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1 - Introduction and basic notations

In our previous papers, joint with other authors ([5], [8], [2], [4]), we have studied
various second order elliptic differential-operator boundary value problems on [0, 1]
in UMD Banach spaces. When the problems do not contain the complex parameter 4,
we prove Fredholmness of the problems. In order to obtain isomorphism theorems
(or unique solvability theorems), we have considered the above problems depending
on the parameter A. For higher order elliptic differential-operator boundary value
problems on a finite interval in UMD Banach spaces, we proved only Fredholmness
of the problems (see [7] and [9]) and we succeeded to prove an isomorphism theorem
for a very particular problem depending on the parameter and generated by one
operator [9, Theorem 4]. The question was how to prove an isomorphism theorem (or
a unique solvability theorem) for rather general higher order elliptic differential-
operator boundary value problems on a finite interval in a Banach space. In the
present paper, we consider some fourth order elliptic differential-operator boundary
value problems on [0, 1] quadratically depending on the parameter, for which we
prove an isomorphism result (which implies maximal L,-regularity) in the corre-
sponding abstract Sobolev spaces. The underlying space is a UMD Banach space.
We also prove the corresponding estimate for the solution and its derivatives with
respect to the right-hand sides of the equation and boundary conditions. The esti-
mate is uniform with respect to the parameter 1.

Further, for the corresponding fourth order homogeneous elliptic problem, we
prove discreteness of the spectrum and two-fold completeness of a system of ei-
genvectors and associated vectors (root vectors) of the problem in the framework of
Hilbert and UMD Banach spaces. Discreteness of the spectrum and completeness of
a system of root vectors for second order elliptic differential-operator boundary
value problems on a finite interval have been previously studied in the framework of
Hilbert spaces (see [13], [1], and [2] and the references therein) and in the framework
of UMD Banach spaces (the only paper is [2] up to our best knowledge). Our men-
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tioned above results for the fourth order abstract elliptic problems are new even in
the framework of Hilbert spaces.

The obtained abstract results are illustrated by a number of applications to non-
local boundary value problems for elliptic and quasi-elliptic equations with a para-
meter in (bounded and unbounded) cylindrical domains.

Let us give necessary definitions and notations.

If £ and F are Banach spaces, B(E,F) denotes the Banach space of all
bounded, linear operators from £ into F' with the norm equal to the operator
norm; moreover, B(E) := B(E, E). The spectrum of a linear operator A in E is
denoted by g(A), its resolvent set by p(A). The domain and range of an operator A
are denoted by D(A) and R(A), respectively. The resolvent of an operator A is
denoted by R(1,A) := (Al — A)~.

A Banach space E is said to be of elass HT, if the Hilbert transform is bounded on
L,(R; E) for some (and then all) p > 1. Here the Hilbert transform H of a function
f € S(R; E), the Schwartz space of rapidly decreasing E-valued functions, is defined
by

Hf = %PV(%)*f,

ie., (HA)(@) == o J AU d These spaces are often also called UMD Banach
[z|>e

spaces, where the UMD stands for the property of unconditional martingale dif-

ferences.

Definition 1.1. Let £ be a complex Banach space, and let A be a closed linear
operator in E. The operator A is called sectorial if the following conditions are
satisfied:

(1) D(A) =E,R(A) = E, (—0,0) C pA);
@) AT +A)|| < M for all 2 > 0, and some M < co.

Definition 1.2. Let £ and F be Banach spaces. A family of operators
T C B(E,F) is called R-bounded, if there are a constant C' > 0 and p > 1 such that
for each natural number n, T1,Ts,..., T, €T, ui,us,...,u, € £ and for all
independent, symmetric, {—1,1}-valued random variables ¢;,¢z,...,&, on [0,1]
(e.g., the Rademacher functions ¢;(t) = sign sin2'nt), j = 1,...,n) the inequality

Hzgj it Ly(O.):F) — HZ &4

’Lp((O 1);E)
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is valid. The smallest such C is called R-bound of 7 and is denoted by R{7 }5_ . If
E =F, the R-bound will be denoted by R{7T }.

Definition 1.3. A sectorial operator A in £ is called R-sectorial in F' C E (in
particular, F = E), if

R4(0) == RUGI+A)™ : 1> 0}p < 0.

The number
¢k =inf{0 € (0,7) : {Ra(z — 0) < o0},

where R4 (0) := R{A(A +A)7 |arg /| < 6}y, is called the R-angle in F' of the
operator A.

Generally, qﬁ may depend on F.

For the operator A closed in £, the domain of definition D(A") of the operator A"
is turned into a Banach space E(A™) with respect to the norm

n

1
ky 2 \2
lullgeary = (D IAul)

k=0

The operator A™ from E(A"™) into £ is bounded.
For the Banach spaces F' and E, introduce the Banach space W;,L((O, 1);F.E),
1 < p < oo, a natural number n > 1, of vector-valued functions with the finite norm

1 1
1
HMHW;;((O_D;F,E) = (J (o) || fedlac + J ||u(n>(90)\|%dx)p-
0 0

We write W2(0, 1); ) == W2(0, 1); E, E).

2 - Isomorphism theorem for abstract fourth order elliptic boundary value problems
quadratically depending on a parameter

Consider, in a UMD Banach space E, a boundary value problem in [0,1] for the
fourth order abstract elliptic equation depending on a parameter

L)) = Pulx) — 2(2u" (@) + Asu(x))

2.1

®1) + u""(x) + A2u () + Agulx) = f(x), «€(0,1),
Liw = au™0) + Bu™ (1) = ¢,, k=1,2,

(2.2) L = oy (u(0) — Jul™e-2)(0))

+ﬁk (u(mk)(l) _ /lu(mkfz)(]_)) = oy, k = 3’47
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where 0 < mqy,mg <1, mg

the main maximal L,-regularity theorem.

Theorem 2.1.

1. the operator Ay is closed, densely defined and invertible in a UMD Banach

Let the following conditions be satisfied:

space E and R{uR(u,Ay) : arg = n}y < oo;'
2. the operator Ay is bounded from Eo into E, where Eo := E(Ai);

3. there exists y € [0, n) such that the operator pencil Lo(p) = u*l + 12As + Ay

1s invertible in E, forg > |arg u| >

4. (= 1D)"oqfy — (= 1D"02f; #0 and (—1)"oagfy — (— 1)y fy # 0;
my # Mg, assume, in addition, that o, = 019, fy

Then, for |arg A| < w and sufficiently large ||, the operator

r ; W, and
R{w Lo+ 2> | =
R{ALo ™"+ T |argul > 55}
R{ﬂ“Lo(u)*l : g > |arg y| > TW }Ez
R{AsLo( ™"+ 3= |arg ) 2 5 }E

= ﬂk+27

=my +2, mqy =mg +2; o, and f;, are complex num-
bers; Ag and A4 are, generally speaking, unbounded operators in . Let us formulate

< 00;

< 00;

k=12

L) — L = ((L(i)u)(mLleLg%Lg(}.)u,L4(/1)u),

18 an 1somorphism

from W,((0,1); E(Aq), B) onto Ly((0,1); E) 121 (E(A4), B)

where p € (1,00), and, for these values of 4, the following estimate holds for the so-

lution of the problem (2.1)—(2.2) >

! In fact, this is equivalent to that A4 is an invertible R-sectorial operator in E with the
R-angle in E, ¢§4 < 7 and, therefore, in particular, there exist fractional powers of A4 (see,

e.g., [3, Theorem 2.3]).

2 By Vlrtue of [6, Theorem 7 and Corollary 8], the embedding W4((0 1);E(Ay),E) C

7)7,k 1 3
T TP

WZ((O 1); E(AZ )) is continuous. Then, by virtue of condition (3), Asu” € L »((0,1); E).
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)

Pl o 4| A (]| o+l 1
e (PR LN

u// u//// )
-+l ||Lp((071);E(A§»+H I2,0.0:2

4
< C(HfHLp((o,l);E) + Z ||(Pk||(E(A4>,E)mk |
k=1 T TP

2 m
1-k- 4L
F L TE Rl o+ lovels))

E(A%)
where the constant C does not depend on the parameter .

Proof. By the substitution

v1() u(x)
() = = ,
(%) w” () — Julx)

problem (2.1)—(2.2) is reduced to the equivalent problem

25) V() = Av(x) + Av(x) + F(x), x<(0,1),
' @0 ™)(0) + b ™ (1) = &y, k=12,

where

0o I wl 0 gI 0
A= , Q= , by = ,
(—A4 —Az) ( 0 Oﬂlc+21) ( 0 ﬁk+21)
() ()
F(x) := , D= .
f() Pri2

We consider the operator A in the space £ := Ey x K. Let D(A) := E(A4) x Es and
F :=(fi,f) € £ = Ey x E. From the first equation of the system

(2.6) (WPl —Aw=F
we find
ve = vy — fi.
Substituting this expression into the second equation of system (2.6) we have
{1 = fi) = —Agn = As(pPor = fi) + fo.

Hence,
Lo(pvr = 1% + Az fi + fo,
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i.e., by condition (3), forg > |arg p| > %,

2.7) v1 = 12Lo() i + Lo(w) Az fi + Lo(i) o
Consequently,

(2.8) vy = 1 Lo() i + 12 Lo(0) A fi — fi + 12Lo(10) o

Since (2.7) and (2.8) define (x2I — A)7! then one can get that

A Ap )

27 _ Ayl
(2.9) AGET — A) ( P

where
Aq = (Lo + PLo(w) ' As — 1,
Arz = (P Lo() ™,
Azt = —PALo() " = AaLo(1) " Az — 1t AsLo(1) " — 1Az Lo(10) ' Az + As,
Aoy = —ALo(p) 1 — 12AsLo(w) L.
From Venni’s proposition (see [6, p. 500, with X =Y =F, 0 =0, f = %, y=1,
F() = 12, B(u) = Lo( ,u)*l]) and the two first inequalities in (2.3), we get that

L}<oo
2 JE '

Similarly, from the two last inequalities in (2.3), we get

1
(2.10) R{ALoG ™ 5 2> arg 1 >

i
T2

T —

2 }E'z < 00.

Using now the definition of R-boundedness, conditions (2) and (3), and formulas
(2.10) and (2.11), we obtain, from (2.9), that

(2.11) R{ﬂzAZLo(ﬂ)‘l D5 > |arg | >

d
"2

R{A(,uzl — A :g > |arg u| > %}g < 0.
From this and from the identity
©EGET = M) = AGPT = A+
we have, using, e.g., [3, Proposition 3.4],

_ T —
R{,uz(,uZI—A) LTS arg g ZT}f 00,

NI
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ie.,
(2.12) R{u(ul — 27+ Jarg ] > 7~ y/}g < co.

From condition (4), for m; # mg, it follows that ( — 1) o1 — (— 1)™2ag 81 # 0 and
a;v"(0) + b (1) = e (0) + B0 (1) in (2.5). Then, by virtue of [5, Theorem
4 and Remark 3] (we use the remark only for the case m; = my), the operator that
corresponds to problem (2.5),

PG v — PG := (D* = A = ADw@), 0" (0) 4 byv"™ (1), agv™(0) + bav™ (1)),

for |arg 1| <y and sufficiently large |4, is an isomorphism from Wg((O,l);é’(A),S)
onto

Lp((0,1);:8) x (E(A), ), 1. ) X (E(A), E)

7)l2 1
2 TP

and, for these values of /, the following estimate holds

(2.13) |/1|||U||L1,<(o,1>;g> + ||7’N||Lp((o,1);5) + HAU”L,,((OJ)-@

m

2
1--k—L
< C(IF N, + Y (1Pell e, -+ 1A% o) ).
k=1 e

From (2.12), it follows that the operator A is closed. Consequently, £(A) =
E(A4) X Ez.

Further, we have (£(A), )y, =(E(A4) x Eo, Es X E)p, = (E(A4), E2)p, < (B2, E)p .
Since Es := E(Ai) then, by virtue of [12, Theorem 1.3.3 and formula 1.15.4/(2)],

(214) (B EAD = EADEA), n o = EEA)), n o,

= (E(Ay), E) k=1,2.

e
Since my 2 = my + 2, k = 1,2, then, by calculations similar to the previous ones,
using also, e.g., [12, Theorem 1.15.2], one can get

215) (B, E) :<E,E<Ai>>l,%,$v,,:<E,E(A4>>1

LS
= P 27 P

= (B(Ag),E)y 1, =(E(Ay), E) k=1,2.

1 M 1 "ht2 1 s
2t 7t T TP

Hence, the operator L(7), for the same |arg A| <y and sufficiently large |/|, is an
isomorphism from Wz((O,l);E(A4),E) onto L,((0,1); £) ka (E(Ay), E)

EE
So, the first part of the statement of the theorem has been proved. Let us now
obtain estimate (2.4). From (2.13), (2.14), and (2.15) it follows
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4] (||u||L,,((o,1);E2) + [l — )“uHLp((O,l);E))
+ 1%l 0.0 + 110" = 20| 0,080
+ " — MLHL 18y + I1Asu + As(u” — /W)”LP«O,D;E)

(Hf”L ot Z |:|(0ch(E(A4) B

k=1

mr

(2.16) my
110k s2lliz, £y, 1p+w 50l + Iokiels)] )
2ty
4
< C(If ey + D I0lay o,
k=1 EIETE
+ZM| Bloel, g+ ozl ).

4

where the constant C does not depend on the parameter A whichisin |arg 4| < y and
|4| is sufficiently large. Moreover, here and throughout the paper, the constant C in
estimates may change from line to line, but we keep the same notation C for all lines.
Using the technique of the proof of [13, Theorem 3.2.1] together with the Fourier
multiplier theorem in a UMD Banach space but with scalar multipliers (see, e.g.,
[15]), one can get that Ve > 0, 3C; > 0 such that

HMNHLP((O,I);E) + M'”u”LP((O,I);E) < Cellu” — i7/‘“14,7«0,1);15)7 larg A| <7 — e,

where the constant C, also does not depend on 4. It means that the last inequality is also
true in our angle |arg /| < y since y < 7. Then, the left hand side of (2.16) is surely

2 .
greater than Co (| 4[|/, o 1, + 414"l 1, o, 1)-E)+|;°| [l 1, o, 1)-E)+||u”||L,,(<o Diy))» 1

11l 0.1, + 141l

(2.17) < C(Hf”L v + Z 2 ll sy B

M 1
1 tap?

(ol + losls))

Then, from (2.16) and (2.17), we get

oIl »((0,1):E) < " — /WNHLP((O,D;E) + ||'W”||Lp<<o,1>;E)

4
< C( m+
(2.18) 1AWz, 0.1 Z H(ok||(E(A4),E)m o

+Zu| oy +oiseli) )

E(A2)

In turn, (2.17) and (2.18) imply the desired estimate (2.4). O
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3 - Application of the abstract isomorphism result to elliptic and quasi-elliptic
equations with a quadratic parameter

In this section, we essentially use our previous paper [7], where the main calcu-
lations for this section have been done. Moreover, the calculations in [7] do not allow
us to take odd order of derivatives in the operators As and A4 in application. That is
why all our below examples contain only even order of derivatives in the equations.

In the domain Q := [0, 1] x R, let us consider a non-local boundary value problem
for elliptic equations of the fourth order with a parameter

L@, y) = Pule, y) — 22D, y) + aDiu@, y) — 27%ulx, y))
3.1) + Dju(ac, Y) +(aD§ — ZyZ)Diu(x, Y) +bD‘;u(ac, Y) — ayQDiu(ac, Y)
+ 9 ule, y) = f,y), @y e€Q,

L)) = o D0, y) + S0 u,y) = ¢(y), y R, k=12,
(Li(Du)y) = oy (D u(0, y) — 2D2">u(0,))
+ B (DL, ) =AD"l y))
=p), yeR, k=34,

(3.2)

where 0 < my,mg < 1,mg = my + 2, mg = mg + 2; a, b, oy, f, are complex numbers;

0 0 o iy s
890’Dy = 8y'Bqu*P(R ), nis natural, we

denote the standard Besov space, see, e.g., [12, section 2.3.1].

y € R; f and g, are given functions; D,, =

Theorem 3.1. Let the following conditions be satisfied:

1. 0£yeR,0£0eC,argb#mw

2. ifo:=(01,00) € R2, & #£ 0, then (7‘11 + aa%a% + ba‘z1 #0, (01;02) € RZ;

8. (=1)"Moyfy— (=102, #0 and (—1)"ogf, — (= 1)"ayfs #0; for

my # mg, assume, n addition, that o, = opy2, B = Prie, k=1,2.

Then, there exist 6 > 0 sufficiently small and Ay > 0 such that, for |a| < Jé and
A > Ao, the operator

L) :u — L)u:= ((L(/Du)(ﬂc, y),[Lau)(y), (Lzu)(y),(L3(/l)u)(y),(in(i)u)(?/)),

élfmkjl7

from WO, 1 WaR), Ly(R)) onto Ly(0, 1% Ly(R) * By," (R,

where ¢ € (1,00), p € (1, 00), is an isomorphism and, for these values of 4, the fol-
lowing estimate holds for the solution u(x,y) of the problem (3.1)—(3.2)
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Pu

2

I [l 0,12,y + 14 (H 2 | L(O.1:L, Ry T ||“||Lp((0.1>;w,3(1[?<)))
*u o*u

T H o2 ||Lp((0ﬁ1>;W3(lR>> + H P HL;}«OJ);L(;(‘R))

4
< O Ny ommmion + 2 1ol oy
p o T P(R)

2
1-%k- L
+ Z 1A 2”(||(PkHW§(R) + ||¢k+2||Lq(R)))7
k=1
where the constant C does not depend on the parameter J.

Proof. Let us denote £ := L,(R). Consider in Ly(R) operators As and A4
which are defined by the equalities
D(Az) == W2(R), (Aau)(y) := au(y) — 2" u(y),
D(Ay) == Wy(R), (Am)y) := bu" () — a*u" @) + y'uy).

Then, problem (3.1)—(3.2) can be rewritten in the operator form

22u() — 2 (20 (@) +Asu(@)) +u""(x) + Asu/(@) +Asu(@) = f(x), « € (0,1),
(8.3) o u™(0) + pLu" 1) =g, k=1,2,

o, (uP(0) — A 2(0)) + B (" (1) — Ju"2D (1)) = ¢, k= 3,4,

where u(x) := u(x, -), f(x) := f(x, ) are functions with values in the Banach space
E = Ly(R) and ¢}, := ¢;(-).

We now apply Theorem 2.1, for y = 0, to problem (3.3). In fact, we have to check
conditions (1)—(3) of Theorem 2.1, for w = 0, and they have been checked in the proof
of Theorem 5 in our paper [7]. We also refer the reader to [12, section 2.4.1] for the

—m—1
characterization of the Besov space B;pmk "(R) as a corresponding interpolation

space (E(Aq), E)n 1 ,, where E(Ay) = W3(R) and E = Ly(R). O
1 T

The next application is in the domain Q := [0,1] x R", % > 1. Consider a non-local
boundary value problem for elliptic (m = 2) and quasi-elliptic (m # 2 is natural)
equations with a parameter

(L), y) = 22u(e,y) — 22D%u(x, y) + Diule,y)
(3:4) + 3 a@Diute,y) + v, y) = @y, @y €2,

Jor|=2m
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L)) = oy D u(0,y) + D u(l,y) = 9.(y), yeR", k=12,

a5 HAWO= (DL u(0, ) — ADL>u(0, )
5
+ B (D1, y) — 2D 2u(1, y))

= (pk(y)7 /RS Rn7 k= 3a47

where 0 < my,mg <1, mg =my +2, my =mg+2; v>0, o and f, are complex

8 o o o1 0,
—, Dy =D*:=D}"---D,

numbers, f and ¢, are given functions, D, := %

Dj = — o] = og + -+ 4 oy

0
;'
Recall (see, e.g., [10, p. 790]) that, for M > 0, wy € [0, n), an operator of the form
Cu)x) := > cy(x)D*ulx) with complex-valued ¢, € Loo(R"), |«| < 2m, is called

o] <2m

(M, wo)-elliptic if Y ||c,||.. <M and the principal symbol

|or)]=2m

Crl@, ) = > )&, &R,
Jor|=2m
of the operator C satisfies, for all x, £ € R", that the spectrum o(C,(x, &) C X, and
|Cie, &) > ME™™, where X, := {4 € C\{0}:|arg 4| < wy}. If a bounded do-
main G C R" with C?" boundary is considered instead of R”, then a similar definition
is given with ¢, € C@G).
Let (Au)(y) :== > a,@)D*u(y) be an (M, wy)-elliptic operator, for some M > 0,

|| =2m
wy € [0, 7), such that the complex-valued coefficients a, are Holder continuous, i.e.,

a, € C7'(R"), |o| = 2m, for some y > 0.

Theorem 3.2. Let, in addition to the above, (— 1) oy By — (— 1202 f; # 0
and (—1)"agfy — (— )"0y fs # 0; for my #mge, assume also that oy = oz,

Bie = Brio, k=1,2.
Then, there exist v > 0 sufficiently large and Ay > 0 such that, for A > Ay, the
operator

L) u— (D= ((L(i)u)(ﬂc, W), [Lau)y), (Lzu)(?/),(Ls(i)u)(?/),(L4(/1)u)(?/)> ;

mmy gy

ZB(R™), where

from WAL W2 (R, Ly(R") onto Ly((0,1): Ly(RY) x By

q € (1,00), p € (1,0), is an isomorphism and, for these values of A, the following
estimate holds for the solution u(x,y) of the problem (3.4)—(3.5)
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Pu )

AP o) 1, .2y + |}|(H By 2,0z + 1L,y

Pu *u
+ || 8902 ||L H(O.1:W(R™) + || Ot ||L (0,11, (R™)

C(”f”Lp((O,l);Lq(l[{"))+Z”(okH sz%fm

2 2}7(1[;{71)
- Z A E B (el + 1002, 0))

where the constant C does not depend on the parameter 1.

Proof. Let us denote E := L,(R"). Consider in E the operator A4 which is
defined by the equalities

D(Ay) := WZ"(R™),  (Aqu)(y) := Auly) + vuly),

where v > 0 is sufficiently large. Then, problem (3.4)—(3.5) can be rewritten in the
operator form

Puae) — 20" () + w" (@) + Agux) = f(x), x € (0,1),
3:6)  oqu"™(0) + fu" 1) = g, k=12,
o (u(0) — 2™ 2(0) + B, (u"H Q) — 2 D)) = gy, k= 3,4,

where u(x) := u(x, -), f(x) := f(x, ) are functions with values in the Banach space
E = Ly(R") and ¢}, := ¢,.(-).

We apply Theorem 2.1, with i = 0, to problem (3.6) the conditions of which, with
v = 0, have been checked in the proof of Theorem 6 in [7]. We also refer the reader to

Mg

[12, section 2.4.1] for the characterization of the Besov space qu;_T_Z_”(R") as a
corresponding interpolation space (£(A4), E)mk b where E(A4,) = W2m(R”) and
E = L,(R"). O

Remark 3.1. Using the technique of the proof of Theorem 5.1, we can get the
isomorphism theorem even for |arg 1| <w and sufficiently large ||, for any
T — )y
0<wy< .
Finally, in the cylindrical domain Q :=[0,1] x G, where G C R", n > 2, is a
bounded domain with an (r — 1)-dimensional boundary 0G € C?", which locally
admits rectification, let us consider a non-local boundary value problem for elliptic

(m = 2) and quasi-elliptic (m # 2 is natural) equations with a parameter
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L) (e, y) ::},zu(oc, Y) — 22D§u(9c7 y) + Diu(ac, Y)

3.7) + > aDu,y) + vule,y) =f@,y), @y €L,
|| =2m
L)) = oDy u0,) + B0y ull,y) = pp(y), y € G, k=12,
(Li(2yu)y) = o (D" u(0, y) — 2D 2u(0, )
(3.8)

+ B (Du(1, y) — 2D >u(l, )
= (pk(y)a UAS G7 k= 3743

(3.9) B,y =Y by Dhute,y) =0, (@,y)€0,11x G, £=1,...,m,
1B1<pe

where 0 <my,me <1, mg=my; +2, mgy=mgo+2, pp <2m—1; o and f, are

8 o o1 0,
—, D; =D":=D7---D,

complex numbers; f and ¢, are given functions; D, := gy

0
D- ::—.— = IR .
; layj’ o] =01 + -+ + o

Let Auw)(y) :== > a,(y)D"u(y) be an (M, wy)-elliptic operator, for some M > 0,
|| =2m

wy € [0,7). Complex-valued coefficients a, € C?(G), |o| = 2m. Complex-valued
coefficients b of the boundary conditions B, belong to CZn—ret1(G), where y € (0,1)
(the continuation of the coefficients from G into G is possible without loss of gen-
erality). We assume that (4, By, . . ., B,,) satisfies the Lopatinskii-Shapiro condition
(see, e.g., [3, p. 100]) at every point %' € 9G.

By BZQP(G) we denote the standard Besov space, see, e.g., [12, section 4.2.1].
Before the formulation of the next theorem, let us make the following remark.

Remark 3.2. By W?”(G;Bm =0,/ =1,...,m) we denote the space of func-
tions u from ng(G) which satisfy all boundary conditions Biu =0, £=1,...,m.

™ 1
By BZZ * 7(G;Bu=0,p; < 2m — @ - % - 6) we denote the space of
_
Sfunctions u from the Besov space B?;Z * %(G) which satisfy only boundary
. . 1
conditions Byu = 0 with the order p, < 2m — m;_m — % — 6 Moreover, we refer the
reader to [12, section 4.3.3] for the characterization of the space
MM m 1 . .
BZ,L *7(G;Bu=0,p; < 2m — m;_m - % - 6) as a corresponding interpola-

tion space (E(A4),E)@Tk+%7p, where E(Ay) = ng(G;Bm =0,4=1,...,m) and
E = L,G). ’
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Theorem 3.3. Let, in addition to the above, (— 1) 0y By — (—1)aff; # 0
and (—1)"agfy — (— 1"y B # 0; for my # ma, assume also that oy = oy 2,

B = Bryor b =1,2.
Then, there exist v > 0 sufficiently large and Ay > 0 such that, for 1 > Ao, the
operator

L) :u — LDu:= ((L(i)u)(ac, ), [Law)(y), Lew)(y),(Ls(Du)(y), (L4(/1)u)(y)>
from W;((O, 1); ng(G;Bgu =0,0=1,...,m),Ly(®) onto

m — k" m 1
Ly(O, 15 Ly(G) X By F(GiBa=0,p, <2m — T 22y,

where ¢ € (1,00), p € (1,00), is an isomorphism and, for these values of A, the fol-
lowing estimate holds for the solution u(x,y) of the problem (3.7)—(3.9)

2 o“u
2wl 0.0z, |/U(HWHL,,((0,1);LQ(G))+ ||u||Lp((o‘1);Wq”’(G>>)

Pu Ot
1 3z e, comwpan + 1 g @iz,

4
< C (I omitaien + D0 s 2
Lp((O,l)qu(G)) kz:; B:p’ 2 217<G)

2
M1
+ Z A 2"(||€019||Wg’((;) + ||§0k+2||Lq(G))>a
k=1
where the constant C does not depend on the parameter J.
Proof. Let us denote £ := L,(G). Consider in £ the operator A4 which is
defined by the equalities
D(Ay) == WG Bauw = 0,0 =1,...,m), (Agu)(y) := Auly) + vuly),

where v > 0 is sufficiently large. Then, problem (3.7)—(3.9) can be rewritten in the
operator form

Pue) — 2" () + u" (@) + Agux) = f(@), € (0,1),
(310)  wu™(0) + fu" 1) = g, k=12,

o (u(mk)(o) _ /lu(”lkfz)(o)) + B, (u(m/.;)(l) _ /”Lu(mkfz)(l)) = o, k=34,
u(x) :=ulx,-),f(x) := f(x, ) are functions with values in the Banach space £ = Ly(G)
and Oy = (ﬂk( . ).

Apply Theorem 2.1, for y = 0, to problem (3.10). Conditions (1)-(3) of Theorem
2.1, for y = 0, have been checked in the proof of Theorem 7 in [7]. O

Remark 3.3. The same remark as Remark 3.1 can be done also here.
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4 - Two-fold completeness theorem for abstract fourth order elliptic boundary value
problems quadratically depending on a parameter

We start from the necessary definitions.
Let X and X",v =1,...,m, be Banach spaces. Consider a problem for a system of
polynomial operator pencils in X,

Ly := 2"+ 2""'Byu+--- +Bu =0,
Ly = 1" Agu+ 2" Agu+ -+ Apu=0, v=1,....,m

where n > 1, 0 <mn, <n—1, m > 0; By are, generally speaking, unbounded op-
erators in X; and A,;, k =0, ..., n, are, generally speaking, unbounded operators
from X into X". Let there exist a Banach space X,, C X, such that operators By,
k=1,...,n, from X, into X, act boundedly, and operators A, k=0,...,n,,
v=1,...,m, from X,, into X", act boundedly.

A number / is called an eigenvalue of problem (4.1) if the problem

LUou=0, LQou=0, v=1,....m

has a nontrivial solution belonging to X,,. The nontrivial solution uy € X,, is called an
eigenvector of problem (4.1) corresponding to the eigenvalue o. A solution %, € X,
p=1,2,..., of the problem

1 1
L(Zo)up + FLI()LO)up—l + -t HL@)(AO)UO =0,
1 1
Lv(/lﬂ)up + FL(y(}vO)upfl +---+ HLEYP)(AO)'M/O = 0; V= 1; .

is called an associated vector of rank p to the eigenvector u( of problem (4.1).
Eigenvectors and associated vectors of problem (4.1) are combined under the
general name root vectors of problem (4.1).
A complex number / is called a regular point of problem (4.1) or of the operator
pencil L(2) : u — LA)u := (L(ADu, Ly(Wu, . .., Ly, (Hu), which acts boundedly from
X, into X x X! x --- x X™, if the problem

LAu=f, LADu=f, v=1,....m

has a unique solution u € X,,, for any f € X, f, € X", and the estimate
m
lul, < COH(IFlx + 3 Il )
v=1

is satisfied. The set of all regular points (the resolvent set) of problem (4.1) is de-
noted by p(IL(1)).
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The complement of the regular point set in the complex plane is called the
spectrum of problem (4.1) or of the operator pencil 1.(/) and is denoted by a(IL(4)).

As usual, the spectrum of problem (4.1) is called discrete if o(1.(1)) consists of
isolated eigenvalues with finite algebraic multiplicities and infinity is the only limit
point of a(1L.(1)).

In order to give a definition of #-fold completeness, let us consider a system of
differential-operator equations corresponding to (4.1)

LD = u™@) + Biu" P@t)+ -+ Bu®t) =0, t>0,

(4.2)
LD := Aygu™ () + - + A ut) =0, v=1,....m, t>0,
(4.3) u®0) =vepr, k=0,...,m—1,
where vg, k =1,...,n,are given elements of X, D := % Derivatives are understood

in an (abstract) strong sense, if one considers (4.2) in abstract n-times continuously
differentiable functions spaces C*([0, T']; X), or in an (abstract) generalized sense, if
one considers (4.2) in abstract Sobolev spaces W;}((Q T); X).

By virtue of [13, Lemma 2.2.1/1], a function of the form

it tk tk—l
44 = 0 — _— e
(4.4) ut) :=e (k!uo + - 1)!u1 4+ uk)
is a solution of system (4.2), if and only if the system of vectors ug, %1, - - -, uy is a chain

of root vectors of problem (4.1), corresponding to the eigenvalue 4.
A solution of the form (4.4) is called an elementary solution of system (4.2).
The possibility to approximate a solution to the Cauchy problem (4.2)—(4.3) by
linear combinations of the elementary solutions suggests that the vector (v, ve, ...,
vy,) should be approximated by linear combinations of vectors of the form

(4.5) w(0),/(0), ..., u""D(0)),

where u(t) is an elementary solution.

Let X be a Banach space, continuously embedded into % X. In particular,
X=%X.

A system of root vectors of problem (4.1) is called n-fold complete in the space X
if the system of vectors (4.5) is complete in X.

Let A be a bounded operator from a Banach space £ into a Banach space F'. Then,
numbers

5{(A; B F) = dimi}g(11£<f A~ Klggr, 1=12,...

Ke B(E,F)

are said to be the approximation numbers of A.
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Let an operator A from a Hilbert space H into a Hilbert space H; be bounded.
From (A*Au,uw)g = (Au,Au)g > 0 it follows that the operator A*A in H is non-ne-
gative. In turn, it implies that there exists a unique non-negative selfadjoint operator

= (A*A)% in H. If A from a Hilbert space H into a Hilbert space H; is compact,
then, in addition to the above, the operator 7' = (A*A)% in H is compact. The ei-
genvalues of the operator T are called singular numbers of the compact operator A
and are denoted by s;(A4; H,H;). Enumerate the singular numbers in decreasing
order, taking into account their multiplicities, so that

sj(A;H Hy) == (T), j=1,...,0
In the framework of Hilbert spaces, the approximation numbers of a compact
operator A coincide with its singular numbers (see, e.g., [13, Theorem 1.2.10/2]).

Consider now a homogeneous problem corresponding to problem (2.1)-(2.2), in
order to investigate two-fold completeness for a system of its root vectors

L)) = 22ux) — 4(2u" (@) + Asu(@)) +u"" ()
+ Aou () + Agu(x) =0, x<(0,1),
(4.6) Ly := au™(0) 4+ fau™ 1) =0, k=12,
LGy = oy (u™(0) — Ju™-2(0))
+ B (W) — Ju2(1)) =0, k=34

Denote

£ = {v | v = (1,02) € W3(0,1); E(Ay), B) x W2((O, 1);E(Ai),E),
120) + ™) = 0, ax0{"™(0) + 0™ (1) = 0,
vy (0) + 1o (1) = 0, 020" (0) + oo™ (1) =
@) — a50{"™(0) — B3vy" (1) + a52{"(0) + Bvi™ (1) = 0,
12"20) = B0 (D) + 00" (0) + pa" (1) = 0},

= {v 0= 1,00 € WO, 1 BAD, B) x Ly(0,1: B),

" (0) + B (1) = 0, 30" (0) + B (1) = 0}.

Theorem 4.1. Let E be a separable, reflexive UMD Banach space and

1. the embedding E(A4) C E is compact and, for some s > , for the embed-

ding operators J1 from Wz((O 1); E’(Az) E) into L,((0, 1) E) and J2 from
W4((0 1); E(Ay), E) into Wz((O 1); E(AZ) E) it holds that the approximation
numbers
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(1 W20, 1 EAY, B), Ly(0,1: B)) < Gj*, j=12,...,
5 (T W20, 1 EA), B), WX, 1 EAD, B)) < G, j=1.2,...;

——5

2. all conditions of Theorem 2.1 are satisfied (condition (3) with some 5

T
1 5 . .

<y < m,f§<s géomdwzthsomeogy/< nifs >§);

3. the spectrum of problem (4.6) is not empty.

Then, the spectrum of problem (4.6) is discrete and a system of root vectors of
problem (4.6) is two-fold complete in the spaces € and &1 and, therefore, in
L,((0,1); E) x Lp((0,1); E).

Proof. We are going to use Theorem 6.1 from the Appendix to problem (4.6).
To this end, we introduce the corresponding spaces and operators and rewrite
problem (4.6) in the form of (6.1).

Denote the Banach spaces

Xo = X = Ly((0,1); E),

X; = W20, 1); B(42), B),

Xp 1= W3((0,1); E(Ay), B),

X = (E(Ay),E)

k=1 4

T RS PR
4+4]77p

and consider, in X, operators By and B which are defined by the equalities
Brw)(x) = —2u"(x) — Asu(x), D(By) :=X;,
(Bau)(x) := u""(x) + Asu” () + Aqu(x), D(Bg) := Xo.
Introduce also the boundary operators
Ajgu = o u™(0) + fu™ ),  Aggu = 0au™(0) + fou™(1),
Asou = —ogu(0) — Bau™ (1), Agiu = agu™(0) + Bzu (1),
Agou = —aqu™(0) — fuP (1), Agu = agu™(0) + fu().
Finally, choose
X(} = Xg = X3, Xg = X()1 = X*
Then, problem (4.6) has form (6.1), with n =2,y =ne =0, n3 = n4 = 1, m =4,
LGu = 2w+ JByu + Bou = 0,

(4.8) L(Mu=Lu=Am=0 v=1,2
L(ADu =AAou+Au=0, v=34,
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to which we apply Theorem 6.1 from the Appendix. Let us start to check all condi-
tions of Theorem 6.1.

Since the embedding K(A,) C E is compact, we have, by [12, Theorem 1.16.4/2]
(see also [13, Lemma 1.7.3/9]) and condition (1) of Theorem 2.1, that the em-
beddings E(A]) C E(AZ), 1>a>p >0, are also compact. The embedding X; C
Wg((O, 1);E’(A‘1}1),E) is bounded (see [6, Theorem 7 and Corollary 8]). Then, by [13,
Theorem 5.2.1/1], the embedding X; C Xy = X is compact. In a similar way, as in
the proof of [13, Theorem 5.2.1/1], one can conclude that the embedding X, C X is
also compact. Moreover, since K is a separable then Xy = L,((0,1); E) is also separ-
able and, therefore, X7 and X; are also separable (as dense subspaces of Xj). Further,
Xy is reflexive (see [11, Theorem 5.7]). Since the operator Ai is closed then the graph
{(u,Aiu), u e D(Ai)} is a closed subspace of the reflexive space £ x E, i.e., E(Ai)
is reflexive. Then, again, by [11, Theorem 5.7], the space Ly((0, 1);E(Ai)) is re-
flexive. By the mapping u — (u,u”), the space X; = YVE((O, 1); E(Ai),E) becomes a
closed subspace of the reflexive space L,((0,1); E(43)) x L,((0,1); E). Then, X; is
also reflexive. Similarly, X, is reflexive. So, the first condition of Theorem 6.1 has
been checked.

The second condition of Theorem 6.1 is just our condition (1).

The third condition of Theorem 6.1 is obvious if we take into account condition (2)
of Theorem 2.1 and the second footnote of Theorem 2.1.

The fourth condition of Theorem 6.1 follows from [12, Theorem 1.8.2], which is
written in a more convenient form in [13, Theorem 1.7.7/1], and (2.15).

It can be observed, that X'; and X in condition (5) of Theorem 6.1 are exactly given
as &1 and &, respectively, in (4.7). Then, the denseness of £1 in &, i.e., condition (5) of
Theorem 6.1, can be proved using ideas of the proofs of [13, Theorem 3.4.2/1 and
Lemma 5.4.7/1].

Obviously, (E(A4),E’)%+#’p CE, k=3,4. From (2.14) it follows that

(EA), By, ., = (B(Ay), EAD) C EAD), k=1,2. Then, for the non-
4 4p?

homogeneous problem associated with (4.8), i.e., for problem (2.1)-(2.2), from
estimate (2.4), we get

le 1
T-&-ﬁ,p

A

)

2"l )+ llul !
( LP((Oal)aE) L,,((OJ);E(AZ))

4
1-4
< Cl4] 2p<Hf”L7,((0,1):E) + Z okl Bz, >7
k=1 ERET
for |arg 4| <y and sufficiently large |4|, i.e.,

_1
lullx, < CIAZ((f, 01,02, 035 0l xsxt xz s
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for |arg 1| < w and sufficiently large |/|. From this inequality, using our condition
(2), we get condition (6) of Theorem 6.1 with n = — o0

Condition (7) of Theorem 6.1 follows from our condition (3). O

In the framework of Hilbert spaces and p = 2 in Theorem 2.1, we get the
following two-fold completeness theorem for problem (4.6) (we write every-
where H instead of E, in order to distinguish between Hilbert and Banach
spaces cases). Note that we write singular numbers s; instead of approximation
numbers §;, since, as it was mentioned above, they coincide in the Hilbert spaces
settings.

Theorem 4.2. Let H be a Hilbert space and

1. the embedding H (A4)l C H is compact and, for some t > 0, for the embedding
operator J from H (AZ) wto H it holds that the singular numbers

s(JHADH) <G, j=12,..

) .. . 2
2. all conditions of Theorem 2.1 are satisfied (condztwn 3) with some 2—+tﬂ
<y <)

Then, the spectrum of problem (4.6) is discrete and a system of root vectors
of problem (4.6) is two-fold complete in the spaces H and Hy (H:=E& and
Hy:=&1 from (4.7) with E =H and p =2) and, therefore, in Lo((0,1); H) x
Ly((0,1); H).

Proof. Observe that from condition (1), by [13, Lemma 1.7.8/6], we get

On the other hand, from condition (1), using [13, 1Lemmas 1.2.10/3 and 4], we get, for
the embedding operator J from H(A4) into H(A3),

s;(J: H(Ap), HAD) < Cs;(J; HWA) H) <G, j=1,2,....
This implies, in a similar way as [13, Lemma 1.7.8/6], that
$;(J2; W3((0,1); H(Ay), ), W3((0,1); HAY, H)) < Cj %7, j=12,....

Then, the proof is the same as of that of Theorem 4.1. We only use [13, Theorem 2.3.2/1]
instead of Theorem 6.1 from the Appendix, taking into account Remark 6.1 from the
Appendix. O
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5 - Application of the abstract completeness result to quasi-elliptic equations with a
quadratic parameter

We show an application of Theorem 4.2.

In the cylindrical domain Q :=[0,1] x G, where G C R", n > 2, is a bounded
domain with an (n — 1)-dimensional boundary 0G € C?", which locally admits rec-
tification, let us consider a homogeneous non-local boundary value problem with a
parameter

(L), y) =2 ule,y) — 22D%u(x,y) + Diue,y)

(5.1) + Y aDjute,y) + vule,y) =0, () € Q,
o] =2m
(L)) = oD u(0,9) + fp D u(l,9) = 0,y € G, k=12,
LiZyu)y) := o (D"u(0, ) — ZD*>u(0, )
(5.2)

+ B (Du(1, y) — 2D *u(l, )
=0, ye@G, k=34,
(56.3) (Bou)x,y') := Z bw(y’)Dgu(my’) =0, (xy)e[0,11x0G, ¢t=1,...,m,
1Bl <pe
where 0 <my,me <1, mg=m1 +2, mg=mgo+2, pp <2m—1; o and f, are

complex numbers; f and ¢, are given functions; D, := —, Dg =D":=Dj---D,

u e
D= —i— = .
; 261/]-’ lo| =01+ +o
Here, we consider the same operator (Au)(y) := > a,(y)D*u(y) and the same
Jor|=2m
restrictions on (4, By, . . ., By,) as just before Remark 3.2.
Denote

M= {m = (v1,v2) € WA((0,1); W2"™(B), La(®)) x WE(0,1);W3"(G), La(G)),
a0, ) + 1™ (L) = 0, 020"2(0, ) + 2" (1, y) = 0,
g0, 9) + frod™ (L, y) = 0, ox"(0,y) + fori™ (L, y) = 0,

54y — o0y 0,y = Byug" (L y) + oz 0, ) + fr™ (L) = 0,
— g 0"(0, ) — B (1, ) + 000, ) + B (A, y) = 0, y € G},

H = {v | v = (v1,v2) € WE((0, 1); W5'(G), La(G)) x Lx((0,1); La(G)),

oqv(l’”l)(o,y) +ﬂ1v<1m1)(1, y) =0, oczviW)(O, Y+ ﬁzv?”?)(l,y) =0,yc¢ G}.
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Theorem 5.1. Let, in addition to the above,

1. n > in
n T — g

2. (— l)mldl ﬁz — (— l)mzazﬁl 75 0and (— l)ml 0(3/))4 —( — 1)m20(4ﬂ3 75 O;forml 75 ma,
assume also that o = o2, B, = Prio, k=1,2.

Then, there exists v > 0 sufficiently large such that the spectrum of problem
(5.1)—(5.3) is discrete and a system of root vectors of problem (5.1)—(5.3) is two-fold
complete in the spaces Hy and H and, therefore, in La(Q) x La(Q).

Proof. Let us denote H := La(G). Consider in H the operator A4 which is
defined by the equalities

DAy :=W3"(G;Bau = 0,0 =1,...,m), (Aq)(y) := Auly) + vuly),

where v > 0 is sufficiently large. Then, problem (5.1)-(5.3) can be rewritten in the
operator form (4.6):
L)) = Pulx) — 20" (@) + u""(x) + Agu(x) =0, =€ (0,1),
Liu = qu™(0) + pLu™ 1) =0, k=12,
Liu = oy (u(0) — Ju-2(0))
+ B (w0 (1) — Ju™=2(1)) =0, k= 3,4,

(5.5)

Apply Theorem 4.2 to problem (5.5). From [10, Proposition 9.8] it follows that
the operator A4, for sufficiently large v > 0, has a bounded H>-calculus in Lq(G),
therefore, Ay has BIP in Lg(G). Then, by [12, Theorem 1.15.3], H(A}f%) =
[LZ(G),ng(G;Bm =0,4=1,... ,m)]lfﬁ, k=1,...,2m — 1. On the other hand,
by virtue of [12, Theorem 4.3.3],

[L2(G), W™ (G; Biu = 0,0 =1,....m)} _x
= W2 G;Bu =0,p; < 2m —k),k=1,...,2m — 1.
Hence, H(A, ™) = W3"*(G:Bpu =0, p, < 2m —k), k=0,....2m — 1. In parti-
cular, Hy := H (AZ) = W3 (G; Bu = 0,p, < m). Therefore, condition (1) of Theorem
4.2, with t = %, follows, e.g., from [12, formula 4.10.2/(14)] (remind that, in Hilbert
spaces, approximation numbers and singular numbers are the same).
We have now to check the conditions of Theorem 2.1 (see condition (2) of Theorem

4.2). Condition (1) of Theorem 2.1 have been checked in the proof of Theorem 7in [7].
Condition (2) of Theorem 2.1 is obvious since Az = 0. The only condition remains to

n, 7). Take any w,

be checked is condition (3) of Theorem 2.1 for some y € (214—15
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ap < w < 7. Then, there exists v > 0 such that R-sectoriality of A4, with the R-angle
in Lx(G), ¢4, < o, ie.,

(5.6) R{uR(p, Ag) : |arg u| > v}y, g < oo,

follows from [3, Theorem 8.2]. Since A =0 then Lo(u) =l +A4, ie.,
Lo( ,u)_l = —R(— u* Ay). Therefore, Ve > 0 there exists v > 0 such that, from (5.6),

for0§w<n_2w

4 -1 Ty STy
(5.7) T\’,{,u Lo(1)™ 52 |arg u| > 5 }Lz(G) < 00

0
—¢&, we get

Sinee A4Lg( ﬂ)’l =1 — 1A L( ﬂ)’l then, using, e.g., [3, Proposition 3.4], we get

-y

_ T
(5.8) R{A4L0(ﬂ) Vi arg s =T }LZ(G)<00

So, (5.7) and (5.8) are two first inequalities in condition (3) of Theorem 2.1.

On the other hand, it ecan be easgly seen from Definitions 1.2 and 1.3 that A4 is an
R-sectorial operator in Hy = H(A3) = W}(G; Bju = 0,p, < m) with the same R-
angle in Lo(G) of that of Ay, ¢§4 < w. In other words,

R{uR(1,Ag) : |arg p > @}y < oo

So, again, taking into account that Lo(x) ' = — R( — 1, Ay), we get, for the same
above y,

4 -1, 7 m— 00
. : o > > o
(5.9) R{“ Loty = g = Jarg u 2= }W;"(G) =
and
-1 T = 00
. : o > > T
(5.10) R{ALy "+ 3> |arg ] =75 }WW <

Inequalities (5.9) and (5.10) are the two last inequalities in condition (3) of
Theorem 2.1.

Note that all the above inequalities (5.7)-(5.10) are true for any
T — )y

— &, but condition (2) of Theorem 4.2, in fact, condition (3) of Theorem

2 2 -
2.1 is claimed for 2—+tn < z//4< 7. Therefore, Z—thn <y < 7z 2600
T

then it should be ¢t = m > — 2, which is our condition (1).
n T — (g

0<wy<

— ¢ Since t =

O =3

Note that if A4 is a selfadjoint, positive definite operator, then wy = 0 and then
the theorem is true for m > 2n. So, even if n = 2 then m > 4, i.e., equation (5.1) is
quasi-elliptic and not elliptic.
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6 - Appendix

LetXand X",v =1, ..., m, be Banach spaces. Consider a problem for a system of
polynomial operator pencils in X,

Ly = Mu+ "By + -+ Byu =0,
Ly = " Agu+ 1" Aqu+ -+ A, u=0, v=1,...,m,

where n > 1,0 <n, <n—1, m > 0. By s; we denote the approximation numbers
(see section 4 for the definition).

Theorem 6.1 ([14]). Let the following conditions be satisfied:

1. there exist separable, reflexive Banach spaces Xy, k =0, ..., n, for which the
compact embeddings X,, C X, 1 C --- C Xo = X take place;

2. for some s > %, 5i(Ji; X, Xi-1) < G575, 7 =1,2,.., k= 1,...,n hold, where J),
denotes the embedding operator from X, into Xj_1;

3. the operators By, k =1,...,n, from X}, into X, act boundedly;

4.the operators Ay, k=0,...,n, v=1,....,m, from X,_, 1 nto X', act
boundedly;

5. there exist Banach spaces X such that continuous embeddings X' C Xj,
v=1,...,m, hold, and the linear manifold

Ny

n—1
X = {?J | vi=r,...,0,) € k>—<0 Xk, ZAVICUTL\Y*’(H'S =0,
- k=0

for such integers v € [1,m] and s € [1,n —n,] for which

Ay(for all k=0,...,n,) from Xy 1_n ks 1o X are bounded}

1s dense in the Banach space

n,

n—1
wi={o o= 0) €% Xair, Y Awtiins =0,
- k=0

for such integers v € [1,m] and s € [1,n — n, — 1] for which

Ay (forall k=0,...,n,) from X, 1x—s nto Xy are bounded};

6. there exist® rays 0, with angles between neighboring rays less than

(s — E)n and a number n such that all numbers 1 on ly, with sufficiently

5 . .
3 For s > 5 the existence of one such ray is enough.
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large moduli, are regular points of the operator pencil 1(A):u —
Lu := (LD, Li(Au, . . ., Ly, (Du), which acts boundedly from X, into
X xXx. ..o xX™ and

-1
L(2) ||B(X><X1><~-><X"Z.Xn,1) <Cl", A€ty A = oo

7. the spectrum of problem (6.1) (or of the operator pencil 1.(1)) is not empty.

Then, the spectrum of problem (6.1) is discrete and a system of root vectors of
problem (6.1) is n-fold complete in the spaces X and X1.

Remark 6.1. In the framework of Hilbert spaces, this theorem is presented
i [13, Theorem 2.3.2/1] and there are a few generalizations in the conditions of
the theorem:

. . 1 . . . .
(a) it should be s > 0 instead of s > - and the approximation numbers s; are just
singular numbers s; in condition (2);

(b) it should be sm instead of (s — %)n in condition (6) and, then, if s > 2 the
existence of one ray is enough;
(¢) condition (7) should be omitted.

Acknowledgments. We would like to thank the anonymous referee for very
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