u%) ] +o (t X ux)utwl// (u%)umutm de dt

O ey N3
(=

T 1
= J J(ﬂ t,x, ux Utz [Q//W(ux)utocuix + V///(um)zumxutxx]
00

+ (p,(tv X, ux)utx:cl/// (ux)utxutxx da dt.

Taking the limit in the remaining terms of (18) we obtain

O —— N3

1
j Ut 0) + A (b2, 0 ot (8 4+ 1)) - 2o (1 Yttr] e
0

o—ﬂ

1
JAh M, (20, ug) + A (t, 2, Uy ) e (E + R) W' (U ) Uy e
0

h  T+h 1
+ <_ J + J ) J[Ah(/’x(tv T, Uy) + Ah(ﬂ,(ta 2, U ) U (T +- h)]‘//(ux)umt de dt.
0 T

0

Taking the limit we have
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T 1
@) = [ [t o))+ el it vt
00
1
- J[(%(t, %))y + (9 (t, @, W) ) U] (U ) Uit (0) oo
0

1
=+ J[((px(t’ X, ux))t + ((ﬂ/(t, X, u%))tul”]l//(uw)ul”wt(T) dﬁC
0

Hence,
Ly = (20) + (21) + (22).
The third term in (16) is I3 = Q(a, T, Ay (u,),y), taking limsup we have

. 1
(23) hr}? SUp 25 Qa, T, Ay (Uy)p).
—0

The fourth term in (16) yields

O—.ﬂﬂ
o—,s

1 1
JA;L Tl (v )] dac At = JAh (41 f 1 (U ) ey A A
0 0

h T+h\ 1
+ (—J+ J ) JAhfW/(ux)umt da dt

and the limit is

(24) Ly—

O%S
Y S

1 1
S v (U ) Uy A At + Jf " (U ) Ut (T') e At — Jf " (U ) Ut (0) dee dlt.
0 0

In the fifth and sixth term in (16) we need to move 4;, from y'(u,),; to the integral
term

)
Ja(t + h,a,t+ ho— (g (s) ds
0

resp.

t
J[a(t bRt —8) — alt, et — 9lp(t)uls + k) ds.
0
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In the fifth term we obtain (using Lemma 6.3)

h
JAhat—i—hx E b — 8y (ata) o (5) AS (W (2 Yt ), dee
0

o~
O%'ﬂ
S —

ho T+h\ 1h
(o ) o e sttt e
T 00

0

Taking the limit we have

o_ﬂ

1
= | Jtar+ @t o). OV (), et
’ 1
+ja<T7x,T)w(umt(m<w'<ux>um>t<T>dac
’ 1
—ja(o,x,o>w<ux>xt<0><w/<ux>um>t<o>dx.
0

The sixth term gives (with help of Lemma 6.3)

T 1 t
I = J Jﬁh lj t-i—h x,t— ) — a(t,oc,t — s)]y/(um)xt(s + h) ds (‘//(ux)umc)t dee dt
00

h T+h t
+ (—j+ | ) [latt+ h.t - 5)  attt = )5 + ) dsto () et
0 0
and taking the limit we have

T 1
”“ (t,t— )(ux)m(s)ds] (W (e, e lt
00

t

17
[ a0, 7 = was) sy ) (7)o
00

Since the limit exists in all terms except the one with @, the limsup in (23)
must be in fact a limit and putting (17), (20), (21), (22), (23), (24), (25), (26)



[15] GLOBAL EXISTENCE FOR A NONLINEAR MODEL OF 1D ETC.

together, we obtain

|

N

1
(DN T) + [ 510w (i, ) (T)
0

+lim - h2 Q(a, T, Ay (uy),y)

1

V) 0) + [ 310w ) 0
0

DO|

1
|
1
[t 0D+ (0 0 ) (000, 0)
0
1
+ j S0 (1)0t), (0)
0
1
- ﬁwm(t, 2102}, + (0 (20, 20)) ) 0 (2 ok ()
0

o' (t, 2, u, )y ()] 2, da dt

oﬁ»—
—

1 T
—jf (W (), dac+j
0 0

T 1
_J J¢ t X, ux utm (ux)utacugzm
00
+l////(uﬂc)2umutm] + ¢ (ta X, uac)utxx'////(ux)utﬂcutm do dt

W (U Uttt + [0 (W) bttty dac At

I
S
(= e L

DO =

[[(%(ta £, uw)]t + [(pl(t’ €, u%)}tum}t<wl(um)uxx)t de dt

+
O e N3
Y S

Jit (W' (U )i dow dt —

|
O e N3
o
O —— 3
S —

(as + as)(t, x, t)'//(ux)xt(o) ('///(ux)uxx)t dac dt

413
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1
- ja(ﬂ 2, Ty (16) 5 (0) (0 (1 k) (T it
0
1
+ja<o,m, 0)y (1), (0) (1 (2 e, (0)
0

T 1
—H[j (te,t — sw(u mt(s)ds] (0 (1 ) e it
00

t

17T
= [[ a7 = st asto ) (1) d
00

Here the left-hand side larger or equal to

g eollue (3 + 3¢ DIE + im Q. T, e
and the terms on the right-hand side are by Holder inequality less or equal to
S 2(U0) + 3 G Z(Uy) + Z(C,) Z(Us) + Fo(Uy)
+ (e + 8p9(T) + epv(T) + Cyy (1)) |y () (T)
F ) (Dl + 5 2Cy + CEHT) + Co(T)) e
+Cy (L) + 39(T)) (e 5 + ot 3)
2O el + Cor(T) e e
+ (0 + VBT [55, + (T (38 +2C,) + C, A (D) )y ().,

FF |y ()il + (s + as) (8, a0, )1, Z(Uo) [l () ]Iz
FlalT, - T)ll2Cy Uollw (v4) (Tl
+[a(0,-,0)[1,Z(Uo)

2
1y () 2 CNae -, 0) L + e + el )

{1 (o) 2 1w (o) o (Tl e (T -, T = )l oz
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Since \y/(ux)xt@, |t//(ux)xt(T)|§ < E(T) and w(T) < vE(T) and by Young inequality
we have

1 1 .1
5 Cull e (D3 + 5 63 s (D5 + lim 5 Q(a, T, Ay te)o)

< CZ(Uo) + CZ(F) + VET)(z, + Ce, + &,)
+E(T) (5¢ + 2¢, + 26, + &, + 26, + [las(-, -, 0)[|
+ |low + ast”L}ygL‘f + [lalT, -, T — '>||L§Lf;)
+CE(TP"* + CE(T).

Applying Young inequality to the third term on the right-hand side and using the
definition of ¢, and &, we obtain (15). O

3
Lemmad4.5. Let(Al)—(A6)holdandu € ) C3-1([0, Ty), HY(Q)) is a solution
to IDE), (Cu). Then k=0

@7) w5 + ot (T3 + Nt ()5 + N1 (T3 + N[04 13
< CZ(Uo) + CZ(F) + C(e)é2 + CE(T) (e + &, + &) + CE(T)** + CE(T)*.

Proof. This estimate follows immediately summing the estimates (14) and (15)
and applying Lemma 6.1. O

3
Lemma4.6. Let(Al) - (A6) hold andu € C3K(0. Ty), H'(Q)) is a solution
to (IDE), (Cu). Then k=0

2 2 2
et (T2 + Nt (T2 + ll2essel

< CZ(U) + CZ(F) + C(e)é2 + CE(T) (& + &, + &) + CE(T)** + CE(T*.

Proof. Taking L2-norms in (IDE) we have

t
lua®|5 < Clluws@®)ll3 + J las(t, -t — o]y @a(SDthel3. ds + lg@®)5,
0

hence,

28) I3 < Clluas®I3 + lastt, -, t = |17z max |wse(S)]|z + ZE) + Z(Uo).
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Differentiating (IDE) with respect to ¢ we obtain

(29) Ut = (X(ta €, u’v)uW)t + as(t7 €, O)V/(u“«”)x
t
+ J(att + ats)(t, x,t— s)y/(ux(s))x ds+g;.
0

Taking L?-norm we have

(80)  Nurre (I3 < Izt %) ot (D)5 + 112/ (8) ] V() 2 ()15

11 o okt (E) 113 + 1]t (E, -, 0) [ o 120 (£)

2 2
+ll(an + ast) (t, 20, = 8)[| o mAX (20 (5)[|2 + 192 (D)2

If we integrate the squared equation (29) over [0, T'] we obtain
2 2 2 2
B waellz < 17ell 2z max ([ ()13 + 117 ll2rz maxv(s)|[ua(s)]12
2 2
F oo ot |2+ llas (- 0] c 3 max [[24x (8)

(s + Ga)lt, 2.t~ )|, M 11z ()3 + Z(U) + Z(F).

Since all the terms on the right-hand sides in (28), (30), (31) are estimated in
previous lemmas, the assertion follows. O

3
Lemma4.7. Let(Al)-(A6)holdandu € C3([0. Ty), HX(Q)) is a solution
to IDE), (Cu). Then k=0

ot (T3
< CZ(Uy) + CZ(F) + C(e)é2 + CE(T) (e + &, + &) + CE(T)** + CE(T)".

Proof. Using difference operators one can derive the following “integration by
parts formula”
1
Ju’?tx =
0

The assertion then easily follows using Young inequality and previous estimates. [

1 1

Ut Wt + Jutmutt(o) - Jutxxutt(T)~
0 0

O —— 3
O —— 3
[ E———

3
Lemma4.8. Let (Al) — (A6) hold and u € () C37*([0, T1), H*(Q)) is a solution
to IDE), (Cu). Then k=0
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(82) ot (T3 + ot 3 + 1ot I3
< CZ(Uy) + CZ(F) + C(e)e2 + CE(T) (e + &, + &, + &4) + CE(T)** + CE(T)".

Proof. Rewrite (IDE) in the form
¢
(33) %(0,0, 0)2 + Jas(O, 0,t — )/ (0)uy(s) ds = G(t, x),
0

where
G =U — 9 — (;{(ta X, ux) - X(Ou 07 0))“9370
t

— J[as(t, x,t — s)y (uy) — as(0,0,t — $)y' (0)]2e(s) ds.
0

By Lemma 3.2 in [4] there exists a resolvent kernel k € L(0, + oo) for (33) and

¢
(34) 70,0, 0)et,(t, ) = G(¢, ) + Jk(t — 8)G(s,x)ds.
0

Differentiating with respect to « yields
(35)  x(0,0,0)uppe(t) = gt — g — (x(E, 2, %0) — %(0,0,0)) 2

- Xx(tv €, uw)um - ){/(t, X, u%)ugzm

¢
- J[as (t,x,t — )y () — 05(0,0,t — 5)p/' (0)] e (5) ds
0

t

- J[axs(tv .t — )y (Uy) + as(t, 2,6 — )" () U] Ui (8) ds.
0

Squaring this equation and integrating over Q yields
72(0,0,0) ot (D)5

< C(lmaa ()15 + 1925 + Gt 2, 22) = 7(0,0,0)) % [0t ()3

+&,E(t) + v(t)’E(t)
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t
[ttt = 9/ 06.)) = (0.0, = )0/ (O dsma e (5)
0

t
+ J s (t, 20,8 — $)y/' (ue) + as(t, 2, t — S)W//(ux)um”io ds mga.x |2 (8) H;

0

Hence, since
(¢, 22, 1,) — 20,0,0) %, and

t
J [Las(t, - t — S (s, ) — a5(0,0,t — s/ (0)]|[%, ds

0

are bounded by ¢, and ¢,, we have
7%(0,0,0) |24 (1)1 3

< Cllua @3 + lga @3 + (e, + e)E®) + vEPE®) + max || (s)][3).

Integration of (35) over [0, T'] yields

72(0,0,0) 2t 3 < C el + llge
10 2e) = 700, 0, 0) |2 maX [t ()13 + &, B () + v(8)° B (1)

+ | | st ot = ) (wals, ) — a5(0,0,t — s)/ (0)]||% ds dt max ot (5)113

S —

+ | [ llese(t, 2, t — s)y/' (ue) + as(t, @,t — S)W,,(ux)um”io ds dtmsax ||um(s)||§7

C— Ny o
O —

hence,
720,0,0)| 0[5 < Clletgeall3 + |93 + &, EE) + vOPE®) + sup [[40(9)|[3).

Finally, squaring and integrating (34) we obtain
72(0,0,0) oI5
< O+ 1918+ G- 205) — (0,0, 0)) |25 max [ (3)]

Tt
[t = s/ a5, ) = 00(0,0,8 = )/ ), ds dtma s ()]
00
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The assertion follows from this estimate and the estimates proved in the previous
lemmas. O

Remark 4.9. The derivatives of u of lower order can be easily estimated by
the derivatives of higher order and the Poincaré inequality.

5 - Proofs of the main results

Let us mention that if y, a, g and ug satisfy (A1) — (A6), then also ¢ satisfies the
regularity condition in (A1) and f satisfies (A4). Further, it is sufficient to assume
that y(t,2,0) > 0 and (¢, x,0) — a(t, x, 0)y/(0) > 0 and we obtain the lower bound for
%, @, v in (Al) if the set B is small enough. Moreover, if Uy(ug, %1) is small and F'(f) is
small, then F'(g) is also small, i.e. F'(g) < Z(F(f), Uy), Z continuous and Z(0,0) = 0.
We can also estimate

&y < &, +Cy, max {ay, Gy, O, Qtt, Qe } (£, 2, 0).
teJ xeR

If a is of the form a(t,x,t — s) = k(c(t, x),t — s), then we have
8(1 S Z(86)7

where Z is continuous with Z(0) = 0 (depending only on ||%|| c2uxy) and

g 1= rrg%X{ct, Ca, Cas Cit, Cotee } (T, ) + J |Eu ()] + |c: ()| di
' J

with ¢;(?) := max, c(t, x). Further, if ¢ is small or ¥/, k", k"’ are small, then ¢, is small,
provided ¢, is small and (A2’) holds.

Proof (of Theorem 2.2). The second equation of (1) has a solution
ce Cg(R+ x Q) with ¢;, ¢ € L1(J,L>®(RQ)). Then (A2) is satisfied and by the con-
siderations above. The assumption (Al) holds if B is sufficiently small and as-
sumptions (A3), (A6) follow from (A3’), (A6’) respectively.

Moreover, if Cy(co) is small, then ¢, is small and therefore ¢, is small and also ¢, is
small (since ¢, is small). Therefore, the assumptions of Theorem 4.2 are satisfied and
the assertion of Theorem 2.2 follows from Theorem 4.2. O

Proof (of Theorem 2.1). To show that Theorem 2.1 holds without smallness
assumptions on the kernel a, we first observe (from the definition of ¢,) that J can be
covered by finitely many half-open subintervals J1,...,J, that overlap a little and
such that ¢, < 1/C on each of them.
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We would like to solve the equation on each of the intervals J; separately and glue
: |

the solutions together. Let %' be a solution on J':= (J J; and J; = [T},S;) with
j=1

T; € Jt. Since ui(T;) satisfies (A3) and (A5), it can be také; as a new initial value. Let
us reformulate the equation (IDE) for u(t, x) := u(t + T;, ). We obtain

t

(IDEi) Uy = J(C, 0, Uy Uy + st(t, 2, t — $)wg(s), ds + g,
0

where y(t,x,2) .= y(t + T;,x,2), a(t,x,s) := at + T;,x,s) and

T;

Gt ) = gt + T + J alt, 2.t — Sy u(s, 1)), ds.
0

Since the new data %, a, g satisfy (A1) — (A6) and ¢; < 1/C, there exists a solution to
(IDEi) on J? provided
(36) Ui, i) + F@) + e + ¢

: i
is sufficiently small. Continuing the solution ' by % we obtain a solution on | J J; and

by induction we obtain a solution on J. It remains to show that we can guaragtlee that
(36) is small enough in each step.

There is no problem with ¢;, ¢;. We can simply assume these quantities to be small
on the whole J. However, u, %; and g depend on the solution on the previous interval,
so we have to be more careful. We will start from the last interval J, and go through
the same scheme as in the proof of Theorem 4.2 and proceed to J,_1, J,_2,...,J1.

We will denote the data on J, by ¢, uj, u;. We remind that u} = u"~}(T,),
uf = uy~Y(T,) and

T,
7t,@) =gt + T)) + J alt,x, t — (s, ), ds.
0

To obtain a solution on J” we want g", g, 41 to be small enough. We will show that
(37) Usuy, uf) + F(g") + ey +e, < i, ET,) <y

follows from

(38) Upug Lui ™ D+ F(g" D +e,+e, <p™,  E(T,1) <y

for appropriate ', "~ (provided ¢,, ¢, are small enough).
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Let us go to J,_;. Take y such that y < y", y < ¢" /4 and F” < 1" /4, where
Fr:=sup {F(g"): wu is such that E(T,) < y}.

Further, we take y so small that %yg/ 2 <y/4 and %yz < y/4. Now, take x"~! such
that
Ce)

C r—1 C r—1 2
(39) EZ(,U )‘f‘gz(ﬂ ))+T 0 < V/4

and set "1 := y/4.
Let u be a solution on [0,7,_;] with E(T,_;) < y"~!. Like in the proof of

Theorem 4.2, (38), (39) and the other conditions on y yield E(t) < zy for the solution
uy on [0, 7, — T)_1]. If 4" is the continuation of % by u,, then we have E(T,) <
ET,—1)+ %y <y < 7" and we have the second estimate in (37). Further we have

7

Uouy, uf) + F(g") < B(T,) + F" < 4 /fz

IR

and we have the first estimate in (37).

Applying the implication (38) = (37) inductively, we obtain x!, y'. Since E(T;) =
E) < Z(F, Uy), we obtain that existence of a solution on J is gueranteed by (8) and
Theorem 2.1 is proved. O

6 - Appendix

Lemma 6.1. Let k:J x QxJ — R be of strong positive type. Then there
exists ¢ > 0 such that for all T > 0 and w € C([0, T1, L2()) the following inequality
holds

¢
1
(40) an(s)nﬁ ds < C(|w(0)||§ + Qk, t,w) + lirgl\iglfﬁQ(k, t, Ahw))
0

forallt €[0,T).

Proof. Lemma 2.5 in [5] gives the result for convolution kernels independent
of . In particular (40) holds if we replace k by e(t, x,t — s) := ¢/~*. Since k is of strong
positive type, we have Q(k,t,w) > c1Q(e, t,w) and Q(k,t, 4,w) > c1Q(e, t, 4,w) and
the proof is complete. O

We formulate three lemmas for working with difference operators. Their proofs
are easy.
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Lemma 6.2. Letf, w e C(J). Then forevery T € (0, Thnar) and h small enough
it holds that

T T T+h h
J FOLwE)dt = — JAh FOwE + k) dt + J - J FOw) dt.
0 0 T 0

Lemma 6.3. Letw e C(J), a € CJ xJ). Then for every T € (0, Tyyq:) and h
small enough it holds that

a(t+ h,t+h — s)w(s) dsdw(t) di

O ——— Ny
O e,

Apa(t + h,t + h — s)w(s) dsw(t + k) dt

I

|
O —— Ny
S —

T+h R h
+ J - J Ja(t +h,t+ h — s)w(s) dsw(t) dt.
T 0/ 0

Lemma 6.4. Leta € CYJ x J), we CWJ). Then
t h
Ay Ja(t,t —s)w(s)ds = Ja(t +h,t+h —s)w(s)ds
0 0

t ¢
+ J[a(t +h,t—s)—a(tt—s)|ws+h)ds+ Ja(t,t — 8)Mw(s) ds.
0 0
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