SILVANO DELLADIO

A Whitney-type result about rectifiability of graphs

Abstract. Given m>0 and a measurable set $E\subset\mathbb{R}^n$, $E^{(m)}$ denotes the set of m-density points of E, namely the points $x\in\mathbb{R}^n$ at which $\mathcal{L}^n(B(x,r)\backslash E)$ is an infinitesimal of order greater than r^m (as $r\to 0$). We investigate the size of $E^{(m)}$ in the particular case when E is a generalized Cantor set in \mathbb{R} . Moreover we prove the following result. Let $\varphi\in C^h(\Omega)$ and $\Phi\in C^h(\Omega;\mathbb{R}^n)$), where Ω is an open subset of \mathbb{R}^n and $h\geq 1$. If $K:=\{x\in\Omega\,|\,\nabla\varphi(x)=\Phi(x)\}$ then the graph of $\varphi_{|\Omega\cap K^{(n+h)}}$ is a n-dimensional C^{h+1} -rectifiable set.

Keywords. Rectifiable sets, geometric measure theory, Whitney extension theorem.

Mathematics Subject Classification (2010): Primary 49Q15, 28A75, 28A78; Secondary 28A12.

1 - Introduction

Definition 1.1. Let E be a measurable subset of \mathbb{R}^n and m > 0. Then $x \in \mathbb{R}^n$ is said to be a "m-density point of E" if

$$\lim_{r\downarrow 0} \frac{\mathcal{L}^n(B(x,r)\backslash E)}{r^m} = 0.$$

The set of all m-density points of E will be denoted by $E^{(m)}$.

It is well-known that almost every point in a measurable subset E of \mathbb{R}^n is a n-density point of E. Does such a statement hold with m in place of n, provided

Received: June 24, 2013; accepted: September 3, 2013.

m>n? Surprisingly enough the answer is "yes" when E is a locally finite perimeter set and m=n+n/(n-1), as we proved in [5]. Such a fact supports the idea that locally finite perimeter sets are "closer" to open sets (for which one obviously has $E^{(m)} \supset E$ for all m) than generic sets with positive measure. For an arbitrary measurable set E of positive measure the answer is "no". As we will show below, one can even produce many examples of sets E of positive measure with $E^{(n+1)} = \emptyset$.

Just as one expects, for m > n, the notion of m-density reveals to be useful in extending arguments based on blow-up from open sets to more general situations. An example is given by the following result, proved in [5] and generalizing a well-known classical theorem.

Theorem 1.1. Let λ and μ be differential forms of class C^1 in an open subset Ω of \mathbb{R}^n , respectively of degree h and h+1 (with $h \geq 1$). If define

$$K := \{ x \in \Omega \,|\, d\lambda(x) = \mu(x) \}$$

then $\Omega \cap K^{(n+1)} \subset K$ and $(d\mu)|_{\Omega \cap K^{(n+1)}} = 0$.

Corollary 1.1. Let $\Phi \in C^1(\Omega; \mathbb{R}^n)$ and $\varphi \in C^1(\Omega)$, where Ω is an open subset of \mathbb{R}^n . If define

$$K := \{ x \in \Omega \mid \nabla \varphi(x) = \Phi(x) \}$$

then $\Omega \cap K^{(n+1)} \subset K$ and $(\operatorname{curl} \Phi)|_{O \cap K^{(n+1)}} = 0$.

Another example is this theorem about C^2 -rectifiability of graphs, which we obtained in [5] by combining Corollary 1.1 with results in [2] (largely based on [3]) and in [4].

Theorem 1.2. Let Φ , φ and K be as in Corollary 1.1. Then the graph of $\varphi|_{\Omega\cap K^{(n+1)}}$ is a n-dimensional C^2 -rectifiable set, namely \mathcal{H}^n -almost all of it may be covered by countably many n-dimensional submanifolds of class C^2 .

Now we can show how to get examples of sets E of positive measure with $E^{(n+1)}=\emptyset$. First consider $\Phi\in C^1(\mathbb{R}^n;\mathbb{R}^n)$ such that $\operatorname{curl}\Phi$ is never vanishing. Then by [1, Theorem 1] there exist an open subset A of \mathbb{R}^n and a function $\varphi\in C^1_c(\mathbb{R}^n)$ such that

$$K := \{x \in \mathbb{R}^n \mid \nabla \varphi(x) = \Phi(x)\} \supset \mathbb{R}^n \setminus A, \qquad \mathcal{L}^n(A) \leq 1.$$

Since $K^{(n+1)} = \emptyset$ by Corollary 1.1, one has $E^{(n+1)} = \emptyset$ for every measurable subset E of K.

In Section 2 of this paper we face the problem of computing the size of $E^{(m)}$ in the remarkable case when E is a generalized Cantor set in \mathbb{R} . Two main results concerning this problem will be presented. The first one states that for a wide family of "suitably thin" generalized Cantor sets E one has $\mathcal{L}^1(E^{(m)}) = 0$, provided $m \geq 2$ (Corollary 2.1). Then, for every fixed m > 1 and $\varepsilon > 0$, we show how to construct a generalized Cantor set E in \mathbb{R} such that $\mathcal{L}^1(E^{(m)}) \geq 1 - \varepsilon$ (Proposition 2.2).

Section 3 is devoted to a generalization of Theorem 1.2. More specifically we prove that if Φ and φ are of class C^h with $h \geq 1$ and if K is defined as above, then the graph of $\varphi|_{K^{(n+h)}}$ is a n-dimensional C^{h+1} -rectifiable set (Theorem 3.1). The proof we present of this result is very short and relies on only [8, Theorem 3.6.2] (an L^p version of the Whitney extension theorem, due to Calderón and Zygmund [3]) and [4, Theorem 4.2], the latter stating that at the points in $K^{(n+h)}$ the function φ behaves nicely with respect to (h+1)-degree Taylor polynomial expansion in L^1_{loc} .

2 - m-density points and generalized Cantor sets in ${\mathbb R}$

Let $T=(\lambda_k)$ be a sequence of numbers in (0,1/2) and C(T) denote the generalized Cantor set in $\mathbb R$ obtained according to the construction in [7, Section 4.11]. Then, for $k=1,2,\ldots$, let $I_{k,1},\ldots,I_{k,2^k}$ and $A_{k,1},\ldots,A_{k,2^{k-1}}$ be, respectively, the equi-length closed intervals left and the equi-length open intervals removed at the k-th step of the construction, so that

$$I_{k,2j-1} \cup A_{k,j} \cup I_{k,2j} = I_{k-1,j}.$$

Also let

$$s_k := \mathcal{L}^1(I_{k,j}) = \lambda_1 \cdots \lambda_k, \qquad
ho_k := rac{\mathcal{L}^1(A_{k,j})}{2} = rac{s_{k-1} - 2s_k}{2} = \left(rac{1}{2} - \lambda_k
ight) s_{k-1}$$

and $\xi_{k,j}$ be the middle point of $I_{k,j}$. Now let $x_0 \in C(T)$ and observe that $x_0 \neq \xi_{k,j}$ for all k,j. For each $k=1,2,\ldots$ there exists a unique $j(x_0,k) \in \{1,\ldots,2^k\}$ such that $x_0 \in I_{k,j(x_0,k)}$. Let $J_k(x_0)$ denote the closed interval whose endpoints are $\xi_{k,j(x_0,k)}$ and $\xi_{k,j(x_0,k)} + (\xi_{k,j(x_0,k)} - x_0)$.

2.1 - A family of "thin" generalized Cantor sets

Going along the lines of [2, Appendix], we can easily obtain the following result (the proof of which is provided for the convenience of the reader).

Proposition 2.1. Let $T = (\lambda_k)$ satisfy the condition

$$(2.1) C_k := \left(\frac{1}{2} - \lambda_k\right) 2^{k/3} \to +\infty (as \ k \to \infty).$$

and define

(2.2)
$$\varphi(x) := \int_{0}^{x} \operatorname{dist}(t, C(T))^{1/2} dt \qquad (x \in \mathbb{R}).$$

Then the graph of $\varphi|_{C(T)}$ intersects every C^2 graph in a zero-measure set.

Proof. Step 1. Let $x_0 \in C(T)$ and prove that

$$|\varphi(y) - \varphi(x_0)| \ge \frac{1}{4} C_{k+1}^{3/2} |y - x_0|^2 \qquad (k = 1, 2, \dots)$$

for all $y \in J_k(x_0)$.

To this aim, observe that, for each k = 1, 2, ..., one has two possible cases (let $j(x_0, k)$ be indicated simply by j):

- (a) $x_0 < \xi_{k,j}$, i.e. $x_0 \in I_{k+1.2i-1}$;
- (b) $x_0 > \xi_{k,j}$, i.e. $x_0 \in I_{k+1,2j}$.

In the case (a) one has $J_k(x_0) = [\xi_{k,j}\,,\,\xi_{k,j} + (\xi_{k,j}-x_0)]$ and

$$egin{aligned} arphi(\xi_{k,j}) - arphi(x_0) &= \int\limits_{x_0}^{\xi_{k,j}} \operatorname{dist}(t,C(T))^{1/2} dt \geq \int\limits_{\xi_{k,j} -
ho_{k+1}}^{\xi_{k,j}} \operatorname{dist}(t,C(T))^{1/2} dt \\ &\geq \int\limits_{\xi_{k,j} -
ho_{k+1}}^{\xi_{k,j}} \left[t - (\xi_{k,j} -
ho_{k+1})\right]^{1/2} dt = \int\limits_{0}^{
ho_{k+1}} t^{1/2} dt = rac{2}{3} \,
ho_{k+1}^{3/2} \\ &= rac{2}{3} \left(rac{1}{2} - \lambda_{k+1}
ight)^{3/2} s_k^{3/2}. \end{aligned}$$

In the case (b), by an analogous computation, we get the same lower bound for $\varphi(x_0) - \varphi(\xi_{k,j})$. Putting together the two estimates, one finds

$$|\varphi(x_0) - \varphi(\xi_{k,j})| \ge \frac{2}{3} \left(\frac{1}{2} - \lambda_{k+1}\right)^{3/2} s_k^{3/2}.$$

Since

$$2|x_0 - \xi_{k,j}| \le s_k \le 2^{-k}$$

it follows that

$$\begin{aligned} |\varphi(x_0) - \varphi(\xi_{k,j})| &\geq \frac{2}{3} \left(\frac{1}{2} - \lambda_{k+1}\right)^{3/2} s_k^2 s_k^{-1/2} \\ &\geq \frac{8}{3} \left(\frac{1}{2} - \lambda_{k+1}\right)^{3/2} 2^{k/2} |x_0 - \xi_{k,j}|^2 \\ &\geq C_{k+1}^{3/2} |x_0 - \xi_{k,j}|^2. \end{aligned}$$

We also observe that for all $y \in J_k(x_0)$ one has

$$|y-x_0| \le |y-\xi_{k,j}| + |\xi_{k,j}-x_0| \le 2|\xi_{k,j}-x_0|$$

and (by the monotonicity of φ)

$$|\varphi(y) - \varphi(x_0)| \ge |\varphi(\xi_{k,j}) - \varphi(x_0)|.$$

Hence (2.3) follows immediately.

Step 2. Let $f \in C^2(\mathbb{R})$ and prove that

$$\mathcal{L}^1(F) = 0, \qquad F := \{ x \in C(T) \mid \varphi(x) = f(x) \}.$$

It will be enough to prove that F does not contain points of density. To this aim, assume (by absurd) the existence of a point x_0 of density of F. Since F is closed, one has

$$x_0 \in F \subset C(T)$$
.

If define

$$U_k := (x_0 - 2\rho, x_0 + 2\rho); \qquad \rho := |\xi_{k,j(x_0,k)} - x_0|$$

then

$$\frac{\mathcal{L}^1(F \cap U_k)}{\mathcal{L}^1(U_k)} > \frac{3}{4} \quad \text{i.e.} \quad \mathcal{L}^1(F \cap U_k) > 3\rho$$

provided k is sufficiently large. It follows that (for k large enough and denoting $J_k(x_0)$ simply by J_k)

$$\mathcal{L}^{1}(F \cap J_{k}) = \mathcal{L}^{1}(F \cap U_{k}) - \mathcal{L}^{1}(F \cap (U_{k} \setminus J_{k})) > 3\rho - \mathcal{L}^{1}(U_{k} \setminus J_{k}) = 0$$

hence there exists $y_k \in F \cap J_k$. Observing that $f'(x_0) = 0$ and recalling (2.3), we obtain

$$\frac{|f(y_k) - f(x_0) - f'(x_0)(y_k - x_0)|}{|y_k - x_0|^2} = \frac{|\varphi(y_k) - \varphi(x_0)|}{|y_k - x_0|^2} \to +\infty$$

as $k \to +\infty$. This result contradicts the assumption that f is of class C^2 .

Remark 2.1. In [2, Appendix] it is considered the case of $T = (\lambda_k)$ with

$$\lambda_k := \frac{1}{2} - \frac{1}{2(k+i)^2}$$

which obviously satisfies (2.1).

Corollary 2.1. If E := C(T) with T given as in Proposition 2.1, then $\mathcal{L}^1(E^{(m)}) = 0$ for all $m \geq 2$.

Proof. Since E is closed, one has $E^{(2)} \subset E$. It follows from Proposition 2.1 and Theorem 1.2 (with n:=1, $\Omega:=\mathbb{R}$, φ given by (2.2) and $\Phi:=0$) that the graph of $\varphi|_{E^{(2)}}$ has measure zero, hence $\mathcal{L}^1(E^{(2)})=0$. The conclusion follows from the obvious inclusion $E^{(m)}\subset E^{(2)}$, for all $m\geq 2$.

2.2 - A family of "fat" generalized Cantor sets

If E is an open set, one obviously has $E^{(m)} \supset E$. Hence we expect that $E^{(m)}$ has positive measure whenever E is a "fat enough" generalized Cantor set. This section is devoted to illustrating how to get, given any m > 1, examples of generalized Cantor sets with such a property.

If σ denotes a given positive number, we can chose $T = (\lambda_k)$ in such a way that

(2.4)
$$\mathcal{L}^{1}(A_{k,j}) = \sigma^{km} \qquad (k = 1, 2, \dots; j = 1, \dots, 2^{k-1})$$

provided σ is small enough. Indeed, if (2.4) holds, then the following condition

$$\left\{egin{aligned} \mathcal{L}^1(A_{1,1}) < 1 \ & \sum_{i=1}^{2^k} \mathcal{L}^1(A_{k+1,i}) < 1 - \sum_{j=1}^k \sum_{i=1}^{2^{j-1}} \mathcal{L}^1(A_{j,i}) & ext{for } k = 1, 2, \dots \end{aligned}
ight.$$

i.e.

$$\left\{egin{array}{l} \sigma^m < 1 \ 2^k\sigma^{(k+1)m} < 1 - \sum\limits_{j=1}^k 2^{j-1}\sigma^{jm} & ext{for } k=1,2,\dots \end{array}
ight.$$

is easily seen to be verified when σ is small enough.

Now let $B_{k,j}$ be the open interval of length $(2\sigma)^k$ centered at the middle point of $A_{k,j}$, define

$$E_k:=[0,1]ackslash igcup_{i=1}^kigcup_{i=1}^{2^{j-1}}A_{j,i}, \qquad E:=igcap_{k=1}^\infty E_k=C(T)$$

and

$$F:=[0,1]ackslash igcup_{j=1}^{\infty}igcup_{i=1}^{2^{j-1}}B_{j,i}.$$

The measure of the generalized Cantor set E can be computed as the limit of $\mathcal{L}(E_k)$ for $k\to\infty$. Since

$$(2.5) \qquad \mathcal{L}^{1}(E_{k}) = 1 - \sum_{i=1}^{k} 2^{j-1} \sigma^{jm} = 1 - \sigma^{m} \sum_{i=0}^{k-1} (2\sigma^{m})^{j} = 1 - \sigma^{m} \frac{1 - (2\sigma^{m})^{k}}{1 - 2\sigma^{m}}$$

we find

(2.6)
$$\mathcal{L}^{1}(E) = 1 - \frac{\sigma^{m}}{1 - 2\sigma^{m}}.$$

Observe that, for σ small enough

(2.7)
$$\frac{\mathcal{L}^{1}(A_{j,i})}{\mathcal{L}^{1}(B_{i,j})} = \frac{\sigma^{jm}}{2^{j}\sigma^{j}} = \left(\frac{\sigma^{m-1}}{2}\right)^{j} < 1 \qquad (j = 1, 2, \dots)$$

hence

$$F \subset E$$
.

Moreover, from

$$Eackslash F\subset [0,1]ackslash F=igcup_{j=1}^\inftyigcup_{i=1}^{2^{j-1}}B_{j,i}$$

it follows that

$$(2.8) \mathcal{L}^1(E \backslash F) \leq \sum_{j=1}^{\infty} 2^{j-1} (2\sigma)^j = \frac{2\sigma}{1-4\sigma} \to 0 \text{(as } \sigma \downarrow 0).$$

This result holds.

Proposition 2.2. For σ small enough, one has $F \setminus \{0,1\} \subset E^{(m)}$. Moreover

(2.9)
$$\mathcal{L}^{1}(E^{(m)}) \geq \mathcal{L}^{1}(E) - \frac{2\sigma}{1 - 4\sigma}.$$

Proof. Consider $x \in F \setminus \{0,1\}$ and define

$$\delta_j := \frac{\mathcal{L}^1(B_{j,i}) - \mathcal{L}^1(A_{j,i})}{2}$$

which is positive for all j = 1, 2, ..., by (2.7). A trivial computation shows that the inequality $\delta_{j+1} < \delta_j$ is equivalent to

$$\left(\frac{\sigma^{m-1}}{2}\right)^j < \frac{1-2\sigma}{1-\sigma^m}$$

which is clearly verified for all j, provided σ is small enough. Thus the δ_j form a decreasing infinitesimal sequence.

Now let r be positive with

$$(2.10) r < \min\{\delta_1, x, 1 - x\}$$

and denote with $\kappa(r)$ the maximum of the k such that $r < \delta_k$, hence

$$(2.11) \delta_{\kappa(r)+1} \le r < \delta_{\kappa(r)} < \dots < \delta_1.$$

This implies in particular that B(x,r) cannot intersect the $A_{j,i}$ with $j=1,\ldots,\kappa(r)$, namely

$$B(x,r) \cap \left(\bigcup_{j=1}^{\kappa(r)} \bigcup_{i=1}^{2^{j-1}} A_{j,i}\right) = \emptyset$$

which, also by (2.10), can be written as

$$(2.12) B(x,r)\backslash E_{\kappa(r)} = \emptyset.$$

Since $E \subset E_{\kappa(r)}$, one has

$$E = E_{\kappa(r)} \setminus (E_{\kappa(r)} \setminus E)$$

and then

$$\begin{split} B(x,r)\backslash E &= B(x,r) \cap \left(E_{\kappa(r)} \cap \left(E_{\kappa(r)}\backslash E\right)^{c}\right)^{c} \\ &= B(x,r) \cap \left(E_{\kappa(r)}^{c} \cup \left(E_{\kappa(r)}\backslash E\right)\right) \\ &= \left(B(x,r)\backslash E_{\kappa(r)}\right) \cup \left(B(x,r) \cap \left(E_{\kappa(r)}\backslash E\right)\right). \end{split}$$

From this equality and (2.12) it follows that

$$\mathcal{L}^1(B(x,r)\backslash E) < \mathcal{L}^1(E_{\kappa(r)}\backslash E).$$

Recalling again (2.11), we obtain

(2.13)
$$\frac{\mathcal{L}^1(B(x,r)\backslash E)}{r^m} \le \frac{\mathcal{L}^1(E_{\kappa(r)}\backslash E)}{\delta_{\kappa(r)+1}^m}$$

for all positive r. But (2.5) and (2.6) yield

$$\begin{split} \frac{\mathcal{L}^1(E_k \backslash E)}{\delta_{k+1}^m} &= \frac{\mathcal{L}^1(E_k) - \mathcal{L}^1(E)}{\delta_{k+1}^m} \\ &= \frac{\sigma^m (2\sigma^m)^k}{1 - 2\sigma^m} \times \frac{2^m}{\left[(2\sigma)^{k+1} - \sigma^{(k+1)m}\right]^m} \\ &= \frac{1}{1 - 2\sigma^m} \times \left[1 - \left(\frac{\sigma^{m-1}}{2}\right)^{k+1}\right]^{-m} \times \frac{1}{2^{k(m-1)}} \end{split}$$

hence

$$\lim_{k\to\infty}\frac{\mathcal{L}^1(E_k\backslash E)}{\delta_{k+1}^m}=0.$$

Now (2.13) yields $x \in E^{(m)}$, which proves the first claim in the statement. Finally, the inequality (2.9) follows from (2.8):

$$\mathcal{L}^{1}(E^{(m)}) \ge \mathcal{L}^{1}(F) = \mathcal{L}^{1}(E) - \mathcal{L}^{1}(E \setminus F) = \mathcal{L}^{1}(E) - \frac{2\sigma}{1 - 4\sigma}.$$

3 - C^{h+1} -rectifiability via L^p Whitney extension theorem

Let $\varphi \in C^h(\Omega)$ and $\Phi \in C^h(\Omega; \mathbb{R}^n)$, where Ω is an open subset of \mathbb{R}^n and $h \ge 1$. Define

$$K := \{ x \in \Omega \mid \nabla \varphi(x) = \Phi(x) \}.$$

Consider the Taylor-type polynomial

$$P_x(y) := \sum_{i=1}^h \frac{\langle D^j \varphi(x) | (y-x)^j \rangle}{j!} + \frac{\langle D^h \Phi(x) | (y-x)^h \rangle \cdot (y-x)}{(h+1)!} \quad (x \in \Omega, y \in \mathbb{R}^n)$$

where

$$\langle D^j \varphi(x) | (y-x)^j \rangle := \sum_{\lambda \in \{1, \dots, n\}^j} (y_{\lambda_1} - x_{\lambda_1}) \cdots (y_{\lambda_j} - x_{\lambda_j}) \frac{\partial^j \varphi}{\partial x_{\lambda_1} \cdots \partial x_{\lambda_j}} (x)$$

and

$$\langle D^h arPhi(x) | (y-x)^h
angle := \sum_{\lambda \in \{1,\dots,n\}^h} (y_{\lambda_1} - x_{\lambda_1}) \cdots (y_{\lambda_h} - x_{\lambda_h}) rac{\partial^h arPhi}{\partial x_{\lambda_1} \cdots \partial x_{\lambda_h}} (x).$$

From the proof of [4, Theorem 4.2] we can easily extrapolate the following result.

Proposition 3.1. One has

$$\lim_{r\downarrow 0}rac{1}{r^{n+h+1}}\int\limits_{B(x,r)}\leftert arphi(y)-P_x(y)
ightert dy=0$$

for all $x \in \Omega \cap K^{(n+h)}$

With these preliminary remarks in mind and through results by Calderón and Zygmund [3], remarkably presented in [8, Section 3.6], we are in position to get an easy proof of the following theorem generalizing Theorem 1.2.

Theorem 3.1. Let Ω be an open subset of \mathbb{R}^n and $h \geq 1$. Consider $\varphi \in C^h(\Omega)$, $\Phi \in C^h(\Omega; \mathbb{R}^n)$ and define

$$K := \{ x \in \Omega \mid \nabla \varphi(x) = \Phi(x) \}.$$

Then the graph of $\varphi|_{\Omega\cap K^{(n+h)}}$ is a n-dimensional C^{h+1} -rectifiable set, namely \mathcal{H}^n -almost all of it may be covered by countably many n-dimensional submanifolds of class C^{h+1} .

Proof. Proposition 3.1 implies

$$\Omega\cap K^{(n+h)}=igcup_{j=1}^\infty E_j$$

where E_j denotes the set of points $x \in K^{(n+h)}$ such that

$$\operatorname{dist}(x,\mathbb{R}^n \backslash \Omega) > \frac{1}{i}$$
 (hence $x \in \Omega$ too)

and

$$\frac{1}{r^{h+1}} \int\limits_{B(x,r)} |\varphi(y) - P_x(y)| \, dy \leq j, \quad \text{ for all } r \in \left(0, \frac{1}{2j}\right).$$

Hence it will be enough to show that the graph of $\varphi|_{E_j}$ is a n-dimensional C^{h+1} -rectifiable set (for all j). But the E_j are measurable and $E_j \cap B(0,m)$ can be approximated in measure by compact subsets (for all j, m), thus we are reduced to prove the following claim.

Claim. Let j be fixed arbitrarily and let C be a compact subset of E_j . Then the graph Γ of $\varphi|_C$ is a n-dimensional C^{h+1} -rectifiable set.

To this aim, we begin by applying [8, Theorem 3.6.2]. It implies the existence of a function f of class $C^{h,1}$ in an open neighbourhood of C such that $f|_C = \varphi|_C$. By

[6, Theorem 3.1.15], for each $m=1,2,\ldots$ there exists $g_m\in C^{h+1}(\mathbb{R}^n)$ such that

$$\mathcal{L}^n(C\backslash C_m) \le \frac{1}{m}$$

where

$$C_m := \{x \in C \mid g_m(x) = f(x)\} = \{x \in C \mid g_m(x) = \varphi(x)\}.$$

Denoting by Γ_m the graph of g_m , one has

$$\mathcal{H}^{n}(\Gamma \setminus \cup_{j} \Gamma_{j}) \leq \mathcal{H}^{n}(\Gamma \setminus \Gamma_{m}) \leq \int_{C \setminus C_{m}} (1 + \|\nabla \varphi\|^{2})^{1/2} \leq \frac{1 + \max_{C} \|\nabla \varphi\|}{m}$$

for all m. Hence

$$\mathcal{H}^n(\Gamma \setminus \cup_j \Gamma_j) = 0$$

and this concludes the proof of Claim.

Remark 3.1. Under the assumptions of Theorem 3.1, in general, we cannot expect the graph of $\varphi|_{\Omega\cap K}$ to be a n-dimensional C^{h+1} -rectifiable set. An example is provided by Proposition 2.1 (where $n:=1, h:=1, \Omega:=\mathbb{R}$ and $\Phi:=0$).

References

- [1] G. Alberti, A Lusin type theorem for gradients, J. Funct. Anal 100 (1991), 110-118.
- [2] G. Anzellotti and R. Serapioni, C^k -rectifiable sets, J. Reine Angew. Math. 453 (1994), 1-20.
- [3] A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225.
- [4] S. Delladio, Dilatations of graphs and Taylor's formula: some results about convergence, Real Anal. Exchange 29 (2003/04), no. 2, 687-712.
- [5] S. Delladio, Functions of class C¹ subject to a Legendre condition in an enhanced density set, Rev. Mat. Iberoam. 28 (2012), no. 1, 127-140.
- [6] H. Federer, Geometric measure theory, Springer-Verlag, New York 1969.
- [7] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, Cambridge 1995.
- [8] W. P. ZIEMER, Weakly differentiable functions, Grad. Texts in Math., 120, Springer-Verlag, New York 1989.

SILVANO DELLADIO Department of Mathematics via Sommarive 14 Povo, Trento - Italy e-mail: delladio@science.unitn.it