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Abstract. Although much attention has already been paid to graded central
simple algebras and their involutions, one piece of information is not yet well known:
their involutions are classified by a cyclic group of order 8. The properties of this
classification, and several problems in which it is useful, are here explained. Graded
modules are the natural domain of application, but modules without gradation are
also dealt with. A precise example (coming from quantum mechanics) shows which
progresses this theory can achieve.
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Much information about graded central simple algebras has been brought by
many people, especially by C. T. C. Wall and H. Bass; the graded Brauer group (or
Brauer-Wall group) BW(K) of a field K has become a usual tool in many works.
Although much attention has already been paid to the involutions of these algebras,
their study can still be improved. The benefit of this improvement is already no-
ticeable with Clifford algebras, which were an important motivation of Wall’s work in
[6]; in many problems, a simplification of the arguments and a reduction of the cal-
culations can be obtained by new general knowledge about graded central simple
algebras with involution, rather than by new specialized knowledge about Clifford
algebras. The concept of “class of involution” is a useful tool for this improvement;
every involution of a graded central simple algebra has a class in the group Rg of
eighth roots of 1in C (the field of complex numbers), as it is already pointed out in [2]
and [3]. Here is a complete survey of the topic, with the most recent progresses.

Sections 1 and 2 rapidly recall the classical definitions and theorems needed in the
study of graded central simple algebras. Classes of involutions are defined in Sections 3
and 4. In Section 5, there is a first application which involves the Brauer-Wall group
BW(R) of the field of real numbers. Graded central simple algebras with involution were
already classified in [7]; in Section 6, Wall’s classification proves to gather two concepts
which here are separated: the class of the algebra and the class of the involution. The
main part of this article is the study of a graded module over a graded central simple
algebra provided with an involution, in Sections 7 and 8; Theorems 8.3 and 8.4 show
which efficient pieces of information can be derived from the class of the involution.

Sections 9 and 10 present an example: the study of a graded irreducible module M
over a real Clifford algebra CA(E) of type (1,3); this example contains relevant pro-
blems because they are the algebraic preliminaries to quantum mechanics. The first
difficulty is the selection of the problems that are meaningful for physicists; the present
study relies on the selection proposed in [5], but applies quite different mathematical
methods, which allow to settle all details from the beginning up to the Fiersz identities.

Finally, although the study of graded central simple algebras naturally involves
graded modules (in agreement with [1]), it has remained usual to study irreducible
modules over Clifford algebras (the so-called spinor spaces) without worrying about
gradations; fortunately, the case of modules without gradation can be easily reduced
to the case of graded modules, as it is explained in Sections 11 and 12.

1 - Parity gradations

In all this text, K is a field of characteristic # 2, and all spaces over K
(therefore, all algebras too) are assumed to have a finite dimension. This basic
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field K is always referred to when no other field or ring is mentioned. Here
every gradation is a parity gradation, in other words, a gradation over the
group 7/27. If M = My & M, is a graded space, an element «x of M is said to be
homogeneous if it is even or odd, and its parity (an element of 7/27 = {0,1}) is
denoted by Ox. Whenever I use the symbol 9, the following element is silently
assumed to be homogeneous. The grade automorphism o (or oy if more pre-
cision is needed) maps every homogeneous element x to (— 1)*x. Since the
characteristic of K is # 2, the gradation is determined by o. A subspace P of M
is said to be graded (by the gradation of M) if P = (P N My & (P NM;p). The
gradation of M is said to be trival if My =M and M; = 0; it is said to be ba-
lanced if dim (M) = dim (M;).

When M and N are graded spaces, their tensor product M ® N, the space of all
linear mappings M — N, and the space of all bilinear mappings M x M — N are also
graded. The even linear mappings M — N are also called graded mappings because
they are the morphisms in the category of graded spaces. All these definitions have
become usual, and only some few pieces of information still deserve to be mentioned.
The gradation of M ® N is trivial if and only if both factors M and N are trivially
graded; it is balanced if and only if at least one factor has a balanced gradation. Every
space without gradation (for instance K itself) automatically receives the trivial
gradation, and consequently a bilinear form f: M x M — K is said to be even (re-
latively to the gradation of M) if f(M,, M_,) = 0 for p = 0,1, and it is said to be odd
if p(M,, M) =0 for p =0,1.

With every space N without gradation is associated a graded space (N2)’; it
is the space N & N in which the even (resp. odd) elements are the couples (x, x)
(resp. (x,—x)); the associated grade automorphism is the swap automorphism
(xx,y) — (y,«). Finally with every graded space M = M, @ M, is associated the
space M® with shifted gradation; it is made of elements «® in bijection with the
elements x of M, but M%)y = M)’ and M?®); = (M), or equivalently,
Ox® =1 — 0.

Let A be an (associative and unital) algebra, and A = Ay © A, a gradation of the
underlying space; A is said to be a graded algebra if the multiplication mapping
A x A — A is an even bilinear mapping. The gradations of the algebra A are in bi-
jection with the involutive algebra automorphisms o : A — A. The center Z(4) of a
graded algebra A is a graded subalgebra Z,(A) ® Z;(A), and there is a canonical
algebra morphism K — Z((A) which allows to identify K with its image in Zy(A)
(provided that A # 0). We also consider Z9(A) which has the same even component
Z4(A) = Zy(A); its odd component Z{(A) is the subspace of all b € A; such that
ba = o(a)b for all a € A. Therefore 2b* =0 for all b € Z{(4), whence b* =0 in
characteristic # 2.
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With every algebra A is associated the opposite algebra A°: it is the set of all
elements a° (with a € A) provided with the multiplication a°b° = (ba)’. When A is a
graded algebra, we can also define the twisted algebra A? in which the multiplication
is defined by a'b’ = (— 1)% o (ab)'. Still more useful is the twisted opposite algebra
A in which a®b® = (— 1)*%(ba)”. Finally, when A and B are graded algebras,
besides the ordinary A ® B there is the twisted tensor product A& B where
@®b)(@ @b)=(-1)"" ad’ @ bb.

2 - Graded central simple algebras

A graded algebra A is said to be a graded central simple algebra if Zy(A) = K,
Z“{ (A) = 0, and the only graded (two-sided) ideals of A are 0 and A; since the char-
acteristic is # 2, the condition Z{(4) = 0 is a consequence of the other conditions.
Every central simple algebra C becomes a graded central simple algebra when it is
provided with the trivial gradation; besides, with C is associated the graded central
simple algebra (C?)? provided with the gradation defined above, and the usual
multiplication (¢, d) (¢',d’) = (¢c/, dd').

Let M be a graded vector space and let us set » = dim (M) and »' = dim (M,); it
is known that the graded algebra End(M) is a graded central simple algebra (if
n +n' > 0). It is isomorphic to the graded matrix algebra Mat(n,n'; K) defined in
this way: without its gradation it is the same object as Mat(n + »’, K); and if all
entries of a matrix vanish except one entry in the i-th row and the j-th column, this
matrix is even (resp. odd) if 7 and j are on the same side (resp. on different sides) with

1 . . . . .
respect to n + > If B is a K-algebra without gradation (or equivalently, with the

trivial gradation), in the same way we can define a graded algebra Mat(n,n’; B)
isomorphic to B @ Mat(n,n’; K). If the gradation of the algebra B is not trivial,
for every integer n > 0 there is a graded algebra Mat(n,B) isomorphic to
B ® Mat(n, K). When B; contains invertible elements, it is not useful to define
Mat(n, '; B) because both B& Mat(n,n’; K) and B ® Mat(n,n’; K) prove to be iso-
morphic to Mat(n + »/, B). Finally, a graded algebra B is called a graded central
dwision algebra if Zy(B) = K and all homogeneous elements of B are invertible
except 0; such an algebra is graded central simple; if its gradation is trivial, it is the
same thing as a central division algebra. I recall the fundamental theorems, and for
the proofs I refer to [3], Section 6.6, where effective proofs have been selected among
the works of previous authors.

Theorem 2.1. IfA and B are graded algebras, then A® B is graded central
stmple if and only if both A and B are graded central simple.
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Theorem 2.2. If A is a graded algebra, there is a graded algebra morph-
ism A®AY — End(A) which maps every a®Db° to the linear mapping
@ — (= DP%qxb. It is bijective if and only if A is graded central simple.

Theorem 2.3. The algebra A is graded central simple if and only if there is a
field extension K — L such that the L-algebra L ® A is isomorphic to Mat(n,n’; L)
(for some suitable integers n and n') or to (Mat(n; LY ( for some suitable n). This
1s still true if we require L to be finite over K.

Corollary 2.4. When A is graded central simple, dim (A) is a square or the
double of a square. In the first case, A is said to have the even type, and there are
two integers m and %' such that dim (A¢) = n> + 7’2 and dim (A,) = 2nn’. In the
second case, A is said to have the odd type, and its gradation is balanced. When A
has the even type and Ay # 0, then Z(Ay) is a subalgebra of dimension 2 spanned by
1 and an even element w such that «® € K. When A has the odd type, Z(A) is a
subalgebra of dimension 2 spanned by 1 and an odd element w such that v* € K. In
both cases, w is called an Arf element, and aw = (— 1)240=99) forall a € A.

Corollary 2.5. The subspace of A spanned by A; and all brackets
[a,b] = ab — ba is a hyperplane. If Scal : A — K is a nonzero linear form that
vanishes on this hyperplane, the bilinear form (a, b) — Scal(ad) s symmetric and
nondegenerate. Moreover, Scal o ¢ = Scal whenever ¢ is an automorphism or an
anti-automorphism of A.

The linear form Scal in Corollary 2.5 is determined up to an invertible factor in K,
but there are two usual precise determinations. One determination is called the
trace, because it is related to the trace of matrices through the isomorphisms
mentioned in Theorem 2.3; the trace of the unit element 1 of A is the image in K of the
integer \/dim (4) (if A has the even type) or /2 dim (4) (if A has the odd type). The
other determination is called the scalar part and satisfies the equality Scal(1) = 1;it
shall be preferred whenever it is available, in other words, whenever the image of
dim (A) in K is invertible.

Theorem 2.6. The algebra A is graded central simple if and only if it is
isomorphic either to some Mat(n, n'; B) with B a central division algebra, or to some
Mat(n, B) with B a graded central division algebra where By # 0. The first case
occurs when Z(A) is not a field (and then nn' # 0), and also when A; = 0 (and then
nn' = 0); the second case occurs when Ay # 0 and Z(A) is a field. In both cases, A
determines B up to isomorphy.
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Corollary 2.7. When A is a graded central simple algebra, A; contains
mwertible elements if and only if the gradation of A is balanced.

Every graded central simple algebra A has a class cl(4) in the Brauer-Wall
group BW(K) in such a way that these two conditions are satisfied: firstly,
cl(A®A’) = cl(A) cl(A’) whenever A and A’ are graded central simple; secondly,
every algebra isomorphic to some End(M) (where M is a graded space), or
equivalently to some Mat(n,n'; K), has a trivial class. Theorem 2.2 shows that
cl(A)™! = cl(A%). The group BW(K) was first defined in [6]; the ordinary Brauer
group B(K) is a subgroup of BW(K).

Theorem 2.6 is a natural generalization of a well known theorem about central
simple algebras. It shows that every Brauer-Wall class contains a graded central
division algebra which is unique up to isomorphy; thus BW(K) is also the set of
1somorphy classes of graded central division algebras.

3 - A calculation of dimensions

Let A be a graded vector space and t a graded involutive endomorphism of A; let
79 and 71 be the endomorphisms of Ay and A; induced by 7; the dimensions of the
eigenspaces of 7¢ and 7; are assumed to be known. Similar hypotheses also hold for
(A',7'), and we consider the graded involutive endomorphism 7 ® 7’ of A ® A’. The
calculation of the dimensions of the eigenspaces of (t ® ')y and (r ® 7’); is an easy
problem. I propose a solution that later will enable us to settle a more difficult
problem. Since T commutes with the grade automorphism g, there is a couple (z, 67)
of graded involutive endomorphisms on A; with 7, I associate this element ' (z) of R?:

(3.1) (dim(ker(r—id))— dim(ker(r+id)), dim(ker(str — id)) — dim(ker(ct+id))),
and the solution to the problem is given by the equality

(3.2) Do) =DEDE).

When K is a field of characteristic 0, the equality (3.2) is a consequence of this fact: if
f and f’ are endomorphisms of A and A’, the trace of f ® f” is the product of the
traces of f and f’. The algebra R? is isomorphic to the algebra R @ 'R generated by

an element i’ such that i2 = 1; when D’(1) is treated as an element of R @ ¥R, it
becomes

(3.3) dim(ker((rp —id)) — dim(ker((zg +id))
+ 4 dim(ker(r; —id)) — ¢’ dim(ker(z; 4 id));
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this expression confirms that the knowledge of the dimensions of the eigenspaces of
79 and 77 is equivalent to the knowledge of D’'(z) and the dimensions of Ay and Aj.
Therefore, D'(r ® ') gives the four wanted dimensions.

Nevertheless, in the following sections I am not interested in 7 ® 7/, but in T ® 7’
which is the graded involutive endomorphism of A ® A’ defined by

(3.4) &N e®d) = (-1 (a) @ 7).

The symbol ® has not the same meaning as ©; indeed, when f and f’ are homo-
geneous endomorphisms of A and A’, then
(Fofeed) = (- 1" f@) o f(d).

Whereas t ® 7’ is the direct sum of the four components 7, ® 7 (with p, q € Z/27),
in 7 ® v’ the component 7; ® 7} has been replaced with —7; ® 7{; to compensate this
modification, it suffices to replace the element ¢’ in the formula (3.3) with an element
i such that 2 = —1. In other words, with v I now associate the element D(z) of C
equal to

(3.5) dim(ker(zp —id)) — dim(ker(zy +id))

+idim(ker(z; —id)) — ¢ dim(ker(z; +id)),
so that I can write the equality which solves the problem for T ® 7':
(3.6) D(z®7) = D)D) .

At first sight, the information given by D(z) is a couple of integers; nevertheless,
in the next sections it will only be an integer k£ modulo 8, because this property shall
always hold true:

(3.7) JkeZ, D& = /dmA) exp<i’fT”).

When this property is true, then

(3.8) dim (ker(zg —id)) = %dim (Ap) + % v/ dim (4) cos % ,
(3.9) dim (ker(zg +id)) = %dim (Ap) — % v/ dim (4) cos

(3.10) dim (ker(z; — id)) = %dim Ap) + % /dim (4) sin(k”

(3.11) dim (ker(r; +1id)) = %dim (A4 — % v/ dim (4) sin
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The property (3.7) suggests to divide D(r) by the square root of dim(A). The
quotient D(7)/+/dim (A) is called the class of the involutive endomorphism t, and
denoted by cl(z). In [2] and [3], it was called the complex divided trace of t; this
name is quite suggestive when K is a field of characteristic 0, but it may be
misleading when K is a field of characteristic > 3, because the words “complex
trace” suggest an element of an extension of K. Unless a better name is pro-
posed, I will say “the class of 7”7, although this terminology lets the word “class”
become ambivalent: it means either a family of involutive endomorphisms that
have a common property, or the complex number that serves to describe this
common property.

4 - The involutions under consideration

Let A be a graded algebra over K. An involutive K-linear mapping 7: A — A is
said to be an involution of A if z(a)7(b) = ©(ba) for all @, b € A (wWhence (1) = 1),
and 7(4,) = A4, for p = 0,1. In other words, the involutions of A are the graded
involutive anti-automorphisms of A.

The proof of the next theorem is very easy.

Theorem 4.1. When t and v’ are involutions of the graded algebras A and A’,
there is a unique involution v on A% A’ that extends t and 7, and it is equal to
t® 1 (defined in (3.4)).

Consequently, the class cl(z), defined at the end of Section 3, becomes very useful
because of this multiplicative property:

(4.1) c(z®7) = cl(r)el®).

Let us calculate some classes. The quadratic extension A = K @ K, generated by an
odd element 7 such that #? is an invertible element of K, has two involutions: the
identity mapping, and the grade automorphism; their classes are respectively
exp(in/4) and exp(— in/4). When 5? =1, then A ~ (K?)’. Now let us consider
Mat(n,%'; K) and the transposition of matrices which is an involution 7 of
Mat(n,n'; K); the dimensions of the kernels of (7)—id) and (T, +1id) are

1 1 1 1
én(n +1+ én’(n’ +1) and én(n -+ 5%’(%’ —1); the kernels of (T; —id) and

(T +1id) have the same dimension nn'; the resulting equality cl(T) = 1 deserves to
be emphasized in the next lemma.

Lemma 4.2. The class of the transposition of matrices in Mat(n,n'; K) is 1.
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Corollary 4.3. Let M be a graded vector space, B(M) the graded space of all
bilinear forms f: M x M — K, and 0" the graded involutive endormorphism of
BM) defined by 0'(p)(x,y) = By, ). The class of 0" is 1.

The next theorem is already proved in [3], Section 6.8. But below I propose a
different proof which, in spite of being a little longer, has two advantages: it can be
given immediately, unlike the other proof which needs Theorem 8.4 and must be
postponed into a later step; secondly, it shall soon help us in Section 6.

Theorem 4.4. The class of an involution t of a graded central simple algebra
A is an eighth root of 1 in C. When A has the even type, then (o)t = 1, and () is
equal to 1 orto —1 according as t operates trivially or not on Z(Ay). When A has the
odd type, then cl(t)! = —1, and cl(r)? is equal to i or to —i according as t operates
trivially or not on Z(A).

Proof. Since an extension of the field K does not affect cl(z), it follows from
Theorem 2.3 that it suffices to prove Theorem 4.4 when A is equal either to
Mat(n, n'; K) or to (Mat(n, K)*)’.

First we suppose A = Mat(n,n’; K). Let us compare 7 with the transposition 7 of
matrices. Because of the Skolem-Noether theorem, there is an invertible matrix
¢ € A suchthat 7(2) = ¢ T(z) ¢! for all z € A. Since tis involutive, T'(c) ¢! belongs to
the center of A which is K, and it rapidly follows that 7'(c) = =+ c. Since 7 is graded, it
operates on Z(Ay), where its operation is either trivial or not; in the first case, it easily
follows that c is even; in the second case (which may occur only if n = '), ¢ is odd.
Thus we meet 4 cases, according as c is symmetric or skew symmetric, and according
as c is even or odd. When c is symmetric, ker(r — id) (resp. ker(z + id)) is the sub-
space of all yc ! such that T(y) = y (resp. T(y) = —y). When ¢ is skew-symmetric,
the condition 7T'(y) = y must be replaced with 7'(y) = —y, and conversely. According
to the parity of ¢, ¥ has the same parity as yc~! or the other parity. When c is even,
then cl(r) = + 1 (after a calculation similar to the proof of Lemma 4.1), and when c is
odd, then cl(r) = & 1.

Now we suppose that A = (Mat(n, K)?Y. The operation of 7 in Z(A) may be trivial
or not. If it is trivial, there is matrix ¢ € Mat(n, K) such that =(x, 0) = (cT'(x)c~1, 0) for
all x € Mat(n, K). Since 7 is graded, the equality 7(0,%) = (0, ¢T(y)c™ 1) also holds
true. Since 7 is involutive, ¢ must be symmetric or skew symmetric, and after similar
calculations it follows that cl(z) = + (1 + 1)/ v/2. When the action of 7 in Z(A) is not
trivial, a similar argument shows that 7(x, %) = (cT(y)c™ !, cT(x)c™!) for some matrix
¢ that is symmetric or skew symmetric, whence cl(z) = + (1 — 7)/ V2. O
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With every involution 7 on a graded algebra A is associated another involution ot
which operates as 7 (resp. —7) on Ay (resp. Ay); the classes of T and o7 are complex
conjugate; when A is graded central simple, it follows from Theorem 4.4 that
cl(or) = el(o) .

Let Rg be the group of eighth roots of 1 in C. Now a class in BW(K) x Ry is
associated with every couple (4, ) where tis an involution of a graded central simple
algebra A. Since the type of the algebra A is given both by the class of A and the class
of 7, it is false that every element of BW(K) x Ry is the class of some (4, 7), but it is
easy to prove that this assertion is true for every element of BW(K) x4 Rg which is
the subgroup of all (w, y) € BW(K) x Rg such that the type of w (even or odd) agrees
with the sign of y* = £1.

Clifford algebras were a strong motivation for the study of graded central simple
algebras. If ¢ is a nondegenerate quadratic form on a vector space E, the Clifford
algebra CU(E,q) (that is the algebra generated by all x € E with the relations
2% = q(x)) is a graded central simple algebra. The reversion p is the involution on
C{U(E, q) that induces the identity mapping on E, and the cliffordian conjugation po is
the involution that induces —id on E.

Theorem 4.5. If q is a nondegenerate quadratic form on a space E of
dimension n, the classes of the reversion and conjugation in CL(E, q) are

cl(p) = exp(iiLTn) , cl(po) = exp(izzm>

Proof. If E is the orthogonal direct sum of two subspaces £’ and E”, and if
q' and ¢” are the restrictions of q to £’ and E”, there is a canonical isomorphism
from CUE,q) onto CUE' q)»CUE",q") that extends the linear mapping
¥ +a"— 2’ ®1+1xa” (where & runs through £’ and «” through E”). Because
of (4.1), Theorem 4.5 is true for (¥, q) if it is true for (£’,¢’) and (£”, ¢"). By means

of an orthogonal basis of %, the problem is reduced to the trivial case of a space ¥
of dimension 1. |

Remark. The case of afield K of characteristic 2 is treated in [3]. Over such a
field, there are only graded central simple algebras of the even type, and their
involutions are classified by the group R of square roots of 1: if 7 is an involution of a
graded central simple algebra A, its class is 1 or —1 according as 7 operates on Z(4,)
in a trivial way or not; therefore, this class gives the same information as the square
of the class mentioned in Theorem 4.4. More generally, let K be a commutative,
associative and unital ring, Spec(K) the set of its prime ideals, and Specy(K) the
open subset of prime ideals that do not contain the image of 2in K; let A be a graded
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Azumaya algebra over K; this means that A is a finitely generated projective
module, and that A/mA is a graded central simple algebra over K/m for every
maximal ideal m of K; when Specy(K) # 0, cl(A) is a continuous (locally constant)
mapping Specs(K) — Rg; and cl(A)? is a continuous mapping Spec(K) — Ry which
can only take the values + 1 outside Specy(K).

5 - Positive involutions

In Section 5, K is the field R of real numbers. Every nondegenerate quadratic
form, or nondegenerate symmetric bilinear form, has a type (m, n) which gives the
maximal dimension m (resp. n) of the subspaces on which it is positive definite (resp.
negative definite); its signature is m — n.

Wall proved in [6] that BW(R) was a cyclic group of order 8; his argument was
generalized in[1]. Here I propose a quite different argument in three steps. Firstly, itis
eagy to find 8 different graded central division algebras over R. The algebras R and H
give the ordinary Brauer group B(R). Then in dimension 2 we find (R?)? (defined in
Section 2) and the algebra 'Y generated over R by an odd element i such that i = —1.
In dimension 4 we find HY and H"; the former is generated by an even ¢ and an odd j
such that i = 72 = —1 and ji = —ij; the latter is generated by an even ' and an odd j'
such that —i% = j2 = 1andj'¢’ = —i/j'. In dimension 8 we find (%) and I ® C; both
contain two even elements ¢’ and j’, or ¢ and j, generating a subalgebra isomorphie to It;
the former (resp. the latter) still contains a central odd element k' (resp. k ) such that
k2 =1 (resp. k% = —1). These descriptions show that (¥ = ((R®)%)%, 11 =~ (1) and
H @ C9 2 (H2Y)P. Secondly, since R, C and H are the only division algebras over R, it
is easy to deduce from Theorem 2.3 that we have found all graded division algebras over
R (up to isomorphy). Thirdly, the multiplication in the group BW(R) shall be revealed
by Theorems 5.1, 5.2 and 5.4 which I am now going to present.

Every graded central simple algebra A over R is provided with a linear form Scal
that satisfies the properties mentioned in Corollary 2.5, and the property Scal(1) = 1.
An involution 7 on A is said to be a positive involution if the symmetric bilinear form
(@, b) — Scal(at(b)) is positive definite on A. If 7 is a positive involution, then prp~! is
a positive involution for every graded automorphism or anti-automorphism ¢ of A.

Theorem 5.1. Every graded central division algebra over R admits a
unique positive involution. The classes of the positive involutions of the algebras

R, (R®Y, HY, HeCY H, (HY, HY, 7

are respectively equal to exp(itkn/4) with k=0,1,2,3,4,5,6,7.
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Proof. Ifrisapositive involution of A, then o7 is a positive involution on A%. If
Cis a central simple algebra (without gradation), then every positive involution 7 of C
gives a positive involution of (C?)?, which is (¢, d) — (z(c), 7(d)), because the scalar
part of each (c,d) is Scal(c + d)/2. These evident statements allow us to find a po-
sitive involution on each of the 8 algebras listed in Theorem 5.1. Then it is easy to
verify the uniqueness of each positive involution and to calculate its class. O

Theorem 5.2. Iftand 7' are positive involutions respectively on A and A’,
then T @ 7' is a positive involution on AQA'.

Proof. Let f be the bilinear form on A defined by f(a, b) = Scal(at(b)); simi-
larly ' (resp. p”) is the bilinear form on A’ (resp. A®A’) involving 7’ (resp.
7 = t® 7). Since a tensor product of positive definite symmetric bilinear forms is
positive definite, it suffices to prove that 8" = f® . It is easy to verify that the
linear form Scal” : A® A’ — K is the tensor product of the linear forms Scal : A — K
and Scal’ : A’ — K. A straightforward calculation shows that (for all @, b € A and all
a,beA)

ﬁ”(a @d, bab) = (- 1)8b(8a’+8b’) Bla,b) /)>/(a/7 b).

The twisting exponent 9b(da’ + 9b') has no effect; this is clear if 0a’ + b’ = 0; and
when da’ + 0b' = 1, the equality f'(a/,b') = 0 prevents it from having any effect.
Therefore ' = @ f. O

Lemma 5.3. If a graded central simple algebra A admits several positive
mvolutions, their classes in Rg are all equal.

Proof. Let 7 be a positive involution, and let us set f(a, b) = Scal(az(b)) as
previously. It is clear that Ay and A; are orthogonal for the symmetric bilinear form y
defined by y(a, b) = Scal(ab). Also ker(r — id) and ker(zr + id) are orthogonal for y;
indeed if 7(a) = a and 7(b) = — b, then

x(a,b) = Scal(ab) = Scal(t(ab)) = Scal(z(b)t(a)) = — Scal(ba) = —y(a, b) .

The restriction of y to ker(r — id) (resp. ker(r + id)) is equal to the restriction of
(resp. — f9). Since f is positive definite, the signatures of the restrictions y, and y; of ¥
to Ap and A; are

sgn(y,) = dim (ker(ry — id)) — dim (ker(zy + id)),
sgn(y;) = dim (ker(r; — id)) — dim (ker(z; + id)).

Consequently cl(7) is equal to sgn(y,) + 7sgn(y;) divided by +/dim (A). This equality
holds for all positive involutions on A. O
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Theorem 5.4. Ewvery graded central simple algebra A admits positive in-
volutions, and their class in Rg only depends on the class of A in BW(R).

Proof. The transposition 7' of matrices in Mat(n, #’; R) is a positive involution,
because for every ¢ € Mat(n,n'; R) the trace of ¢ T(c) is the sum of the squares of all
entries of c. Because of Theorem 2.6, we consider a graded central division algebra B,
and the algebra A = Mat(n,n'; B) or A = Mat(n, B) according as B is trivially graded
or not. Since A is isomorphic to B @ Mat(n,n; R) or to B ® Mat(n, R), Theorem 5.2
implies that A admits positive involutions: it suffices to extend the positive involution
on B to a positive involution on A by means of the transposition 7" on Mat(n, n’; R) or
Mat(n, R). Since cl(T) = 1, the positive involutions on A have the same class as the
positive involution on B. The conclusion follows. O

The next theorem is an obvious consequence of the previous ones; it gives the
multiplication in the group BW(R) when BW(R) is treated as the set of the eight
algebras listed in Theorem 5.1.

Theorem 5.5. By associating with every graded central simple algebra the
class of its positive involutions we obtain a canonical isomorphism BW(R) — Rg.

As an application of Theorem 5.5, let us prove that
(5.1) HY & (H2)Y =~ Mat4, CY);

the left hand member of (5.1) is an algebra of dimension 4 x 8 = 32 in which the class
of the positive involutions is exp(2in/4) x exp(5in/4) = exp(Tin/4); therefore, it is
isomorphic to Mat(n, CY) if n = 1/32/2 = 4.

Theorem 5.5 also proves that the couples (A4, 7) (where 7 is an involution on a real
graded central simple algebra A) are classified by the group Rg x2 Rg (subgroup of
all (w, y) € Rg x Rgsuch thatw* = y*). This is a group of order 32, which in particular
classifies the real Clifford algebras.

Theorem 5.6. Let E be a real vector space provided with a quadratic form q
of type (m,n). In the Clifford algebra CL(E, q), the class of the positive involutions
and the class of the reversion are respectively

im —n)n i(m + n)n
o () ot (7).

Proof. As in the proof of Theorem 4.5, it suffices to verify these equalities
when dim (E) = 1. This is quite easy since CA(E, q) = (R%)? for the type (1,0), and
CUE, q) = CY for the type (0, 1). O
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Thus the examination of quadratic spaces of dimension 1 suffices to reveal the 32
classes of real Clifford algebras. The class of the positive involution gives the wanted
information by means of Theorems 5.5, 5.1 and 2.6, while the information given by
the class of the reversion shall be explained later in Sections 8 and 12.

6 - Comparison with Wall’s group GB(X,1)

The starting problem of all my research in this domain was the problem that I
recalled in Section 3: a calculation of dimensions of eigenspaces. To solve it, I asso-
ciated with every graded involutive endomorphism a class in C, which proved to
belong to Rg in all cases under consideration. At that time I did not know the ex-
istence of [7] which was seldom referred to. When later I discovered it, I was anxious
to know whether my classification of involutions was already present in it. The an-
swer to this question is rather no than yes.

In [7], after recalling the group GB(K) (which here I denote by BW(K)), Wall
presented the group GB(K,j) associated with a field K of characteristic # 2 and an
involution j of K; it classifies the couples (A4,J) where A is a graded central simple
algebra over K, and J an involution of A that induces j on K. Since here I accept only
K-linear involutions, I am concerned only with GB(K, 1), where 1 means the identity
mapping of K. Let me recall Wall’s construction of GB(X,1). When P was a gra-
ded vector space, and 7" an involution of End(P), Wall decided that the class of
(End(P),7’) was trivial if there was a nondegenerate even symmetric bilinear
form f§: P x P — K such that f(f(x), y) = px, 7' (f)(y)) for all f € End(P) and all
x, y € P. Then a couple (4, 7) was said to be trivial if it was isomorphic to a trivial
couple (End(P), 7). This means that (4, ) is trivial if (and only if) A is isomorphic to
some algebra Mat(n, %'; K), and if 7 corresponds by this isomorphism to an involution
z — cT(2)c™!, where T is the transposition of matrices, and c is an invertible even
symmetric matrix. The argument that settles the first part of the proof of Theorem
4.4, shows that this condition is equivalent to cl(z) = 1. Since a couple (4, 7) is trivial
according to Wall’s definition if and only if its class in BW(K) xg Rgis trivial, there is
a canonical isomorphism GB(X,1) — BW(K) x5 Rg.

From Wall’s definition of GB(K, 1), it followed that every field extension K — L
determined a group morphism GB(X,1) — GB(L, 1). And Wall mentioned two par-
ticular groups GB(X,1) in [7]:

(6.1) GB(C,1) = 7/87,  GB(R,1) = (7/87) ® (Z/AZ).

Wall never classified involutions, he only classified couples (4, 7). He could
have classified by means of the algebraic closure K’ of K, by saying that the
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class of 7 might be the image of the class of (4, 1) by the morphism GB(KX,1) —
GB(K',1); thus the class of z would belong to GB(K’,1) which is canonically
isomorphic to GB(C,1). Nevertheless, he never suggested such an idea, and
after mentioning GB(R,1), he did not mention the canonical isomorphism
GB(R,1) — BW(R) x3 GB(C,1).

Wall defined positive involutions over R, and despite the scarcity of his ex-
planation, it is certain that he knew the statements which here are Theorems 5.2 and
5.4. He defined a group GB(R, 1) classifying the couples (A4, t) with a positive in-
volution, and he discovered a canonical isomorphism GB‘(R,1) — GB(C,1). This
isomorphism does not give the same information as Theorem 5.5; in particular, it
does not help us in the calculation (5.1) here above.

After the advances achieved in [6] and [7], the concept of “class of involution” (also
called “complex divided trace”) brings new simplifications of arguments and new
reductions of calculations. Besides, the definition of cl(r) does not require A to be an
algebra, and the formulas (3.8), ..., (3.11) only require that cl(t) € Rg; this feature is
especially noticeable in the main theorems 8.3, 8.4, 12.3, 12.4 which are devoted to the
class of some 6 which is just an involutive transformation of a graded vector space.

The references [8] and [4] are also important for involutions of algebras, but their
concern is still farther than [7] from the subject treated here.

7 - Graded centralizers in bimodules

Every module M over an algebra A is a left module unless it is said to be a right
module. If A and M are graded, M is a graded module if the mapping A x M — M is
even. When P is a left module over A and a right module over B, it is called a bimodule
over A and B (or just over A in case A = B) if the equality (az)b = a(zb) holds for all
a €A, be B and z € P. The definition of a graded bimodule follows. A graded bi-
module over A and B is also a module over A & B if we set (a @ b°) z = (— )% %azb.
Conversely, a module over a tensor product A ® B is often treated as a bimodule over
A and BY.

If P is a bimodule over A, the centralizer Z(A, P) is the subspace of all z € P such
that az = za for alla € A. When Pis a graded bimodule, Z(A, P) is a graded subspace
of P, and often we prefer the graded centralizer Z(A, P) such that Zj(4,P) =
Zo(A, P), and Z{(A, P) is the subspace of all z € P; such that az = z a(a) for alla € A.

When M is a module over A, the algebra morphism A — End(M) makes End(M)
become a bimodule over A, and Z(A, End(M)) is a subalgebra denoted by End4(M).
When M is a graded module over a graded algebra A, we obtain the subalgebra
Z9(A, End(M)) = EndZ(M ) which is characterized by the property of twisted A-
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linearity: f(ax) = (— l)aaaf af(x) (for all homogeneous a € A, f € Endﬂ(M ) and
x € M). Its homogeneous components are denoted by Endip(M Ywith p =0,1.

When M is a module over an algebra A provided with an involution 7, the space
B(M) of all bilinear forms f# : M x M — K is a bimodule over A: the bilinear form afb
(with a, b € A) is defined by (afb)(x, y) = p(bx, ©(a)y). The resulting centralizer is
denoted by Z(A, B(M); 7). The space B(M) is a right module over End(M) when ff is
defined by (ff)(x,y) = f(f(x),y), and it is easy to verify that this definition lets
Z(A, B(M); t) become a right module over Ends(M). When parity gradations are
taken into account, we must write (afb)(x, y) = (— 1)‘9“ op Bbx, t(a)y). Thus we obtain
Z9(A, B(M); t) which is a graded right module over Endg(M ). The following equal-
ities (where the symbol 0 silently requires the following element to be homogeneous)
are immediate consequences of the definitions:

(T1) VB eZUA,BM):1), Yac A, Blax,y) = (— DB, a)y):;
(7.2)  ZUA, BM);7) = Zy(A, BM); o"7) for p =0,1.

When Z9(A, B(M); t) contains a nondegenerate homogeneous bilinear form g,
that is symmetric or skew symmetric, this bilinear form induces an involution 7z on
Endﬂl(M ) that is characterized by this equality:

(7.3) Vf € End{M), B,(f@),y) = (— DY B (@, wa(f)y).

It follows from (7.1) that there is a graded involutive endomorphism 6 of
Z9(A, B(M); 7) that is defined by the equality 8(f)(x,y) = p(y,x). When A is graded
central simple, cl(tg) and cl(0) shall prove to belong to Rg like cl(z), and the equality
cl(0) = cl(¢)"! is the main purpose of Section 8.

On one side, if P is a graded bimodule over A, the space L(P,A) of all linear
mappings F : P — A becomes a graded bimodule over A®A if we set (for all
a,a,b, b €Aandforallz e P)

((a ® a/l)F(b ® bl)) (z) _ (_ 1)6(1/(0F+0b+02) (_ 1)81)/&2 G/F(bza/,) b,,

the twisting exponent da/(OF + 0b + 0z) comes from the letter a’ which jumps above
the letters F', b, z, while 0b'9z comes from b’ which jumps over z. On the other side, if
M is a graded module over A, then M ® M is a graded bimodule over A if we set (for
alla, be Aand allx, y € M)

(7.4) a@®y)b = ar® b)y.

Therefore, the space L2(M,A) of all linear mappings F : M @ M — A is a graded
bimodule over A® A if we set

(@@ d)Fb @) (@ @y) = (-1)"" 00w )M p (be @ (a)y)b'.
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This allows to define the graded centralizer ZY(A® A, LM ,A); 7); its homogeneous
elements F' are characterized by this property, which means twisted linearity with
respect to a, and t-semi-linearity with respect to b:

(7.5) Va,beA, Va,yeM, Flax®by) = (— D™F aF(x®y) wb).

Theorem 7.1. Let us suppose that there is a linear form Scal : A — K that
vanishes on A; and that gives a mnondegenerate symmetric bilinear form
(a, b) — Scal(ab). If we map every F € L2(A, M) to the bilinear form f8 defined by
Ple,y) = Scal(F(x ® ), we obtain by wrestriction a graded bijection from
ZIA&A, LAM,A); v) onto Z9(A, BM):; 7).

Proof. Theequality 9f = OF follows from Scal(4;) = 0. And from the equality
Scal(ab) = Scal(ba), it follows that [ satisfies (7.1) whenever F' satisfies (7.5).
Besides, for every homogeneous F' € Z/(A® A, LM ,A); 7) we have:

(7.6) Va €A, Ve,yeM, ScallaFxoy) = (—1)"% pax, y).

Since the bilinear form (a, b) — Scal(ab) is nondegenerate, this equality (7.6) allows
us to derive a unique element F € L2(M,A) from every S € B(M), and obviously
Ble,y) = Scal(F(x ® ). If [ satisfies (7.1), it follows form (7.6) that, for all
a,b,ce A, andforallx, y € M,

Seal(c F(ax @ 1(0)y)) = (— 1D Seal(ca F(x @ y)b);

consequently F' satisfies (7.5). O

Theorem 7.2. Ifthe hypothesis of Theorem 7.1 is true, and if Z'(A, B(M); 1)
contains a homogeneous, nondegenerate, symmetric or skew symmetric element
B, then the image F,, of B, in ZI(A® A, L2(M, A); 1) satisfies the Sollowing prop-
erty, where £ means + or — according as f3,, is symmetric or skew symmetric, and
Pt means t or at according to the parity of f,:

(1.7) Ve, ye M, F,(yox) =+ cPtF(x2y)).
If tg is the involution defined by (7.3), then, for every f € End’ (M),
(7.8) Fu(f@ey) = (- DY 6% (F,(x 2 ().

Proof. Let G be the element of L2(M, A) such that G(x @) = 6% 1(F,,(y @ x));
it belongs to Z/(A& A, L2(M, A); t) because
Glax @ by) = (— D 6%t (b F(y @ ) 1(a))
= (- l)abaF,l+(0a+ab)a/>’n a aaﬁ,, r( Fn(?/ ® x)) 7(b)
= (=" aG ey b).



290 JACQUES HELMSTETTER [18]

Because of Theorem 7.1, the comparison of F',, and G is reduced to the comparison
of Scal(F,(x ® ¥)) = f,(x ® y) and Scal(G(x ® ¥)) = B,y @ x).

Now let G; and G, be the elements of L%(M,A) defined by Gi(x ®y) =
F(f(x) ®y) and Go(x @ y) = 0 (F(x @ t5(f)(y))). Thus Gy = 0Gs = Of, + If. A
similar calculation shows that G; and Gz belong to Z/(A® A, LM, A); 7); to compare
them, it suffices to compare Scal(Gi(x ® ¥)) = f,(f(®),y) and Scal(Ga(x ® ¥)) =
B, Te(HW)). O

If all hypotheses of Theorem 7.2 are true, and if there is also a linear form
Scalg; : Endffl(M) — K with similar properties, then f, determines a linear
mapping F, : M @ M — End’ (M), because (7.3) shows that f, belongs to
Zg(Endﬂ(M),B(M);rE). Theorem 7.2 gives the similar properties of F7,.

We can even treat M as a graded module over A& EndZ(M ) provided with the
involution 7 @ tz; thus we get a linear mapping F, : M @ M — A& End’(M). When
A is graded central simple, all hypotheses ensuring the existence of I, will be true,
and F will prove to be bijective.

Besides, when A is graded central simple, we can also use the next Theorem
7.3, which is interpreted in this way in [1]: the functors P +—— Z7(4,P) and
Vi+— A®V determine an equivalence between the category of graded bimo-
dules P over A and the category of graded vector spaces V over K. If V is a
graded vector space, then A®V is a graded bimodule over A if we set
alx @V)b = (— 1)0b8”(axb) ®wv (for all a,b, x €A and all v € V). It is easy to
verify that Z9(4, A®V)=7(A) ® V, whence Z7(4, A V)=V if A is graded
central simple. Conversely, we find this theorem in [1].

Theorem 7.3. IfPisagraded bimodule over a graded central simple algebra
A, the mapping A @ Z7(A, P) — P defined by a ® z — az is bijective.

Corollary 7.4. When a graded central simple algebra A is a graded
subalgebra of a graded algebra C, then Z9(A, C) is a graded subalgebra of C, and
the mapping A% Z9(A,C) — C (that is a ® z — az) is an algebra isomorphism. If
A and C are graded central simple, the same holds for Z7(A, C).

8 - Graded modules

This section is devoted to a graded module M over a graded central simple al-
gebra A provided with an involution .
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Every graded module over A is semi-simple; therefore it is worth looking at the
graded irreducible modules. A graded irreducible module is not always an irre-
ducible module. For instance, if B is a graded central division algebra such that
B1 # 0, every graded module N over B is free, because every By-basis of Ny is a B-
basis of N; therefore every graded irreducible module over B has the same dimen-
sion (over K) as B; but if B is not a division algebra when the gradation is forgotten,
there are irreducible modules of dimension dim (B)/2; when K = R, this happens
when B is (R%)? or H" or H ® Y or (H2Y.

When B is a graded central division algebra such that B; # 0, all graded irre-
ducible modules over A = Mat(n, B) are isomorphic to B". But when By = 0, the
graded irreducible modules over Mat(n,n'; B) constitute two isomorphy classes;
there is a graded irreducible module M where M, =~ B" and M, =~ B", but M is not
isomorphic to the module M*® with shifted gradation (where O0x® =1 — Ox, see
Section 1). Therefore, every graded module over Mat(n,n'; B) admits a decom-
position M’ & M” into a direct sum of isotypical components: all graded irreducible
submodules of M’ are isomorphic to one another, and the same for M”; of course, M’
or M" is reduced to 0 if M is already isotypical. When nn' = 0, the decomposition
M' ® M" coincides with the decomposition M, ® M;. When nn' # 0, the center of
Mato(n,n'; B) contains an Arf element w such that @® = 1, and the four subspaces
Mj, My, M§ and MY are characterized by their parity and this property: M & MY
(resp. M & M) is the subspace of all x € M such that wx = x (resp. wx = —x).

When M is a graded module over an arbitrary graded central simple algebra A,
there is an isotypical decomposition M = M’ & M" if and only if the class of A in
BW(K) belongs to the subgroup B(X).

Theorem 8.1. When M is a graded module over a graded central simple
algebra A, then End’, (M) (defined in Section 7) is a graded central simple algebra,
with Brawer-Wall class and dimension given by these equalities:

cl(4) c(End(M)) =1, dim (4) dim (End’(M)) = (dim (M))2 .

When the class of A in BW(K) does not belong to B(K), the gradation of Endﬂ M) s
always balanced. When it belongs to B(K), the dimensions of the homogeneous
components of End’, (M) are given by the following formulas where d and d’ are the
dimensions of the isotypical components of M:

d? +d'® 2dd’

dim (Bnd (M) =" dim (Bndf (M) = 2

Proof. Corollary 7.4 implies that A® EndZ(M ) is isomorphie to End(M), and
this fact gives all pieces of information except the dimensions of the homogeneous
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components of End%(M ). When the class of A does not belong to B(K), neither does
the class of Endf{l(M ) which is its inverse; therefore the gradation of Endfil(M ) is
balanced. Now we assume that the class of A belongs to B(K); thus A is isomorphic to
an algebra B ® End(V) where B is a trivially graded central division algebra, and V a
graded vector space over K; let us set 0 = dim (B), » = dim (V) and »' = dim (V7).
Every graded module M over A = B® End(V) is isomorphic to some module
B®V ® U (where U also is a graded vector space) if the operation of ¢ ® g (for all
ce€ Bandg € End(V))is definedbyx @ v @ u +— cx @ gw) @ u (forallx € B,v € V
and u € U). If we assume that M is precisely this module, its isotypical components
are M =BV ® Uy and M" = B® V ® Uy. If the dimensions of Uy and U; are
denoted by m and m/, then

dim (M}) = onm, dim (Mp) = on'm’,

8.1
(81) dim (M) = on'm, dim (M7) = onm/’ .

Let the algebra B® @ End(U) act on M in this way: every b° ® f mapseveryx @ v @ %
to (— )% b ® v @ f(u). The operation of b° ® f commutes or anticommutes with
the operation of ¢ ® g according to the parity of df dg; therefore B° @ End(U) C
End’, (M), and this inclusion is an equality because both algebras have the same
dimension. The dimensions of the homogeneous components of B° @ End(U) are
o(m? +m?) and 29mm'; they agree with the announced values because
dim (4) = o(n + n’)z, d=0dn+n"Ymandd = dén+n)m'. O

The graded space Z7(A, B(M); 7) (defined in Section 7) is a graded right module
over Endffl(M); the next theorem enables us to calculate the dimensions of its
homogeneous components.

Theorem 8.2. The space Z9(A, B(M); 1) has the same dimension as the al-
gebra End’(M). It contains a nondegenerate homogeneous bilinear form f, that is
symmetric or skew symmetric. The mapping f — B, f is a homogeneous linear
bijection from End (M) onto ZY(A, BIM); 7); its parity is the parity of B,,. When the
class of A in BW(K) belongs to B(K), and when the isotypical components of M
have different dimensions, then f, must be even or odd according as the operation
of T in Z(Ay) is trivial or not.

Proof. Since dim (B(M)) = dim (End(A4)), the bijection A ® Z9(A, BM); 1) —
B(M) given by Theorem 7.3 proves that Z/(A, B(M); ) has the same dimension as
Endﬂ(M ). To prove the existence of bilinear forms like f, it suffices to consider a
graded irreducible module M, because every other graded module is a direct sum of
graded submodules isomorphic to M or (in some cases) to M*. When M is graded
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irreducible, every nonzero homogeneous element of Z7(A,B(M);t) is non-
degenerate, because its kernel (on the left or right side) is a graded submodule;
therefore f5,, may be any nonzero eigenvector of § in either homogeneous component
Zg(A, B(M); 7). The existence of f, is now sure, and the properties of the mapping
f+— B, f are evident. It remains to study the parity of 5, when cl(4) € B(K). Let
M = M’ & M" be the isotypical decomposition; when A; # 0, there is an Arf element
€ Z(Ap) such that wx = x (resp. wx = —x) for all x in M{ & MY (resp. My @ M});
when A; = 0, then M{j @ M} = 0, and these equalities still hold with & = 1. Either
7(w) = w, or ©(w) = — w, and the second case occurs only when the gradation of A is
balanced. In the first case the equality f, (wx,y) = f, (2, wy) implies that M & MY is
orthogonal for f, to My @ Mj; if 8, is odd, this implies that f§, induces a duality
between M, and M7, and between M{ and Mj; the formulas (8.1) show that this is
impossible if m # m/; in this case f, is even. When 7(w) = — w, the equality
po(wx,y) = —p,(x, wy) shows that Mj, ® M7 and M{ @& M are totally isotropic for
f; if B, is even, this implies that f,, induces a duality between M{ and M, and be-
tween M7 and M; again this is impossible if m # m/; in this case f,, is odd. O

Now we consider the involution 8 of Z9(A, B(M); ) defined by 0(f)(x, y) = By, x),
and the involution 7z of End (M) determined by a choice of f8, according to the
definition (7.3).

Theorem 8.3. When f3, is even, then cl(§) = £ cl(tg), and when f, is odd,
then cl(0) = £ icl(tg); in both cases, the sign + means + if f,, is symmetric, — if f,
1s skew symmetric.

Proof. It follows from (7.3) that (f,f)(x,y) = £(f,ta(f)(y,x) for every
homogeneous f € End’ (M) (and for all x, y € M); the sign + depends on the sym-
metry property of f, and on 9f 9f,. Therefore the mapping f +—— f,f maps
homogeneous eigenvectors of 7z to homogeneous eigenvectors of 0. According to the
symmetry property of §,, and its parity, it is easy to determine onto which eigenspace
of 0y or 0; each of the eigenspaces of 75 and 75 is mapped. The announced con-
clusions soon follow. O

Theorem 8.4. The equality cl(t)cl() =1 holds in Rsg.

Proof. If we treat M as a graded module over the trivially graded algebra
A" = K provided with the involution ! =id, then we meet the graded algebra
End’ (M) = End(M), the graded space Z(A", B(M); ') = B(M), and the involutive
endomorphism ' of B(M); moreover, f3, determines also an involution TIT of End(M).
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The formulas (7.1) and (7.3) show that T ® tz corresponds to rg by the isomorphism
A& End (M) — End(M). This gives the first equality in (8.2), and the second one
comes from Corollary 4.2:

(8.2) cd(zh) = d@el(zg) , el =1.
According to Theorem 8.3, there is r € R4 such that
(8.3) ) =rel(zg), @) =rel}) .

Theorem 8.4 is a consequence of the four equalities (8.2) and (8.3). O

Remark. Theorem 4.4 is not involved in the proof of Theorem 8.4; on the
contrary, Theorem 8.4 may help to prove Theorem 4.4. Indeed, if the Brauer-Wall
class of A is trivial, A admits a graded irreducible module M of dimension /dim (4),
whence dim (Z9(A, B(M); t)) = 1; this enforces cl(0) to be a fourth root of 1, and the
same for cl(z) because of Theorem 8.4. When A is an arbitrary graded central simple
algebra, it follows from Theorem 2.2 that the class of the involution Tt @ Ton A ® A% is
afourth root of 1, and consequently cl(7) is an eighth root of 1. The final assertions in
Theorem 4.4 follow from the study of the bijection Z/(A, B(M); 1) — Z9(A, B(M); o7)
defined by f — pw, where w is an Arf element.

Now let us consider the space L2(M, A) of all linear mappings M @ M — A. Every
nonzero homogeneous element F of ZY(AQ A, LM ,A); 1) 1s surjective onto A,
indeed, the formula (7.5) shows that its image is a graded ideal of A, which must be
equal to A. By Theorem 7.1, every choice of a suitable linear form Scal : A — K
determines a graded bijection from Z9(A & A, L2(M, A); 7) onto ZY(A, B(M); 7). Thus
every homogeneous, nondegenerate, symmetric or skew symmetric element f, of
Z9(A, B(M); 7) determines an element F), of Z/(A& A, L2(M, A); 7). Since f3,, induces
an involution 7z on the graded central simple algebra Endg(M ), it still determines
similar linear mappings ¥/, : M @ M — End’(M), and F, : M ® M — A& End’,(M).
The mapping F! is bijective, because it is a surjective mapping between two spaces of
equal dimensions. When M ® M is treated as a bimodule over A according to the
formula (7.4), F allows us to compare the action of A on M ® M to its action on the
bimodule A & End’ (M).

There are two conspicuous involutive endomorphisms on M ® M, the grade au-
tomorphism and the mapping x ® ¥ — y ® x. They commute with each other and
their common eigenspaces constitute a decomposition of M ® M into a direct sum of
four subspaces. By F these four subspaces of M ® M correspond to the four sub-
spaces of A® End’ (M) that are the common eigenspaces of ¢ ® o5 and t @ tz; the
formula (7.7) explains how I behaves with respect to the symmetry properties.
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9 - An example (first part)

Let A = CUE, q) be the Clifford algebra generated by a real vector space £
provided with a quadratic form ¢ of type (1,3) (according to the definition at the
beginning of Section 5), and M a graded module over A of dimension 8 over R. The
class of the positive involutions of A is exp(— 2in/4) = —1 (see Theorem 5.6), and
dim (4) = 16; therefore A =~ Mat(2, 1Y), and M is an irreducible module. The in-
volution 7 that plays the essential role in Sections 7 and 8 is now the reversion p or the
conjugation po. Theorem 4.4 gives us this piece of information: cl(p) = cl(po) = —1.

A line contained in £ is called a time line (resp. a light line) if it is spanned by a
vector v such that q(v) > 0 (resp. g(v) = 0). A subspace of dimension 3 is called a
euclidian subspace if ¢ is negative definite on this subspace. As it happens in all
spaces provided with a quadratiec form of non constant sign, there are two orienta-
tions in £ if one time line is oriented, all time lines (and light lines) are oriented by
continuity; and if one euclidian subspace is oriented, all euclidian subspaces are
oriented by continuity. This double orientation explains why the orthogonal group £
of q (called the Lorentz group) has 4 connected components; let £, be the neutral
component. The orientation of time is physically relevant, whereas the euclidian
orientation is just a mathematical convention. A basis (ey, e1, €2, e3) of E is said to be a
normal basis if it is an orthogonal basis, if q(eg) = —q(e1) = —qlez) = —qles) = 1, if
e respects the orientation of time (in other words, if it is oriented toward future), and
if (e1, e2, e3) respects the euclidian orientation. The group £, acts in a simply tran-
sitive way on the set of normal bases. If we set w = epeiezes, then we, = —e,w for
r =0,1,2,3, and consequently, w is an Arf element; moreover, »* = —1. All normal
bases give the same Arf element o, and w determines the global orientation of £.

The spin group S is the subgroup all homogeneous elements a € A such that
ap(a) = £1; since dim (F) = 4, this implies avp(a) € E for all v € E, whence the
orthogonal transformation g, defined by ¢,(v) = av a(a)”. Thus we obtain a sur-
jective morphism S — £;its kernelis {1, —1}. The neutral connected component Sy,
(the subgroup of all @ € Ay such that ap(a) = 1) is a 2-sheet covering group over L.

Since the Brauer-Wall class of End‘g4 (M) is cl(A) 7!, and since its dimension is 4, we
know that Endi(M ) =2 H". But to follow the common use, instead of treating M as a
module over A& Endﬂ (M), we will rather treat it as a bimodule over A and
(Endffl(M ) = 9. The algebra 1" is generated by an even ¢’ and an odd j’ such that
—i2 =2 =1and ¢j = —j'7, while 1Y (here identified with (F1¥)*) is generated by
aneveni = ' and an oddj = j'% such that > = /> = —1 and ij = —ji. Every graded
left module N over H" is a graded right module over I17:

(9.1) Vz €N, zi=1z and zj =jon().
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Here it is forbidden to identify ¢ and #'; indeed, when N = H", then (9.1) implies
51 = 1'§ although j/¢' = —'7. The even subalgebras of 1" and 1Y are denoted by C’
and C; here C acts on the right side.

These explanations determine the operation of 7 in M up to a sign +, but Section
10 shall prove that it may be determined precisely by this property:

(9.2) forp=0,1, VYeeM,, 2i=((-1Dwr.

When physicists are concerned with a spinor space M over this Clifford algebra,
usually they do not mention any parity gradation, but they emphasize its complex
structure: there is an operator & — a7 such that (xi)i = —x and (vx)i = v(a¢) for all
v € E andx € M. Later, they use (9.2) to define the subspace M of right hand Weyl
spinors, and the subspace M; of left hand Weyl spinors; since every operator
x — vx permutes Mo and M (because v = —wvforallv € £), they have turned M
into a graded module. When w (or equivalently, the global orientation of £') has been
chosen, the equality (9.2) establishes a bijective correspondence between the com-
plex structures on the module M and the parity gradations of the module M.

The existence of a physically meaningful gradation on M has an important con-
sequence: the quadratic form — ¢ would give the same theory as q. Indeed, the Clifford
algebra of — ¢ can be identified with the twisted algebra C/(E, )’ (defined in Section 1),
and with every graded module M over C/(E, q), a twisted module M* over CUE, q)' is
associated according to the definition a’x! = (— 1)8“ a“(cwc)t. If — gwere used instead of
g, then HY would act on the left side, and " on the right side. Without its gradation,
CUE, q)" is isomorphic to Mat(4, R) and admits irreducible modules of dimension 4;
this may explain why g is preferred to-day, although — g was preferred formerly.

A gauge group I acts on M: it is the group of all exp(iz) € C with « € R; the
observable quantities are not modified when all spinors are multiplied by exp(ix).
Several observable quantities are derived from a spinor x € M, and they depend on x
by means of quadratic mappings M — P that are constant on the orbits of I; the
target P is a vector space on which S acts. Consequently, we are interested in
symmetric bilinear mappings v : M x M — P such that w(xi,y) = —w(x, yi) for all
x,y €M, and we look for a bilinear form f, in Z9(A,B(M);t) such that
p(xt, y) = —p,(x,y?); this means that tz(i') = —/, whence cl(tg) = £i. Since
cl(p) = el(po) = —1, we deduce from Theorem 8.3 that f3, must be odd.

Because of the complex structure of M, there is a tensor product M @ M (resp.
M ®c M) which is the quotient of M @ M = M @i M by the subspace spanned by all
IRY— Yl (resp. xi @ Y + & ® yi). We can identify M @ M and M &- M with
supplementary subspaces of M @ M by setting

1 . . _ 1 . .
(9.3) x@t'-yzé(acéby—m@yz), ac®cy=§(x®y+m®yz)-
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Because of the gauge group I, only M @ M shall be studied, and M @ M will be
forgotten as long as there is no evidence of its physical usefulness.

After these unavoidable preliminaries, let us consider the involutive operator 6 on
7Z9(A, B(M); p) defined by O(B)(x,y) = f(y,x), and the similar operator & on
79(A, B(M); po). Theorem 8.4 reveals that cl(d) = cl(¢') = —1. Consequently, all
elements of Z{(A, B(M); p) and Z}(A, B(M); po) are skew symmetric, while the ker-
nels of 61 —id, 6y +1d, 0] — id, 0 + id, all have dimension 1. Since we are looking for
quadratic mappings M — P, it is preferable to choose a symmetric f,; shall it be
chosenin ker(d; — id) orin ker((‘)’1 — id)? The choice in ker((‘)’1 — id) shall be justified
later; henceforth, 8, is a symmetric element in Z{(A, BIM); po) = Z1(A, BIM); p).
From Theorem 8.3 we deduce cl(zg) = ¢, whence 15(¢') = —' and t5(j") =7'.

From this f, we derive a linear mapping F,, : M ® M — A which satisfies the
following properties, consequences of (7.5), (7.7) and (7.8):

(9.4) Va,bec A, F,lax®by) = o) F,(x®y)pad),
(9.5) Fuly @ x) = p(Fu(x @y)),
(9.6) Vh e Y, F,(xh@y) = F,(x®@yh).

Only (9.6) needs an explanation. The positive involutions of C and HY are denoted by
7 and 7y the classical notation = 7(k) has been used in (9.6). On one side, from
(7.8) we know that F,(W'x ® ) is equal to &+ F,(x ® tg(h')y) for every b’ € H", and
that the sign + depends on the parity of 0h'(1 + Ox + Jy). On the other side, if
h =", then xh = (— 1) ox W, yh = (— DALl h'y, and the comparison of 7z and
711 shows that tz ()P = (— 1)5h/r~[1(h); now (9.6) is clear.

The next step is the calculation of F// : M @ M — A & HY:

(9.7) Fllaoy) =F,c2y)1 —F,{rxey
—oF,(r@y) @) —oF,G@ ey ®1if .

Of course oF,(j'x ® ¥) is a short writing for o4(F,(j'x ® ¢)). A direct calculation
using (9.3), (9.7) and (7.8) confirms this predictable property: F”(x ®c y) is the sum
of the first two terms in the right hand member of (9.7). Thus F”/ induces a bijection
M&-M — A®C'. To follow the common use, we will rather use the bijection
Feo:M&-M — A ® C defined in this way:

(9.8) Fe@@@cy) = Fley ol —Fxey) 1.
Foralla, b € A and all A, u € C, we have
(9.9) Fo(awd @c byp) = (6(a) @ ) Fo(@@cy) (pa(d) @ 1) .

Thus F'- has the property of sesqui-linearity over C that is usually preferred in Hilbert
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spaces: semi-linearity with respect to 4, and linearity with respect to 1. The bijection F'-
is odd: it maps even elements of M ®- M into A; ® C, and odd elements into Ay ® C.

Let us search for the image of the subspace Sym(M & M) of all symmetric
elements; it has the same dimension 16 as the subspace SSym(M &~ M) of skew
symmetric elements, because the mapping x ® y — © ®c¢ y¢ permutes these two
subspaces. Firstly, we need the property of symmetry of F-:

(9.10) Fey@ca) = (pote) (Fe@@cy)).

Secondly, because of (9.10), we need the eigenspaces of p. They are given by the
canonical bijection A (&) — C4(E, ¢) that maps every exterior product of vectors to
their Clifford product when they are pairwise orthogonal; remember that orthogonal
vectors anticommute also in C4(E, q). By this bijection the Z-gradation of A () gives
a /-gradation A = A" © A' © A2 @ A3 @ A* of the vector space A = CUE, q); it is
clear that A = R, A* = Rw and A! = E, and it is well known that

(9.11) ker(p —id) = A" @ A* @ Al and ker(p+id) = A%@ A3,

Therefore, F- maps Sym(M &cM) bijectively onto the direct sum of
A pA* A ®1 and (A% @ A%) ® 1. There is a bijective correspondence between
all symmetric bilinear mappings w: M x M — P (with the property w(xi,y) =
—wl(x,y1)) and all linear mappings from this subspace of A @ C into P.

Let us remember that the group S acts on the target P of y, and that y must
behave correctly with respect to this action of S; it must be equivariant at least under
the action of S,,.. The orthogonal transformation g, induced by each a € S extends to
an automorphism of A, which maps every homogeneous ¢ € A to (— D% gea 1, by
the bijection A\ (&) — A, its corresponds exactly to the automorphism A (g,) of A\ (&),
and consequently, the subspaces A* are the irreducible invariant subspaces under
the action of S on A. From (9.4) we know how F',, behaves under the operation of
a € S: Fylax ® ay) = (ap(a)) a F,(x ® y) a~!; since both factors ap(a) and (— 1)‘9‘7‘0C
are equal to 1 when a is in Sy, fortunately the bijection Fo : M&-M — A ® C is
equivariant under the action of S,,..

Physicists are interested in the quadratic mappings Q. : M — A* such that

Fer®ca) = (Qo@) + Qu@) — Q1(x) ® 1 — (Q2(x) — Q3()) @ <.

Since the subspaces A* are orthogonal to one another for the bilinear form
(@, b) — Scal(ab), the mappings @, are characterized by these properties:

(9.12) when k=0, 4,1, Vac€ Ak, Scal(a Qi(x)) = p,(ax, x),
(9.13) when k=2,3, VaeA* Scal(aQ.(x) = f,(ax, xi).

In particular Qo(x) = B, (x, %) and Q4(x) = — B, (wx, ) .
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In Section 10, the vector Q1(x) proves to be a time vector (or a light vector) which
is oriented either toward future (for all x), or toward past (for all ). Since @ depends
linearly on f3,,, the orientation of the line ker(f)’1 —id) is related to the orientation of
time; this explains why f, has been chosen in ker(f; —id). The bilinear form
(x,y) — f,(wx,y) belongs to ker(6; — id); consequently, the orientation of the line
ker(0; — id) is related to the euclidian orientation, which is not physically mean-
ingful.

10 - An example (second part)

The previous argument can be translated into precise calculations using the
normal bases of £ defined in Section 9. A precise isomorphism C4(E, ¢) — Mat(2, ')
can be constructed by means of a normal basis (e, 1, €2, e3) and a family of four odd
matrices (g, 71,72, 73) satisfying these two conditions in Mat(2, [19): firstly, y5 = 1
(where 1 is the unit matrix) and y2 = —1 for r = 1,2, 3; secondly, 7,7, = — 7,7, when
r #+ s. Here is such a family:

(0 (i o (i 0 (0
Yo = j 0 ) = 0 —j’ V2 = 0 'LJ 3 V3 = J 0 .

There is a positive involution 7' on Mat(2, [19) that corresponds to T ® {1 by the
isomorphism Mat(2, HY) — Mat(2, R) ® HY; thus Tu(y) = 7, and Ty (y,) = —, for
r = 1,2, 3. The involution of Mat(2, HY) that leaves invariant the four matrices 7, is
denoted by p because it corresponds to the reversion p by the above isomorphism
CUE,q) — Mat(2,117). There is a matrix ¢ such that p(a) = ¢ Ty (a)c™! for all

a € Mat(2, HY); since ¢y,c™! = y, whereas c¢y,¢~1 = —y, for r = 1,2, 3, we can choose
C = y():
(10.1) Ya € Mat(2, Hg), p((l) = 7 T‘[j[((l) Yo >
g a1 az\ . a4 —0g\ .1
(10.2) Yay, ag, ag, aq € T, p(ag a4) —j<_a3 i )] .

We must know the image of the connected spin group S, in Mat(2, [19); it is the
subgroup of all even matrices a such that ap(a) = 1; because of (10.2), this means that
the entries of a are complex numbers such that a;a4 — agag = 1. Therefore the image
of Sy in Mat(2, I19) is the group SL(2, C) of all & € Mat(2, C) such that det¢ (a) = 1.
This corroborates the well known isomorphism S, =2 SL(2, C).

The notation Scal will be used for the algebras A = C4(E, q), Mat(2, 1Y) and HY.
If (a1, as; a3, ay) are the entries of the matrix a as in (10.2), then Scal(a) is the scalar
part of the quaternion (a; + a4)/2.
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Since 7717275 is the image of the Arf element w (an element of Z(A4,) such that
@? = —1), it is a diagonal matrix + i1; the four matrices 7, have been chosen so that
vov17eys = t1. The space My of all column matrices with two entries in Y is a graded
bimodule over Mat(2, HY) and HY; its even (resp. odd) component is the subspace
My (resp. Myy;) of all column matrices with two entries in C (resp. Cj). Thus
Y0712y & = (— DPwi for all x € My (f p = 0,1), in agreement with (9.2). For each
normal basis (e, e1, e, e3) of E there are I19-bases of M such that the operation on M
of each e, (withr = 0,1, 2, 3) is given by the matrix y,. Let (w;, ws) be such a basis; it is
unique up to an invertible factor in Z(Mat(2, H9)) = R, and it is also a C-basis of M
because the natural [?-basis of My is also a C-basis of M.

A C-basis (wy,w),) of My is called a normal basis of M if it is the image of
the above chosen basis (w;,ws) by an element of S,.; therefore, if Det: is the
alternate C-bilinear form My x My — C such that Detc(wq,w2) = 1, the equality
Detc(wy, ws) = 1 means that the basis (w}, w}) is normal. Moreover, a normal basis
(e, €}, €5, €5) of ' and a normal basis (w/, w5) of M are said to be assoctated if the four
matrices y, describe the operations of the vectors e). in the basis (w}, w}). Because of
the morphism S, — £,., every normal basis of M is associated with a normal basis
of £; and since this morphism is a 2-sheet covering, conversely every normal basis of
FE is associated with two normal bases of M. For instance, both bases (wy,w») and
(— w1, —w2) are associated with the chosen normal basis (e, €1, €2, €3), and the re-
levance of this fact is corroborated by this calculation: if the normal basis (w},w}) is
related to (wy, we) by w| = w; exp (ix) and wf = wy exp(— i) (for some o € R), then
the associated basis (ep, €}, e5,€5) is made of e = ey, €] = e cos(2x) + ez sin(2x),
ey = —eq sin(20) + ez cos(20) and e; = es.

Every couple of associated normal bases in £ and M determines a graded
algebra isomorphism A — Mat(2, 1Y) and a graded A-linear bijection M — M.
Thus the linear mapping F,, : M ® M — A determines a linear mapping Mu®
My — Mat(2, H9). Although F,, (like f8,) is determined up to an invertible real
scalar, this mapping My @ My — Mat(2, HY) is the same for all couples of as-
sociated normal bases because every morphism from S, into the group of in-
vertible real scalars is trivial. The next theorem shows that it is more convenient
to calculate the mapping @ : My ® My — Mat(2, HY) determined by ¢F; in this
calculation, the operator Ty maps each column y with entries (y1,y2) to the row
Tu(y) with entries (y1,¥2).

Theorem 10.1. If the mapping @ : My @ My — Mat(2, 1) corresponds to
oF, : MM — A, there is an invertible real scalar k such that

(10.3) Va,y € My, Py = kxeTuly)y,.
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If the entries of x and y are (x1,x2) and (y1,¥y2), then

e\ [0 —j ©1Y2)  —xy1]
¢(x®y>=fc< 1)(1/1 )| e e
2 J 0 T2Y2]  —X2Y1]
The corresponding symmetric bilinear form My x My — R is

(10.4) (@,y) — Scal(® @ y)) = g Secal (@192 + y1%2)) -

Proof. The mapping oF, is characterized (up to a real invertible factor)
by these properties: firstly, it is odd; secondly, oF,(ax ® by) = a oF,(x @ y)p(b)
for all a, b € A (see (9.4)); thirdly, the bilinear form f, defined by f,(x,y) =
Scal(6F,(x ® y)) is symmetric. If we define @ by (10.3), then @ is odd because
70 is odd. For all a, b € Mat(2, 119), both @(ax @ by) and a (x ® y)p(b) are equal
to xax Tr(y)Tr(b) yy (because of (10.1)). Finally, it is easy to deduce (10.4) from
(10.3) and to conclude. O

Theorem 10.2. Let us set x =ux9+ 11 with xo € My and x1 € My, and
Det¢(xo, 21J71) = A+ ui (with A, u € R); and let us assume i+ ui # 0. There is a
normal basis (Wi, wy) of M such that xo=w; and x; = wy(d+ ud)j, and if
(e, €}, €5, €5) 1s the associated normal basis of E, then

Qo) + Qu(x) = KA+ Kuw,
Q@) = S+ i+ Dy +5 0 +42 1)},
Qa(x) = —rcheley + rueyes,
Qs(x) = — g(ﬁ + 2+ 1)e)el e, — g(ﬁ 12— 1) el .

Proof. It suffices to verify these equalities when x = 1. The matrices re-
presenting ¢F,(x ® x) and oF,(x ® x1) are

1 (1 —Gt i) 0 —j A+ i —J
p— ’L — s
Ty I\ 0 GE 4B At

O “didp i
—1 — 1)1 = .
(G + i HIIN G o G+ 1B A

In the first matrix, the even part (1 + ui)1 gives Qo(x) + Q4(x); the odd part, which
gives Q1 (), is the half of (A% + 12 + 1)y, + (A% + 12 — 1)y5 . In the second matrix the
even and odd parts give respectively Qz(x) and Q3(x); the even partis —Ay;ys + 1yo7s,
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and the odd part is the half of (2 + 12 + 1)(iy3) + (A% + 12 — 1)(iy,); besides,
1y = Yoy172737y for r=10,1,2,3. O

In Theorem 10.2, we realize that Q(x) is a time vector that is oriented to-
ward future or past according to the sign of x; if we require the orientation
toward future, then x must be positive. It follows from (10.4) that x Detc(x,y) =
2B,,(x, yj) — 2ip, (x,yij) for all x, y € M. Since Theorem 10.2 deals with all spinors
in an open dense subset, it allows us to prove the Fiersz identities (10.5) and (10.6),
and other similar identities:

(10.5) Q@) = — Q@) = Q) + Q@) Q@) — Qu())
(10.6) R1(@)Qs(@) = Q@)Q1(x) = (Qo(w) — Qu(x)) Qa(),
(10.7) Q(@)Q1(@) = (Qo(x) + Qu(x) Q3(),

(10.8) Q2(0)Q3() = — (Qo(@) + Qu(x)) Q1 (),

(10.9) Qe(x) = — Qo) + Qu(x)).

The spinors « outside the hypotheses of Theorem 10.2 are characterized by

10.9

Qo(x) = Q4(x) = 0; their study would reveal that @, (x) vanishes only when x = 0. The
equality Q3(x) =0 means that x =w(1 + exp(ix)j) for some w € My and some o € R.
The equality Q2(x) = 0 means that x is a Weyl spinor (in M; or in M;). For p = 0,1,
the equality @3(x) = (— 1)’Q1(x) @ characterizes the elements x of M,,.

11 - Regular gradations

Sections 9 and 10 show which powerful simplifications occur when parity gra-
dations are taken into account. Nevertheless, many people still study spinor spaces
without worrying about gradations. Fortunately, the study of non graded modules
can be reduced to the study of graded modules.

The gradation of an algebra A is said to be regular if the multiplication mapping
A x A — A induces a surjective mapping A; ® A; — Ay ; since the image of this
mapping is an ideal of Ay, this condition is equivalent to the existence of a sequence

(a1,b1,a9,be, ..., a.b,) of elements of A; such that Z a;b; = 1; the length 27 of this

sequence is arbitrary, and may be reduced to 2 When A1 contains invertible elements.

Although Maty(n,n’; K) contains two non trivial ideals when nn' # 0, it is easy to
prove that the gradation of Mat(n, #’; K) is regular. Because of Theorem 2.6, it fol-
lows immediately that the gradation of a graded central simple algebra A is reqular
if and only if A1 # 0.
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The following well known theorem can be used to prove the assertions that begin
Section 8 above.

Theorem 11.1. If A is a reqularly graded algebra, the category of graded
modules over A is equivalent to the category of modules over Ay.

Proof. If M is a graded module over A, then M, is a module over Ay; con-
versely, if P is a module over A, the tensor product over A of A (treated as a right
module over Ag) and P is a graded module over A, in which the even component is
isomorphic to P. Besides, if M and N are graded modules over A, and if f; is an Ay-

linear mapping My — Ny, every sequence (a1, by, ag, bs, ..., a,,b,) of elements of A;
such that ) a;b; = 1 allows to extend f; to a graded A-linear mapping f : M — N by
setting f(x) = > a;fo(bjx) for every x € M. O

Regular gradations afford a nice treatment of modules without gradation. If M is
just a module over the regularly graded algebra A, we consider the graded space
(M?)? and the following action of A on (M?2)’:

(11.1) YaeA, Ve, yeM, a(x,y) = (ax, ola)y);

thus (M2 is actually a graded module over A. Besides, let # be the odd linear en-
domorphism of (M?2)’ defined by

since 52 = —id, the space K @ Ky is a graded algebra isomorphic to ((K2)?)"; and
since 7 commutes (resp. anticommutes) with the operation of every even (resp. odd)
element of A, the space (M?) is also a graded module over D = (K & Kn)® A.

Theorem 11.2. Let M be a module over the reqularly graded algebra A, and
let Endy,(M) be the centralizer of the action of Ay on M. There is a gradation of
Endg, (M) for which the even subalgebra is Ends (M), and the odd component is the
subspace EndZ(M ) of all f € End(M) such that f(ax) = o(a)f(x) for all a € A and
all x € M. Besides, let us consider the graded algebras D = (K ® Kn)®A and
Endf,(M 2Y); the mapping f — f ® f is an isomorphism from Ends (M) onto the
subalgebra Enngﬁo((Mz)g), and the mapping f+— f & (—f) is a bijection from
End),(M) onto Endf, ,(M?)).

Proof. Let (a1,b1,...,0,,b,) be a sequence of odd elements of A such that
Y- aib; = 1. For every f € Enda, (M), let a(f) be the endomorphism of M mapping
every x to ) a;f(bjx). Easy calculations show that d%(f) = f, and that a(f)a(f') =
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a(ff)) for all f,f € Ends,(M). Therefore, ¢ is an involutive automorphism of
Endy,(M). Another calculation reveals that f(ax) = a o(f)(x) for all f € Enda, (M),
all a € A; and all x € M; therefore the equality o(f) =f (resp. o(f) = —f) is
equivalent to f € End (M) (resp. f € Endil(M)). The algebra Endg, (M) is now
graded. Every endomorphism g of (M?)’ can be represented by a matrix in
Mat(2, End(M)):

9= <fl fz) : @, y) — (L) + @), @)+ @) .
fs Jfa
If this g is a homogeneous element of End%((M 2y7), either it commutes with # and the
grade automorphism (the swap automorphism) ¢ of (M2), or it anticommutes with
both; therefore, it commutes with o which is the mapping (x,y) — (x, —¥y);
therefore, f; = f3 = 0, or equivalently, g = f; ® f1. Then it is easy to verify that g
belongs to End%,o((MZ)g) (resp. Endgl((Mz)g)) if and only if fi =f; € Endy(M)
(resp. fi = —f; € End’, (M)). O

Now let 7 be an involution on A, and 7, its restriction to Ay.

Theorem 11.3. The space Z(Ay, BIM); 19) admits a gradation for which the
even, component 1s Z(A, B(M); 1), and the odd component is Z(A, B(M); 7). Thus
Z(Ay, BIM); t9) becomes a graded right module over the graded algebra Endg, (M).
If D is defined as in Theorem 11.2, and if tp is the involution on D that induces
T on A and the non trivial involution on K ® Kn, then the mapping fr— f L S
is a byection from Z(A,BM);t) onto Z‘g(D, B((M?Y);tp), and the mapping
Br— B L (= P)is a bijection from Z(A, BM);at) onto Z4(D, BAM?Y); tp).

Proof. Foreveryf € Z(Ay, B(M); 1)), we define a bilinear form o(f) by means
of the sequence (ay, by, . . ., ay, b,) already used in the previous proof:

(P, y) =D B, wa)y);

again it follows that ¢%() = f, and consequently ¢ is the grade automorphism of
a gradation of Z(Ay, B(M); to). If f is in Z(Ay, B(M); 1¢), another calculation reveals
that Blax, y) = o(f)(«x, t(a)y) for all @ € A; and all x, y € M. Consequently, the
even component of Z(Ay, B(M); 7o) is Z(A, B(M); 1), and its odd one is Z(A, B(M); 67).
Now, if a, f and f are homogeneous elements of A, Z(Ay, B(M); 79) and End, M),
then

(Bf ) (azx,y) = B(f(ax).y) = (1) Blaf (x).y) =

(D) (1) PB(f (@), 1(a)y) = (~1)* PP (Bf)(a, (a)y);
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this calculation proves that Z(A4, B(M); 7o) is a graded right module over Endy,(M).
Finally, a bilinear form y on (M?)? may be represented by a square matrix of order 2
with entries in B(M):

_ (m ﬁz) Wy, @) = Py, ) + fole.y)
Bs Bi) + By, @) + By(y. ) -

If y is a homogeneous element of Z%(D, B(M?)’); tp), then
Wo(a,y), 0@, y) == y(w,y), @,y),
(e, ), @', y) = £ 9((2, ), (@', y)  (because tp(n)n = 1);

since the two signs + are equal, and since on(x,y) = (x,—¥), this implies
W, —y), @, —y") = y(x, ), @, y)) (for all x y, ',y €M), it follows that
fo=Ps=0andy=p; L p,.Nowitis easy to find the homogeneous components of
Z9(D, B{M?Y); tp) and to reach the final conclusions. O

Let us suppose that Z(A, B(M); 1) or Z(A, B(M); ct) contains a nondegenerate
bilinear form f, that is symmetric or skew symmetric. Therefore, f,(ax,y) =
(— 1)%%x g (2, 1(a)y) for every a € A, and by imitation of this equality we derive
from f,, the following involution 7z of Endy,(M):

(11.3) Vf € Enda, (M), B,(f@), ) = (= DY B (@, wu(H@)).

By Theorem 11.3, §, has an image 8, L (— 1)%g, in Z9(D, B(M2)’); tp); it is non-
degenerate, homogeneous, and symmetric or skew symmetric; therefore, it induces
an involution of End%((M 2Y9). The following easy lemma means that this involution
corresponds to g by the isomorphism Endy, (M) — End%((M 2)9) of Theorem 11.2.

Lemma 11.4. The involution of End%((M 2Y0) determined by ., L(— 1)% B
maps every homogeneous element f & (— DY to tz(f) ® (— DY tx(f).

12 - Modules without gradation

Here M is just a module over a graded central simple algebra A provided with an
involution 7. If A; = 0, then M with the trivial gradation is a graded module over A,
and its study follows from Sections 7 and 8. Therefore, it is assumed that A; # 0; thus
the gradation of A is regular, and we get a graded algebra Endy, (M) and a graded
centralizer Z(Ay, B(M); 1¢) as it is explained in Section 11. Because of Theorem 11.2,
the algebra Endy, (M) is isomorphic to End%((M 2y7). Because of Theorem 8.1, its
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gradation may be unbalanced only when cl(D) belongs to B(K); since cl(4) =
cl(D) cl((K?)?), this happens when A is isomorphic to Mat(n, (B2)?) for some central
division algebra B. Therefore the assumption A = (A%)g is the critical assumption
that may produce unbalance. This is not surprising since A is a simple algebra except
when A = (A2)?. When A = (42), every module M over A is the direct sum of two
isotypical components M’ and M”; in Z(A) there is an odd Arf element w such that
@” =1, and M’ and M" are the eigenspaces of the operation of w in M.

Theorem 12.1. The algebra Endy,(M) (defined in Theorem 11.2) is graded
central simple. Its Brauer-Wall class and its dimension are given by

cl(A) cl(Endy, (M) = el(K2Y), dim (A) dim (End, (M)) = 2 (dim (M))?.

When A is not isomorphic to (A3Y, the gradation of Enda, (M) is balanced. When
A = (A%Y, the dimension of the homogeneous components of Enda, (M) are given by
the following formulas in which d and d' are the dimensions of the isotypical
components of M:

2(d? 4 d'?)

dim (Ends(M)) = dm@

4dd’

dim (End’,(M)) = T

Proof. This follows from Theorems 8.1 and 11.2. In the case A = A%)g , We
must find the isotypical components P’ and P" of the D-module P = (M?)?; we know
that P @ P{ and Pj & P| are the eigenspaces of the operation of the Arf element
n® wof D. Let us consider (x + &', y + y') € P,witha, y € M'and &', y' € M"; since
w acts like 1 on M’ and like —1 on M", it soon follows that # ® w maps (x + &', ¥ +¥')
to (y — ', x — ). Thus # ® w multiplies by 1 all even (x, x) and all odd («', — '), but
multiplies by —1 all even («',2) and all odd (x, —x). Therefore, P’ is the subspace
M' @ M’ of all (x, %), and P” is the subspace M” & M" of all (', y'). O

Theorem 12.2. The space Z(Ay, BM);ty) has the same dimension as the
algebra Endy,(M). It contains a nondegenerate homogeneous bilinear form f,
that is symmetric or skew symmetric. The mapping f — B, f is a homogeneous
linear bijection from Enda,(M) onto Z(Ay, BIM); o); its parity is the parity of f,,.
When A = (A3Y, and when the isotypical components of M have different di-
mensions, then f, must be even or odd according as the operation of T in Z(A) s
trivial or not.

Proof. This a direct consequence of Theorems 8.2 and 11.3. When A = (A%)g ,
then 7p(n ® w) = 1 ® ©(w); therefore, tp operates trivially in Z(D,) if and only if 7
operates trivially in Z(A). O
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Now we consider the involution 7z of End,, (M) determined by a choice of /5,
according to (11.3), and the involutive endomorphism 6 of Z(Ay, B(M); ty) defined by
O(B)x,y) = By, x).

Theorem 12.3. When f3, is even, then cl(d) = +cl(tg), and when f, is odd,
then cl(0) = ticl(tg); in both cases the sign £ means + or — according as f3, 1S
symmetric or skew symmetric.

Theorem 12.4. The equality cl(t)cl(d) = exp(in/4) holds in Rs.

Proof. Theorems 12.3 and 12.4 follow from Theorems 8.3 and 8.4 since Lemma
11.4 shows that the involution of End%((M 2)%) determined by 8, © (— 1) S has the
same class as 7g, and since cl(zp) = cl(z) exp(— in/4). O

Nowlet us consider L2(M ,A)and LM , Endy, (M)). Since we can permute theroles
of 7 and o7, it is sensible to choose f,, in Z(A, B(M); 1), so that f8,, is an even element of
Z(Ay, B(M); 79). We can apply Theorem 7.1 with trivial gradations, and deduce from it a
bijectionZ(A ® A, LM ,A); 1) — Z(A, B(M); 7). Thus f3,, determines alinear mapping
F,:M®M — A such that f,(x,y) = Scal(F,,(x @ ¥)), F,(y@x)=+1(F,(x@vy))
and F(ax ® by) = a F,(x @ y)r(d) forallx, y € M and alla, b € A.

Let us pay more attention to the mapping F| : M ® M — Endg,(M). Since
dp, =0, the equality (7.6) here gives Scalgp(f F(x ®y)) = f,(f(x),y) (for all
x,y € M and all f € Endy,(M)); it allows us to deduce F, from f,,. Moreover, from
(7.5), (7.7) and (7.8) we deduce these three properties:

(12.1) Vf, g € Enda, (M), F,(f(@)®9¥) = fF,(x @y Q).
(12.2) Filyowr) = +1p(F,@®y).
(12.3) Vo€ A, Filax®y) = o (F,lx®da)y)).

Let us compare these properties of F, with the properties that to-day have be-
come most popular among the people concerned with the classification of real
Clifford algebras; these properties are often established by means of minimal left
ideals of A. It has almost no importance that A is a Clifford algebra C4(E, q), and that
7is either the reversion p or the conjugation po. Now M is an irreducible module over
A, so that Endy (M) (the even subalgebra of Endg,(M)) is a division algebra, iso-
morphic to R, C or [l. When A = (A%)g , then Endf4(M ) = 0 (see Theorem 12.1), and
Z(A, B(M); 1) = 0 if 7 does not act trivially on Z(A) (see Theorem 12.2); in this case,
only one of the involutions p or po is taken into account; but there are two classes of
irreducible modules (the so-called half-spinor spaces). The space M is treated as a
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bimodule over A and the opposite algebra End,(M)°; let us set xf° = f(x) for every
f € Enda(M) and every x € M. Those people are interested in R-bilinear mappings
B:M x M — End (M)° satisfying these properties for some involution 7 of
Ends(M)°:

(124) Vf, g € Enda(M), Bxf’, yg°) = 7(f°) B(x,y) ¢°,
(12.5) B(y,x) = £7(B(x,y)),
(12.6) Ya € A, B(ax,y) = Bx, t(a)y).

Let fbe the bilinear form M x M — R defined by f(x, ) = Scalg(B(x, y)); because of
(12.4), B is determined by f. Because of (12.6),  belongs to Z(A, B(M); t). Because of
(12.5), p is symmetric or skew symmetric. Since the module M is irreducible (and
since B is assumed to be # 0), ff is nondegenerate; thus we can set 5, = 5, and deduce
F! from f, as above; obviously only the even component 7, , : M x M — Ends (M)
will be useful here. The properties (12.4), (12.5) and (12.6) are true when 7 is the in-
volution of End, (M)’ that corresponds to the even component of 7z, and when B is the
mapping M x M — Ends(M)° defined by B(x, y) = (F;L,o(?/ ® x))°. Consequently, the
precise properties of the bilinear mappings B (according to the type of ¢) can be
deduced very rapidly from the previous theorems.

Nevertheless, one piece of information is not given by these theorems, and must be
deduced from other considerations: when Z(A, B(M); t) contains a symmetric element
f # 0, what may be its signature? In the general case there exists a € £ such that
7(a) a = —1, whence fS(ax, ay) = — f(x, y); this enforces 5 to be hyperbolic (with a null
signature). When such a vector does not exist, then q is either positive definite (if r = p)
or negative definite (if 7 = po), and f is invariant under the action of a compact spin
group; since M is an irreducible module, this enforces f to be positive or negative de-
finite.

Example. Inthe continuation of Sections 9 and 10, let us consider a module M
over areal Clifford algebra C4(E, q) of type (1, 3) or (3, 1), such that dim (M) = 8. The
class of the positive involutions of Endu,(M) is exp(37/4) for the type (1,3) (see
Theorem 12.1); consequently Endy, (M) = H ® C? and End, (M)” = . For the type
(3,1), it is exp(— in/4), whence Endy, (M) = Mat(2, C?) and Endy(M)° =~ Mat(2, R);
the module M is not irreducible for the type (3,1), but Theorems 12.1, ..., 12.4 do not
need the hypothesis of irreducibility. Since cl(p) = cl(pog) = —1, we have cl(0) =
exp(5in/4) (see Theorem 12.4); the formulas (3.8) and (3.9) show that, both in
Z(A, B(M); p) and in Z(A, B(M); po), the symmetric elements constitute a subspace of
dimension 1, and the skew symmetric elements a subspace of dimension 3. Let us
choose a symmetric f,, in Z(4, B(M); t) (wWhere t means p or po) so that 9f,, = 0; this
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implies cl(tg) = exp(5in/4) (see Theorem 12.3), and the formulas (3.8) and (3.9) show
that the dimensions of the kernels of (15 — id) and (tg o + id) are 1 and 3. Therefore,
when q has the type (1,3), the involution 7 of It corresponding to 7z is the positive
involution 2 — h = 2 Scal(h) — h ; this agrees with (9.6). And when ¢ has the type (3,1),
the involution 7 of Mat(2, R) is f — tr(f)1 — f. For the type (1,3) we obtain a mapping
B : M x M — H,andforthetype (3,1) amapping B : M x M — Mat(2, R), butinboth
cases B satisfies the equalities (12.4), (12.5) and (12.6), with the sign + in (12.5).

Unfortunately, this little information does not afford any easy solution to the
problems tackled in Sections 9 and 10, since it cannot take into account the complex
structure of the spinor space M. The complexified algebra C @ C4(E, q) would not be
more efficient because we are interested in M & M, not in M @ M. It is wiser to
notice that a complex structure is equivalent to a parity gradation according to (9.2),
and to apply the more powerful graded theory.
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