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Quantitative local estimates for nonlinear elliptic equations

involving p-Laplacian type operators

Abstract. The purpose of this paper is to prove quantitative local upper and lower
bounds for weak solutions of elliptic equations of the form —4,u = Ju®, withp > 1,
s>0and 4 >0, defined on bounded domains of R¢, d > 1, without reference to the
boundary behaviour. We give an explicit expression for all the involved constants. As
a consequence, we obtain local Harnack inequalities with explicit constants. Finally,
we discuss the issue of local absolute bounds, which are new to our knowledge. Such
bounds will be true only in a restricted range of s or for a special class of weak
solutions, namely for local stable solutions. In the study of local absolute bounds for
stable solutions there appears the so-called Joseph-Lundgren exponent as a limit of
applicability of such bounds.
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1 - Introduction

In this paper we obtain local upper and lower estimates for the weak solutions of
nonlinear elliptic equations of the form

1) —tyu = —div(|Vul*Vu) = f(u),

with p > 1, posed in a bounded domain 2 C RY ,with d > 1. The choice of right-hand
side that we have in mind is f(u) = 2u* with 4,s > 0. Our main purpose is to obtain
local estimates for solutions that are defined inside the domain without reference to
their boundary behaviour. The notion of solution that we will use in the whole paper
is the following.

Definition 1.1 (Local weak solutions). Let Q C R? be a bounded domain. A
function w is a local weak solution to —Ayu = f(u) in Q if and only if u Wllo’f Q),
f(u) € L (Q) and it satisfies

loc

J[|vu|l’—2v% Vo — f(u) (p} de =0, for all p € CL(Q).
Q

Throughout the paper, Cg () will be the space of C1(Q) functions with compact
support in Q.

The estimates that we prove in this paper are local upper bounds for solutions of
any sign, lower bounds for nonnegative solutions, and also local Harnack inequal-
ities. The estimates that we obtain are not essentially new from a qualitative point of
view, and enjoy a large literature [2, 4, 5, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 28,
29, 31, 32, 37, 39, 41,47, 48, 51, 52, 53, 54, 55] and the books [33, 34, 36, 49]; however, it
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is hopeless to give a complete bibliography for this nowadays classical problem. We
try to contribute to the general theory on these elliptic equations, with quantitative
local bounds; to our knowledge, there does not exist in literature a systematic set of
local quantitative estimates in the explicit form given here. By quantitative esti-
mates we mean keeping track of all the constants during the proofs. This paper
follows the ideas of [4], in which the authors treated the case p = 2, i. e. the case of
semilinear equations. Here we extend the techniques and the results of [4] to the
more general case represented by the p-Laplacian elliptic equation (1).

The interest in obtaining quantitative control of the constants of such inequalities
relies in the applications. On one hand, our results are useful in understanding
regularity properties of the stationary solutions of the associated parabolic equation
(the so-called doubly nonlinear evolution equation); it is needed for instance in the
results of [3] on the asymptotic properties of solutions of the fast diffusion equation
in bounded domains. On the other hand, it is interesting to see the stability of the
estimates (therefore of the regularity of the solutions), when the parameters s or p
reach their limiting values; for example, we can consider the (formal) limitp — 17 in
the local upper estimates of Theorems 4.1 and 4.4 and easily check that the constant
is stable under such limiting process; the upper estimates therefore should hold also
for the solutions of the 1-Laplacian, often called the Total Variation Flow (TVF).
Weak solutions to the TVF have a different definition from the one we provide here
for the p-Laplacian, but are sometimes obtained as the limit for p — 11 of suitable
families {u,} of smooth solution to the p-Laplacian, see [1] for more details; we re-
frain from doing this limiting process, since it falls out from the scope of this paper.

The range of exponents of interest will be p > 1 and 0 <s < r — 1, where r is
the exponent of the Sobolev imbedding of W', namely » = p* = pd/(d — p) if
p < d and any r € [p*,00) if p > d; it is clear at this point that there is a re-
striction on the parameter s only when p < d. It is worth noticing that the re-
striction s <7 —1 = p* — 1 appears only when we consider p < d, and it is re-
lated to several deep aspects of the theory of the equation at hand: for example,
when dealing with the homogeneous Dirichlet problem, the existence of bounded
weak solutions may fail above that exponent, as well as the absolute upper
bounds, see [11, 23, 31, 32, 46, 52]; it is known that when s > p* — 1 there exist
solutions! which are not bounded, therefore not regular, cf. [24, 40, 42, 43, 44, 45].
On the other hand, when s < p* — 1, bounded solutions are known to be C*, cf.
[25], and the C* modulus of continuity directly depends on the local maximum of
the solution. Therefore having absolute bounds for the solution allows to have

! for p = 2, very weak solutions.
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absolute bounds for the C'* modulus of continuity. We will see that the C*
modulus of continuity is independent of the solution when s < s} < p* — 1, while
it depends on (some L?-norms of) the solution when si < s < p* — 1. Finally,
when dealing with quantitative local absolute bounds for the smaller class of
stable solutions, cf. Section 7, there will naturally appear the so-called Joseph-
Lundgren exponent s;;, — which is finite only for “large” dimensions — as a further
limit on the range of s to which our absolute bounds apply, as we shall explain in
Section 7. As a reference for this topic see for example [13, 14, 16, 28, 29].

1.1 - Plan of the paper and main results

We begin with a section devoted to the basic energy estimates. As a con-
sequence, we obtain quantitative Caccioppoli type estimates that allow us to
obtain absolute bounds for the s — 1 -“norm”, which to our knowledge have never
been observed before, see Corollary 2.1 ; such absolute bounds will be the key
tool needed in Section 7 to derive our local absolute bounds. In Section 3 we
recall the Sobolev inequalities that we will use in the paper and derive some
preliminary inequalities in the form of reverse Poincaré inequalities, as a direct
consequence of the energy estimates and Sobolev inequalities. We then focus on
local upper estimates in Section 4. Our first main result is Theorem 4.1, which
can be considered as a smoothing effect with very precise constants. In the case
p—1<s<r—1, the estimates of Theorem 4.1 seem to be new to our knowl-
edge. Next, we obtain local upper estimates for —4,u = bu?~! with unbounded
coefficient b in Theorems 4.2 and 4.3 and we apply them to the case b = u*~ P~V
in Theorem 4.4. The last upper bounds have the advantage that they do not
require the restriction s <+ — 1, they hold for any nonnegative weak solution
which moreover belongs to Lfoc, with ¢ > r[s — (p — 1)]/(r — p). This last re-
quirement seems to be essential, since in the case s > — 1 there are solutions
U Which are not bounded, and u., € Lfoc with ¢ < r[s — (p — D]1/(r — p), at least
when p = 2, see [24, 40, 42, 43, 44, 45].

Section 5 is devoted to the local lower estimates. The main result is Theorem
5.1, which holds for all p > 1 and 0<s < r —1. The proof is based on a quan-
titative lower Moser iteration, joined with the reverse Holder inequalities of
Appendix 8.1, which are obtained via a simplified John-Nirenberg type Lemma
proved in [4] in a quantitative form. Next we prove a more precise quantitative
reverse Holder inequality, Proposition 5.1, but only in the smaller range of
exponents p —1 < s <7(p —1)/p = s}. The fourth main result of the paper, is
Theorem 5.2, in which we use such reverse Hdélder inequality to improve the
lower bounds of Theorem 5.1 in this smaller range of exponents.
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In Section 6 we combine the upper bounds of Section 4 with the lower bounds of
Section 5 to obtain various form of Harnack inequalities. The general form, valid in
the whole range of exponents, is given in Theorem 6.1, but, unfortunately, the
constant of such inequality, depends on a quotient of LY norms. Next we specialize
to the subcritical range 0 < s <p—1, Theorem 6.2, and supercritical range
p—1<s<s;, Theorem 6.3, and we prove clean versions of the Harnack in-
equality, i.e. the constant is independent of the solution. In the range s} <
s < r — 1, we are not able to prove such clean forms of Harnack inequalities, and we
conjecture that the dependence on some LY norm of the solution can not be avoided.
As far as we know, the Harnack inequality that we derive for s > p — 1 is not stated
explicitly in the literature. The fact that the “constant” involved has to depend on
when s} <s < r—1 is confirmed by the results of [9, 6, 7, 8 26, 27] applied to
separation of variable solutions of parabolic problems. This is also related to the
fact that, in the range s} < s < r — 1, there exist (very weak) singular solutions, at
least when p = 2, see [24, 40, 42, 43, 44, 45].

Finally, in Section 7 we derive the quantitative local absolute bounds, which re-
present the novelty of the paper. In Theorem 7.1 we obtain quantitative local lower
bounds when 0 < s < p — 1 and local absolute upper bounds when p —1 < s < s;.
We have already discussed why the above absolute bounds cannot be extended s > s
without further assumption on the solution. The last part of the section is devoted to
the derivation of absolute upper bounds for all s > 0, but for the class of local stable

solutions. In Theorem 7.2 we obtain quantitative absolute upper bounds for all s > 0

p(p+3)

when the dimension is small, namely d < 1 while we reach a bigger exponent

sjr, € (r — 1, 00) for bigger dimension. The exponent sy, is the celebrated exponent
discovered by Joseph and Lundgren in [35], see also in [13, 14, 16, 28, 29]. The
Appendix contains some technical results used in the paper, complemented with a
proof when needed. We will use the notation ||g||..s, = 9ll,,, Byl = @a p? and
Wq = |Bl|

1.2 - More general nonlinearities

We can apply the method used in the proofs to obtain quantitative estimates to a
larger class of operators and nonlinearities. We can consider a more general equa-
tion, namely

Au) = —divale, u, Vu) = f(u),

where a(x,0,¢) is a Carathéodory vector valued function on Q x R x RY such
that, for some constants v; > vo >0
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1. |ate,0,8)] < wll+[EP],
2. alx, 0,6 > vplélP,
3. [ax,0,8) — ale, o, IE — 5] >0,

for a. e.erandVaeR,f,neRd,é#ﬂ.

The proofs of all the results apply also to this case with minor modifications, but
the constants in the estimates will also depend on v; and ve. As far as the the right-
hand side is concerned, we deal with the model case f(u) = Ju®. Indeed, we could
have considered a more general nonlinearity f(u) satisfying the following conditions:
there exist 0 < by < by, bs > 0:

bou’ < f(u) < by(u+ bs)’.

Also in this case the proofs of all the results apply with minor modifications, and it is
not so difficult to keep track of the new constants b; throughout the proof.

We have decided here to consider the model case, to simplify the exposition and to
focus on the main ideas.

2 - Local energy estimates and Caccioppoli inequalities

We shall pursue in the sequel the well-known idea that local weak solutions satisfy
reverse Sobolev or Poincaré inequalities. Such local reverse inequalities are the key
to prove local upper and lower estimates of next sections, and indeed imply that such
functions satisfy Harnack inequalities.

Lemma 2.1 (Energy Estimates). Let @ c R be a bounded domain and let u
be a local nonnegative weak solution to —Ayu = 2u’ m Q, p > land i, s > 0. Then
the following energy estimate holds true for any o # —(p — 1), 6 > 0 and any test
function ¢ € CH(Q), ¢ >0

]
p

p p a+(p-1)
Q

(2)

p
< J (u+0) "¢ dw + % J (w+ o)+ \Véill di.
2 pl) &

If a = —(p —1), for any J > 0, we have the Caccioppoli estimate

(p —1* [ 1([vel”

(3) ) (u ) ¢p71
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In addition for any o < 0 and 6 > 0

p at(p-1
(4) - . J|V[(u+5) T Ppde

?cx+(pfl
Q

J(u+5)x+(p 1) |Zp¢|1

Remark 2.1. We underline that when o > —(p — 1) we can let 6 — 0™ in the
energy estimates (2) and (4) to get

Tl

PPt o J N
® rsesy A ICIRIR

1
< iju“+s¢dx+ﬁju”<” 1) |v¢|1 dx
plaf) ¢

Q

and for —(p — 1) < 2 < 0,

PP o

©) ot (p— 1P

J|V(u +([7) ))‘P¢dx < ‘ ]ip—lj zx+(p 1) |Zp¢|1 de.
Y

Proof of Lemma 2.1. Let 0 < ¢ € C1(Q) and > 0. Multiply the equation by
(u+ 0)"¢, o« # —(p — 1) and integrate by parts on Q to get

@ J [Vl 2Vu - Vé (u + ) da + o J IVl (u + 0y pda
@ Q
= J |Vu|p_2Vu . V[(u + 5)a¢] de = — J pu(u + 5)145(190 _ /“J S(u/ + 5)a¢d%
Q 0 °

So, for any « # —(p — 1), we have

o+( p 1)

2/ p” J|V[<u+(s>

la+(p—=DP b = p o—1
ot (p = DI ¢ dx Ialj\w (u+0) " gdu

Q
(®) < Jus(u 1 oY'pda
Q
+ J (VP + )|V de.
Q

Now applying the inequality (79) with ¢ = p%l > 1 to the second term in the right
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hand side of (8), we obtain
P

(p—-1) p

a+(p—-1)

J VP Vel + 0y d <
Q

X J NOF

Q
4+ 1 J(u 4 5)014-(17 1) |v¢|1 d
pe ¢
Simplifying and choosing ¢ = |«| such that
o -2 D,
p

we arrive at the following energy estimate

p at+(p-1
(9) |O€| p J|V[(u+5 (p )]

Plat(p-1
Q

<A |+0yTede +——
Q

p
J(u + g)r =D —Zfl dz.

In the particular case o < 0, since % is assumed to be nonnegative, we get from (7),

plaf

|t

[VulP(u + 0 da < J [Vl Ve (u + 6)* da.
Q Q

So, proceeding as above, we arrive at

i)
» \ZE (=D J'V[(“”

P
1 — J(u+5)a+(P—1) |vqi| de.
Q

Now let us consider the case « = —(p — 1), as before, multiplying the equation by
(u + (5)7(p71>¢, 0 > 0, and integrating by parts on Q, we get

T . BRI WL
iwl Ve eyt @ Q( oy

- J Va2V - Vi + 6P Vg de
Q

- Jgpu(u +0) P Vode =2 Jm‘(u +0) P Vo da.

Q Q
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So

P s
-1 [ o a | g < [rvapt YEL g
) w0y )

(w +9) w+oyt

Q

Applying Young inequality to the last term of the previous inequality and rewriting

P
J (Q‘Zf‘g)p bdw = J IV log (u + )P de
Q Q

we get (3). O

Now we can compute some useful calculations in order to get an explicit ex-
pression for all the constants.

Lemma 2.2 (A test function). Fix two balls B, C B,, CC Q. Then there exists
a test function ¢ € CH(Q) which is radially symmetric and piecewise C* such that
supp(¢) = B,,, ¢ =1 on B, , and satisfies

P —1,,p
Vel 270" g v, <P

10
19 &t T (po—p) Po—

for any p > 1.

Proof. Consider the radial test function defined on B, cC Q

1, if 0 < [2] < p
20| — p)f . Po+p
1_(p0|_|pl)plv 1f,01<|90|§%
Harh = 20" (py — || -
Ty T sk
07 if |9€| > Po

for any 0 < p; < p,. We have

0, if 0 < x| <p;orif || > p
2p71 _ p—1
_ 27 p(jz] /’Z}) < if p, < |z| < Po+P1
V(x| = (o —p1)" || 2
B Ll it 2P ol < py
(o — P’ o] * 2 -

So we easily obtain the bounds (10). O
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Remark 2.2. As a consequence of the first inequality in (10), we have that

[IS6F gy Z0 Bl 2t
) &1 = (po—p) (po — 1)’

Corollary 2.1 (Quantitative Caccioppoli Estimates). Let 0 > 0. Under the
assumption of Lemma 2.1 and using the test function ¢ of Lemma 2.2, we have the
quantitative Caccioppoli estimates, for any 6 > 0:

_1\2 . p—1op—1 .d
(p—1 J 71dx§p 2 popwd

P (u + oY (po = p1)

1 B/7 1

(11)

J. |Vlog (u+ )|’ da + 4
B/7

Proof. Using (3) with ¢ as in Lemma 2.2 and recalling Remark 2.2 we easily
obtain the desired result. O

Remark 2.3. Letting 0 — 0" in (11), we get

PPt 2P wapf

12 yl J w PV e <
(12) (py — ﬂ1)p

By,

As a consequence of this fact in Section 7 we obtain a local absolute upper bound in
the range p — 1 < s < s :=7(p — 1)/p, r defined in (14) below and a local absolute
lower bound if # # 0 on B, and 0 < s < p — 1.

3 - Sobolev and reverse Poincaré inequalities

In this section we will recall the Sobolev inequalities that will be used throughout
the paper and we also show how they combine with the energy inequalities of the
previous section to give a kind of reverse Poincaré inequalities, that will be necessary
for the upper bounds when dealing with unbounded coefficients.

Sobolev inequalities. Our local bounds will be a consequence of the Sobolev

imbedding theorems on balls B, C RY. Indeed the following Sobolev type inequal-
ities hold true:

1
(13) o1, = 53 (1961, + o 1018,

for any g € W1?(Q), where Qs a bounded open domain of R? with smooth boundary,
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B, C 2, and
d
if p <d, ”":p*:dpfp’ °
(14) if p—d, r € (p,400), S, = S, diam()"
if p>d, r=+too, Sy = S diam(Q)'
and Sp, S;O > 0 only depends on p, d, see e.g. Theorem 3.11 and 3.12 of [34]. On the
other hand, whenever g € Wé P (B,) we have

(15) 1912 ) < SE VG5

where 7 is defined in (14) and S, is the Sobolev constant, which only depends on p, d,
see e.g. Theorem 3.9 of [34]. We will denote by r the Sobolev exponent corresponding
to Wy (B,) through all the paper.

Now we state and prove alemma originally due to Trudinger [53] (see Lemma 5.1
p. 745 there). For a proof in the case p = 2 see Lemma 3.2 in [4].

Lemma 3.1. Letv e L"(B),) and b € L"™(B,) for m > r/(r — p) with r defined
i (14). Then for any y > 0 the following inequality holds

r

(16) J b da <y J v de
B, B,
K P
4 Zmar g it J b da va de,
ym(r—p)—r
B, B,
where

m(r —p) —r (pm+r>%

am Kpy = py o

Proof. Let us estimate for any 0 < y; < p,

P r

J by P g < @ J P75 Qe J bt s dae

B, B, B,

pP—11 r—p

7

n T
<) J v dw |1By|" J br "7 da
B, B,
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B,
plr=p)
nr
_r_ _r
+y—1 - 1By | J b v dae
71
Yo ,
Vo(p -7
S( 1) P |B |
B, 0"
L plm@r—p)—r]
71 yprm
e
X dx fvm(r p—r dx

r
mr—p)—r
B, | J O™ da J P de,
B,

B,

1

_mp+r
m(r p) r
0

X —m5—

where in (a) we have used Holder inequality with exponents »/p and »/(r — p), in (b)
with p/(p — y;) and p/y;; in (¢) we have applied the Young inequality (79), with e = y,,
o=p/(p—1y1). In (d) we have used again Hoélder inequality with exponents
m(r — p)/r > 1, since we are assuming m > r/(r — p), and m(r — p)/[m(r — p) — r]
and in (e) we have put

0< l_p[mwmp)—r] <.

To obtain the desired result it is sufficient to take

pm +r
rm n

?="0

Theorem 3.1 (Reverse Poincaré inequality). Let u be a weak solution to
—Ayu =buP~t in B,, with p > 1. Let b € L"™(B,), for m > r/(r — p) and r be de-
fined in (14). Suppose that w € L**P=V(B,). Then for any positive test function
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1>¢¢ CCI(B,,) and any o > 0 the following estimate holds true

fI7+)

4P dw < AD) J WP g

B, B,
with
a+(p— 1D\
AD) = [1 +2<¥) ] V|~
2 ZP Sp (mw)r ( ]_) (mp:
mr—p)—r —_ mi 7'7p -7
Ky, 2P ( p p) (H’))
o o P
x|B,|" J " dae :
B,
Ky pr given in (17).

Remark 3.1. We underline that the requirement u € L**?~V(B,) will be
dispensed later, without further comment by using a Moser iteration technique.

Proof. We divide the proof in few steps.

e STEP 1. Energy estimates. Multiplying —4,u = bu?~! by (u + 8" ¢, 1 > ¢ €
CX(B,), o > 0, 6 > 0 and integrating by parts on B,, we get

(18) o J IVaulP (u+ )¢ da <p J (VulP Ve ¢+ ) dw
B, B,

+ J buP~t (u + 0)"¢ d.

B,

Using (79) with 0 = p/(p — 1) to estimate the first term in the right hand side of (18),
we obtain

a+(p—1)

[a—e(p—l)](L)pjw[(uw) NP & de
s+ p=1) |

< J b(u+ oy PV de + Fp%l J (w+ 6y PV VP da.
B/} B/’
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Choosing ¢ = o/p, we arrive at

z p 4+(p P
p(;_ 1)) J|V[(u+5) P & de

a+(p
B,
(19) p—1
< J b+ 0PV du + % J -+ 0" PV |Vl da.
B, B,

e STEP 2 Sobolev mequalzty m W ?(B,). We apply inequality (16) to

v—(u+5 »), so that for any y > 0: .
J b(u+ 5)a+(p—1)¢70 da <y J (u + 5)[0&(1@—1)];-, ¢7‘ doe
B, B,
20 Konr ?
(20  Bare g | [0 ao
ym(?‘—p)—r
B,
x J (w+ 5P @ d,
B,

+(P

where K, is given in (17). Since v = (u + 9) gb € Wé’p (B)), the Sobolev in-

equality (15) reads
Bﬂ
J[(u+5) Sl da | <Spert J VI +0) 7 1P ¢ da
B, B,
+ 5270 [ 07 0 Vg e
B,
We combine the above Sobolev inequality with (20) to get
j b+ 0y D @ di <y Sp2r! j Vi + 0 5P & de
B, B,
+ yShar! J (u+ 0y TPV |V du
l;/7
(21) P
+ Kopr p e J b de
ym(r p) r

B,

x J (u + 0y TPV & dg.

B,
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e STEP 3. Putting together (19) and (21) and recalling that ¢ < 1, we obtain

p a+(p-1)
B (p) -5 2”1} J Vi + 0 FIP ¢ da

a+(p—1)
) P
P K P
< [ysgz 2! +§p_1} IVI% +—ize |B,l" J b" da
ym(r—p)—r B/)
X J (w4 0P dy.
Bﬂ
Choosing
_ P\«
"“\ax(p-1) psy
and letting 0 — 0 we obtain the desired result. O
Remark 3.2. If we take ¢ as in Lemma 2.2 we obtain
J |V(uH£71))‘P dae < A(b) J ua+(p—1) d%7
B/q Bﬂ()
with
a+(p-D\" p’ 20 p S\
(22) Ab) = 1+2 7 + Km,r‘p
o (o — p1) o

»
mr—p)—r

mpr
2p (a4 (p-D\mwr— o @ m
v VR

By,

foralla > 0,m > r/(r — p), and Ky, . as in (17).

4 - Local upper bounds

This section is devoted to the proof of quantitative local upper bounds for local
nonnegative weak solutions to —4,u = Au*, for any 4 > 0 and any s > 0. We also get
quantitative local estimates for solutions to the problem —4,u = b(x)u”~! with



228 MATTEO BONFORTE and AGNESE DI CASTRO [16]

b € L™, eventually unbounded. We prove our results for nonnegative solutions, but
the careful reader can realize that almost the same proof holds for nonnegative
subsolutions, or for solutions with any sign.

4.1 - Local upper bounds I. The upper Moser iteration

The first form of the upper bounds that we present in this section, is a con-
sequence of energy estimates, Caccioppoli inequalities and the “local” Sobolev in-
equality on balls.

Theorem 4.1 (Local Upper Estimates). Let @ c R? and /.>0. Let u be a
local nonnegative weak solution to —Ayu = Ju* m Qwithp > 1,0<s<r—1landr
as 1 (14). Then the following bound holds true for any B C Bgr, C 2 and for any
¢>q:=I[s—(p—-Dlr/(r—p)

(r—pu
rf) : —H

23 u <Iy u? da w5~ PVl gy
( 00,R g

Bg, Bg,.

where u=r/{(r—pq—rls—(p—-DI.} and the constant I, depends on
d,p,s,q,r, Ry, Ry, and when s # p — 1 does not depend on 1, see an explicit ex-
pression i formula (26) below.

Moreover, when 0 < s < p — 1, the above estimate takes the simplified form:

1

q

(24) fuler, <Tug | furae] .
B,

and holds for all ¢ > 0. The constant 14 is the same as above and is given in
Sformula (26) below.

Remark on the result. Inequality (23) is a kind of reverse Holder inequality,
indeed we can rewrite it as:

_ 71) R Q(V;P)#
(25) el P Ml < C llelly 7, -
This form makes clearer the fact that if there is a constant that makes true (25) for a
q > q, then by Hoélder inequality, the same inequality holds true for all ¢’ > ¢, with
the same constant. The same applies to (23).
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Remark on the constant. The proof below allows us to find an explicit expression
of the constant:

;BT Siera {Asﬁor (Ro - Rw)p
T BR | 1w (Ro— RV | pg \ Ru
(26) ,
(RO _ RQQ)P C111771 2pl} (’V‘>% s (DI
Fl—) C+——F— ¢ | =
Ry ch /)
with
< (c=mrs o)
=< ,
g = \or=pg-Is—(p-Dlr
Prq . r(p—1)
—_—, if ¢>s= ,
pq—r(p—1) 9= % P
Jo+i—1
C1 = r q -
max (p) , if 0<q<s*:r(p 1),
i=0,1 | /,\Joti—1 ¢ P
G)" a-w-v
o maxd PP =D p N\
: o™t T \p-1) (p+1Pt
and
A RP, if s=p—1
27) Agg = PPt ’

r-1td - if s £ p—1.

Moreover when 0 < ¢ < s; we require the additional condition

r(p—=D)(r—p)—rpls—(p—1)] r(p=D(r—p)=rpls—(p-D)]
rog ( apr—pr—rpls—p- D +>} L log ( apr—pr—rls— (D, +)

log & log 2

©28) o= ip.

where ¢.p.[t] denotes the integer part of t € R.
Finally, we would like to remark that this latter condition (28) is not really
essential: indeed, we can obtain an explicit constant /., for a ¢ > g such that

r(p=Dr=p)=rpls—=(p=Dl. r(p=Dr—p)—rpls—(p-D].
[10g( gptr—p)—rpls—(p—Dl; )] _ log( qplr—p)—rpls—(p—1Dl, )

log 5 log 5

1.p.

b
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simply by considering a ¢’ € (g, ) such that condition (28) holds so that the explicit
constant is given by I 4; then by the remark after formula (25), we obtain the de-
sired bound also for ¢ > ¢’ with the same constant (/. ;, = I o) as a consequence of
Hoélder inequality.

Proof of Theorem 4.1. We are going to use the energy estimate (2) for any
o> —(p—1),a#0,toprove L? — L™ local estimates via Moser iteration, keeping
track all the constants. We underline, as in Remark 3.1, that the requirement
u € L**P~V(B,) needed at each iteration step, will be dispensed by the previous one.
In particular, notice that u € L*+P~V(B,) implies g = ul*+P~DI/P ¢ Wllo’f (Q) by the
energy estimates (5) . Therefore, we only have to ensure the integrability condition
at the first step, which gives rise to condition ¢ > g :=[s — (p — D], r/(r — p).

We divide the proof in several steps.

o STEP 1. Let ¢ be the function defined in Lemma 2.2. The local Sobolev inequality
(13) on the ball B, , where p, is any real positive number such that B, C B,, CC @,
applied to g = ul**P~DI/P together with the energy estimate (5), gives, using the
properties of the function ¢, established in Lemma 2.2,

P

r

J ulHP=DE g gSﬁ J |V(u“+(§7l))|79 da
B, B,
1 J wt P dg
Py
]
_IN\P
@ B YRy
o p
By,
1 —1D\? 2or1
n bJr (oc +(p )) p]
1 ot Py — p1)
« J uoﬁ(p*l) dae

By,

e STEP 2. Caccioppoli estimates and first iteration step. Now we need to split
into two cases, namely 0 <s<p—-landp—-1<s<r—1.
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Superlinear case: p —1 < s < r —1. We continue estimate (29) as follows:

P

r

J wl PV g gsg r (M)pi
; [ p

r1

(1 Ot—i-(p—l))p 2r-1 ]
* VA * < |ot] (po — p)¥

f w2 P10 dge
B

Po o+s
B/’O Bﬂo
B p (2+ (-1
(30) e e 2] 4
||“||s_(p_1),p0 p
s—(p—1)
HuHs—(zfl).po
|B/70|
+F+ (a+(p—1)>p 2! H
Pf |ot| (po — 204
X J w*ts d
B,
<m S5l
< —(p1
(po — p1)pllulli_§§_1§,p0
X {[fl +(p — D 2r-1+d (/’o - Pl)p
|ot] Po
— o \P —Dp2r-t
+<Po /71) +[a+(p p)] }
1 |ot]
X J w*ts de.
B

20

In (a) we have used the convexity in the variable ¢ > 0 of the function N () = log ||u||§.

Hence, since the incremental quotient is increasing (see for example [50] for more
details), choosing o + (p — 1) > @ > 0, we obtain

N@+s—(p—1)—N@)

N(+s)—N@+(p—1))
s—(p—-1 -

s—(p—-1
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that is
a+s—(p—1)
||u||;+87(p71),/)l) Hu”Zii,p()
% = +(p—1)
lull3,, [ P Y

Then, using Hoélder inequality with exponents [a+s—(p—1D]/[s—(p—1]>1
and [@ 4+ s — (p — 1)]/& > 1, since we are assuming s > p — 1, we have

o+s—(p—1)

+s o
HquJrs,pO ‘|u‘|§+sf(p71),p0 _ ||u||;+sf(]0*1),ﬂo HuHsf(pfl)
lulith ., e ol e
a+(p—1.pg %9 %P0
= s—(p-1) -
Z|B/’o| “+§7(p71)||u||§—(1€—1),/70|B/’O| ots—(p—1)
s—(p-1)
. HuHs—(p—l),po
|B[’0‘
In (b) we have used the Caccioppoli estimate (12) with p, and 2p,, that is
s—(p-1) 1op_ 1op_
(31) /1||u||87(p71)’p0 _ pPl2pl |By, | :p;o 1op-1+d
1By, | = @py—po)” 1By, pg

Sublinear case: 0 < s <p—1. We first assume 0 < s < p — 1, we discuss the
case s = p — 1 separately. We continue estimate (29) as follows:

177' ) J“ w*s dae
[e+(p—DI <SP £ o+ (p - 1) B,,O
J u v doe _Sp |o€| ( D A J WD d

B P B 20

1 [e+(p-DP 21

+5+
4 |orf?” (po — p)f

X J w P g

(32) B,
Sp {[a +(p—ppar-itd (Po - m)P
(o — ) |ot] Po
+ </70 —l)1>p+[fx +(p —;)]pzp_l}
P1 |ot|

X J w0 g,

By,
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Indeed the properties of the function N(t) = log HuHi give
N@-N@+s—(p-1) N@+(p-1)—-Na+ts)

(p—1-s - (p—1)—s
that is
o a+s—(p—1)
||u’||;j[§po ||u||;+s,(p,1)’p0
+Hp-1) — o ’
Il h—1) l[ll3,,

Then, using Hoélder inequality, the following reverse Holder inequality

SR s gy
_ B,
o 20
J U dx S aH(p-D=s
B |B/70 I *

PO

holds and (31) gives

o+ a+s—(p—1) (p=D-s
||u||;+§,p0 <Hu”&+s7(pfl),po < |Bﬂo| i
ao, i, T el P
a+(p—1),p0 %P0 %09

]

[ D
BP

. 1 pp—l 2p—1+d
S —

<
L Y

Notice that when s = p — 1, we obtain from (29) directly

4
v

D Sh p [Ol‘f'(p—l)]p} ]
[a+(p—D P PR
J " | <=y {cx| P
_ P — 1P 21071
(33) N (ﬂo pl) +[oc+(p p)] }
P1 |ot]

< [ an

B/’()

e STEP 3. The first iteration step. Now we are ready to write the first iteration
step for all s > 0. Let f=a+(p—1) > f, > 0 and recall that we are requiring
B # (p — 1) as well, then inequalities (30), (32) and (33) can be written as

v

J u'v dw| < I(B,s,p, p1,po) J Dl e

B, By,
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with
5 IB,,| P A
7 s, 7 — P . Po { S
(B,s,p,p1, ) (0o —p P [ uls=@-Dl de || — (p — D)
54 o
><<M)p+(p°pl)p+ - }
Po 1 B—(p—DPJ
and
A .
5 NPT T

-1t if s £p—1.

o STEP 4. The Moser iteration. Let us define the sequence of exponents 5, > 0

so that
P

p
It turns out that, for any given f, > 0 and all n > 1, by (78),

P n n—1 P k
po=ho(3) s -1 3 (7

Butls— =Dl =y 1~ = Bu="PFu % —[s—(p—1Dl,.

k=0
__ Zi n B B B n ZZ j
—<p) [ﬂo [s -~ (p 1)]+;(r)
P n p p
(XY g —1s—(p—1 (p-1 .
(B {m-t-0-0 2 -p-v L

Moreover we have that for all s > 0,

P\" p
BuE) = py—Ts—(p - DIt asn o oo
Requiring that 5, > pls — (p — 1)1 /(r — p), which will be assumed from now on, then
implies that 5, — 4+ co as ® — + oo. We shall also require f,, # (p — 1) for any n.
We will explicitly choose a decreasing sequence of radii 0 < Ry, < ... < R, <
R, 1 <..<Ry in the next step, in order to estimate the constants. The first
iteration step (with py = R,,, p; = By—1 and f = f5,) reads:
||u||/)’ IR < I(ﬁym $, D, Rn7 Rnfl)ﬁ% J uﬁ"+[87(p71)]+ dx
nptn
(36) B
rhu1

1 b
=1y HMH;LIZ%‘R,,L,I

n—1
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where the constants I,, := I(f,,, s, p, R,, R,—1) are as (34), that is

S 1B

_ »1,71| ﬂﬁ As,n
(Rnfl - Rn)p J. uls—(=DL dg |ﬁw - (p - 1)|
Bp

I?Z

_ P . P D op—1
% (Rnl Rn) + (Rnl Rn) + ﬁn 2 p}?
Rn,1 Rn ‘ﬂn - (p - 1)|

A
P
Agp =4 PP v
2p—1+d, if s#p—1.

with

if s=p-—1,

Iterating (36), we get

: et 4
8 o O
||,M/H/;n£7Rn S A Sl’ﬂ, I’ﬂfl"'ll | ,

|u||]_;/;0,RO

n N N

119 A, 6

=157 g vy

j=1
with

P _r N r
Bo>[s—(p D]W—p or q—pﬁo>q—[s (p 1)]+T_p

Taking the limit as n — +oc we obtain

FORANOE -

[#lloc o, = lim Jlully rp, < lim | | [z, R,

n
T n—oo 4
j=1
i r—plg
:Ioo Hu”;fg;q#[v(pfl)h.

Notice that the last step follows because we shall see below that

235

has a limit 7, as n — oco. As a consequence of the above estimate we obtain the
boundedness of the solution % so that the previous bound holds for any ¢ > q, as stated.

e STEP 5. Estimating all the constants.
Estimating I .. If we are able to prove that for any j = 1,2, ....

P Pj
(37) L <1y (1—9) ,
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holds for some I > 0, then we get that

e TR N LGPV
o T e (5 555 e

=1

) r n 1 n P j ) P
< -] — E — —
_nlgrolo exp{ (p) B (r) [log To+ pilog p} }

Jj=1

r\rr 0 +
—|1,- (=
D

where we have used the identities (76) and (77).

Estimating I;. Now we have to prove (37) and so an explicit estimate for I,
in order to finally obtain (26). Let us choose a decreasing sequence of radii
0<Ry<..<Rj<Rj;<..<Rgsuch that

-1
4 00
(Rj 1y — R’ = (Ro— Roo)’ 20, with ¢ = lzﬁi] < o0.
j i=1J

So
< Sb |Br,| Asoch Ry —R\”
I= c](; (RO - Roo)p f ’M/[Sf(pfl)h dx |ﬂ] - (p - 1)| ROC
BROC
(38)
& (Ry—R\" — p2r!
o - 5
/))j Roo |ﬁ] - (p - 1)|
recalling that

A .
AO-_ FR{;, 1f8:]0—1,
s,0 *—

r-14d - if g oLp 1.
Notice that if we consider the real valued function of a real variable, that is

[t—(p—1)

t) =

V tZﬁOa

it is easy to show that & is decreasing in [f,, p — 1] U [(p? — 1)/p, +00) and it is in-
creasing otherwise, moreover tlim h(t) = 0. Hence h(t) < max{h(B,), h((p? — 1)/p)}
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for any t > f, and so

wgma}({%—(ﬁ_l)',( P )P ! }2102~

ﬂ;prl ngl D — 1 (p + 1)p+1
Moreover

j J

b = (%) {ﬁo—[s—(p—l)hrfp} +[s—(p—1)]+7€p Sﬁo(%) v
and
o ,
P ; »

gy B R if fo>p1,
|ﬁj - (p a 1)| S ﬁ]m;'

max ——— i 0<fy<p—1
=01 |, — (p— 1) fo<?

As a matter of fact, when f, > p — 1, we have

ﬂj < Bo
Bi—(p =D~ Bp—(p—1)
since the one-variable real function
t B t
t—=(-D] t-(p-1

The case 0 < fi; < p — 1 deserves a further explanation. We define j, to be the
greatest integer for which f; <p —1, so that ; .; > p — 1, that is
r—p)(p—D—pls—(p—D],
log( Fo(r—p)—pls—(p—DI, )
log %

is decreasing for t > f, > p — 1.

B, <p—1<Pp;, if and onlyif jo=1ip.

and we shall take 5, € (0,p — 1) such that

r—p)(p—D)—pls—(p—1D)]
log ( Bor—p)—pls—(p-DI; +>

log %

(40) is not an integer.

Summing up, when we consider 0 < f§; < p — 1, we have to be careful to choose it
so that ff; # p —1 for all j which amounts (40), then we can assure that f; <
p —1< B, 1 and we can estimate

” Jo+1i
b e B () A
Bi—(p—1D| = i=01|B; s —(p—D| i=01],\Jo+ ’
) o (5) By — (p— 1)’
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and (39) is proved. Hence, coming back to (38), we get

I < Sg; ﬁ]p |BI‘30| ﬁj
IS Ry —RuP | w0k da B~ (p 1)

BRoc

» Asp <Ro - Roc>p+<R0 - Roo>pﬁj —(p—-1)]
ﬁ] ROO Roo [)’?’H

J
-1
(ot )2
1B; — (p = D) Co

Sp By e1 |Br,| Aso (Ro — R\’
- (RO — Rw)p I u[S*(P*l)h d;)g ﬁO Roc
Bpr.

Ry— R\’ &7tart) /r\P
+< I )CZ+ & (5)
Jjp
5 ()"
p

Estimate (37) is now proved.

[26]

After some simple calculations, the proof is concluded by letting f, = pq/r.

4.2 - Local upper bounds I1. The case of unbounded coefficients.

O

In this section we establish upper bounds for nonnegative solution to
—dpu = bx)uP~! on Br with b € L™(Bg) eventually unbounded. These esti-
mates follow from the energy estimates together with the Reverse Poincaré

inequalities, which are consequence of Sobolev inequality on balls, see

Section 3.

Theorem 4.2 (The Moser iteration). Let u be a nonnegative weak (sub)
solution to —Ayu = buP~' in Bg, with b € L™(Bg), m >r/(r—p) and r as in
(14). Then the following bound holds true for any R, <Ry<R and

g>p-—1

Iscq ()
(a) o, < = il
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with constant

mr(p—1) ﬁ mr?( p—1(r+p)
I (b) - Sg qm(rfﬂ)—r e (1"> qOr—p)2lmGr—p)—r 3< q )]’)
00, -
! ch » g—(p-1)

mr.

pp plmp+r) q m(r—p)—r
% +Kfmp1 Sm(r p-r (1

qnyz"(,: 1))))17 q - (p - 1)
mr+(mp+r)(p—1)
m(r—p)—r p o—p
X —won (Ry — Rwo) |BRO| HmeR(]
pm(r p)—r

Ro—R.\" 1 ey
+ ( R ) mr(p—1)
9 (p _ l)m(r p—r

mr(p—1)

[m(r—p)—r]
(42) ey = (%)” T

and Ky, pr as in (17).

Remark 4.1. Notice that in the case of bounded coefficients, i. e. b € L*>*(Bg),
we can pass to the limit as m — oo in the above expression I, (b) to get

r(p-1) 2(p-1(+p)

r(p-1 1+ r—p 7@ —
Lag® =(S5¢77)77 l(;) » (;) o

P » ﬁ _ %2141;(77;)—1)
q P 5T —p (P\FF2 7
g l3< - 1>) =+ = () =

r

q 7 »
(i) B B B IV

RO _Roc p 1 fI(1 I’)
+( R ) r(p=1) :
> (p—-177

Proof. We underline, as in Remark 3.1, that the requirement « belonging to
L** W*l)(B,,) needed at each iteration step in order to apply the reverse Poincaré
inequalities of Theorem 3.1, will be dispensed by the previous one. Therefore, we
only have to ensure the integrability condition at the first step, which gives rise to
condition m > r/(r — p).
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o STEP 1. Sobolev and Reverse Poincaré inequalities. We start considering the
radii Ry < p; < py < Ro and we use (13) on the ball B, with g = ul*+®-DVP_for
some o > 0, to get

T

J W de| < S J VTP derpl,, J w0 gy |
1
Bﬂ

1 B/) 1 B/’ 1

To estimate the first term in the right hand side of the previous inequality we use
Theorem 3.1 (see Remark 3.2), we get

P

T

43 W dw| < SE|AD) + LI om0 g
o

Bﬂl Bﬂo

with 4(b) as in (22) and Ky, in (17).
Notice that

mr(p—1)
[+ (p—DPer [, (a4 (p—D\” PP
Al < (o — P’ {3 ( o D
[(x + (p — 1)]"1(» P)—r

mr+(mp+r)(p—1)

mr.
(np-+1) oyt s —
= i (a +(p— 1))% e
vy m,p,r

mr(p—1) o

pm(r—p)—r

x(py — p1)’ |Br,|" |b||;ZYR’1”}

Hence, we get, since o« > 0,

17 Shla+(p— Dl (a +(p— 1))”
SPIAD) +—| < £ 3
”[ ® p’f} - (o — P’ o

pp plmp+r)
m(r—p)—r
X + S » Kmp,v‘

mr(p—1)

[(x _|_ (p — 1)]1}7(}" p)—r

mr+(mp+r)(p—1) mr.
m(r—p)—r <a _|_ (p — 1)) m(r—p)—r

mr(p—1) o

pm(1‘—p)—1‘

% (RO _ oc)plBR0| ||b||m(r p) r

m R()

Ry — R\’ 1
+ R mr(p—1)
[e%¢} (p — 1)m» —p)—r
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o STEP 2. The Moser iteration. We now fix fy = o + (p — 1) > p — 1 and we define

the sequence
r \"
ﬂn = ]; ﬁnfl = (5) ﬁO

and that of radii R, < ... < R, < R,_1 < ... < Ry such that

mr(p—Ln

(44) (Rn71 — Rn)p — Cg (RO Oo)p (i')) mr—p)—r

-1 mr(p—1)
> ’:Z(ip p})k P\ plmtr—p)—r]
( ) - n N 1 ’
Zk: P

with

1

recalling (76), so that

> (Ry1—R,) = (R — R).
n=1

With these choices inequality (43), in which o + (p — 1) is replaced by f,,_; >p — 1
and p;, py by R, B,_1 respectively, reads

% » W(p)l) "
m(r—p)—r
P d < S ﬁn 17 3 ﬁnfl pp
w L= (R R )p ( 1) mr(p—1)
n—1 — Ity n—-1 — D — ﬁm(r—p)—r
Bk, n—1

mr+(mp+r)(p—1)

mr
( +) - o ——r
mr(p—1)
—p)-r ﬁnfl - (p - 1)

pm(i p)—r
X Kupr (Ro — Roc) B BT
N <R0}g Roo>p lw(p 1) J wPt d
> (p — D= Ba
=1, J w1 dee.
By

n—1
Letting Y, := |[ully g, , we have obtained

p\"— 1 1
( ) Ynfl-

If we prove I,_; < C" 11, for some Iy, C >0, we can apply Lemma 8.3 with
g=1/fyand 8 =p/r € (0,1) to get

o _al_
Yoo <17 Co?Yy whichis |lulop. < Toop,0)[ullg, g,
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with
» wir(p—)l) p
n(r—p)—r p
1) = 2o 3 ( b ) b
® & (Ry — R Bo—(p—1) /j,%(il)r
0

mr-+(mp+r)(p—1) o
2 mr—p)—r /3 0 'm('r'?—n;)—'r'
+ mr(p-1) Km,pﬂ” ( 1)
pm(r—p)—r 0 p -

x (Ro — Roo)’ |Br, | [DI )

m,Ry
NG 2
0(r—p) mr=(p—1)(r+p)
+ (RO — Roo)p 1 /}") /1’0[m(r‘—p)—r‘](r—p)2
mr(p—1) - :
Roo (p — 1)7;1(7* - p

The proof is concluded once we show that I,,_; < C"1 1, for some Iy, C > 0 and
let f, = ¢ > p — 1. To prove the above estimate for 1,1, it is sufficient to note that

_mr(p—1) mr+(mp-1)(p—1)

Sp ”(V mr—p)—r ﬁ P pp 2 m(r—p)—r
I, 1< -"P 3 0
n-1 )p ( . — 1)) +

p(R _ mr(p—1) mr(p—1)
0 oc W(r—p)—r ym(r—p)—1r
C3 I b
plnp-1) B P
m(r—p)—r
x Sp Km.ﬁﬂ’ ﬁ _ (p _ 1)
mr—p)—r
x (Ro — Ro) |Bg,| \IbIIZ;“R‘; '
mr(p—1) 2mr(p-1)(n-1)
RO — ROO p 1 r mr—p)—r r m(r—p)—r
+ mr( - -
p-1)
ROO (p _ l)m(r p—r p D

= 10 Cnil,
where we have used (44), the definition of 5, ; and the following facts

ﬁnfl ﬂ() 1 1
fi -1 d —.
B--D - f—(p=1 rfozp-land gm<

O

Theorem 4.3 (Extending Local Upper Bounds). Let u be a nonnegative weak
solution to —Ayu = buP~tin Bg, withp > 1, b € L"™(Bg), m > r/(r — p) and r as in
(14). Then the following bound holds for any Br  C Br, C Bg and for any q¢ > 0

(1)

2 17D TP
Hu”oo,R (7}3 R [A( )_|_A( )”b”n;Rl: ||u||qR0
0 — r—p.

the constants Afj), for1=1,2,3 depend on d,p,s,q,r, Ry, R, see an explicit ex-
pression i _formulas (45) below.
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Remark on the constant. The proof below allows us to find an explicit expres-
sion of the constant:

»

mr(p—1) ie=n) mrz(p—l)(Ver)
Sh qmo—p-r P\ ar—pPimir—p)—r]
(45) Al = <—” —

c p
ifg>p-1,
mr(p— % mr2(p—1)r
A0 g (Shla+ (= DT\ (5 e
q & »
X pr Z%Jrq(?i'p)
q(r —p)
if0<g<p-1,

A® ._3 q PP (BBl 1
© " \g-p-D) g%k R T
qm(r*p)fr o0 (p _ 1),,1(,717)7,

ifg>p-1,

— p Y4 _ P
AP = <q+(p 1)) p N (Ro Roo) 3

q [g+(p—DFrrr \ Re

mr(p—1)

(p _ 1)1’)@(1‘77))—7

if0<g<p-1land

mr
mr+(mp+r)(p—1) plmp+r) mr—p)—r

O - K q S mr »

3 . m.p,r 4 v

AD = (Ry — Roo)’ |Br

e qg—(p-1)

ifg>p-1

[q+(p—1IS,™

mr+(mp+r)(p—1)

q pp—l 27 mr

P
i

AS]S) = Km,ﬂr (Ro — R |BRO .

if 0 <q<p-—1, with cs and K, ,, respectively as in (42) and (17).

Proof. The statement of the theorem, in the case ¢ > p — 1, easily follows from
Theorem 4.2. When 0 < ¢ < p —1 we apply Lemma 8.5. Indeed by Theorem 4.2
(with g substitutes for ¢ + (p — 1) > p — 1), we have

Lo g+(p-1)(D)
u < 4+ (p - u
|| Hoo,Rx — (RO _ ROC)I(H(PYDI("*P) || ||q+(p—1),R0
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and hence we arrive at the desired result using Lemma 8.5 with g2 = o0, ¢1 =
g+ -1,K =141 andy=pr/{lg+ (- DIr—-p)}. O

The above theorem has the following important consequence, when applied to
the equation —4,u = Au®.

Theorem 4.4 (Local Upper Bounds, second form). Let u be a nonnegative
weak solution to —Ayu = Au’ in Q, withp > 1, A >0,s >p—1andrasin (14). If
u € L"™Q), with m > r[s — (p — 1)]/(r — p), then the following bound holds for
any Br_ C Bp, C Q and for any q >0

mr[s—(p—1)] q(rr,p)

A(l) A(2) +A(3) lm Hu”mr —p)—r{s—(p-1)]

m,Ry

(RO - Roo)m

%]l ., <

X ||u||q,ROa

where ASID, AEI2> and Aflg) are as in Theorem 4.3.

Proof. Since u is a solution to —4,u = Au* in Bg, then « is also a solution
to —4pyu = buP~! on Bg with b = Au*~ P~V Therefore we need to assume u*~ P~V ¢
L™(Bpg), with m > r/(r — p) that it is equivalent to require u € L"™(Bp), with
m=ml[s —(p—1D]>r[s—(p—1)]/(r—p).So that

PR —
mr—p)—r

Hb”:;aRIZ)) T im J um[sf(pfl)] da
o mrls—(p—=1)]
B s ot mr—p)—r[s—(p— 1)]
_im@ p)—rls—(p-1)] ||u||mR0
Hence the result follows from Theorem 4.3. |

5 - Local lower bounds via Moser iteration

In this section we prove quantitative local lower bounds for nonnegative weak
solutions to —4,u = Au®. The strategy to prove the lower bounds is classical, and
combines a lower Moser iteration with some reverse Holder inequalities obtained via
a John-Nirenberg type Lemma. Since we are interested in keeping track of all (the
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relevant) constants, we need a quantitative version of a John-Nirenberg type
Lemma to obtain quantitative reverse Holder inequalities; this has been done in [4]
and the proofs of [4] also adapt to the current setting with minor modifications that
we give in Appendix 8.1.

We first show how the lower Moser iteration proves quantitative local lower
bounds in a general form, that hold in the whole range 0 < s < — 1. In the next
subsection, we will improve the results in a smaller range, namely p —1 < s <s; =

r(p—1)/p.

Theorem 5.1 (LLocal Lower Estimates). Let Q C R?. Let u be a nonnegative
local weak solution to —A,u = Ju’ in Q, withp >1, 1> 0and0 <s <s;=r—1,r
as m (14). Then for any ¢ > 0, for any

(p _ 1)}2_] 2(d—l)[()p—]) B
potdled—1) +ea L

0<qg<

and for any B, C B, C Q the following bound holds

inf w@) = ||u|_p >« i
500 =l e, > T
where
I L (RO _Roc)Roc ﬁ 1 m
w B SPI2P1RE + (Ro — R )12

¢ i
% |:2d(6d +¢) ,/cod] '
Proof. The proof is divided in two steps.

e STEP 1. In this step we want to prove L~¢ — L= local estimates via Moser
iteration. Consider o < —(p — 1), choosing ¢ as in Lemma 2.2 in the estimate (4), we
obtain

i gy 2 O
= af’ oy — o)’

1 0

J IV + )
B

J (u + 8)* P71 dee.

Applying now the Sobolev inequality (13) on the ball B, , let p; be any real positive
number such that B, CC Q, one gets
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J w067 "du| < N J VI +0) 7 1P deo

B/’l B/‘l

1 J B
+— | w4+ de
4

1
2P o+ (p — D) +i]
ld” (pg — 1)’ /’?

X J (u+ 0P dw
B

p

<sy|

0

p—1
< Sg[ 2 1] J (u + 0P da,

(po — P1)p * P_f

0

since o + (p — 1)|/|o| < 1for any « < —(p —1). Let for a given y, < 0,

r r\"
In = 5 Yn-1= <p) Yo-

Notice that y,, — —oco monotonically. The above inequality, with o = a,, 7,_; =
o, +(p—1)<0and p; = R, < py = RBy—1 reads

S or—1 1
> - o4
Yl = [ P ((Rnl _ Rn)P +RZ)}

|
—

lu+ o

|| @rora

BRn—l

1
=L+ dll, g

n—1"
The iteration is simple now, and gives

11 1 L
(47) lw+6ll, g, > L L I+ 0l g, = H[J’.H [
j=1

where we have chosen 0 < R, < ... < R, < R,,_1 < ... < Ry such that

_21: Rj.1—R)=Ry—R, and R; —-R;= —
j=
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so that

p-lon g Sp Ro— R\,
QP = p—1 0 00 D
b=5 ((RO—ROCWR;?) <@y () ]2

::1027’-7

and

n

11 @27y L log s zm)}

= {j-l s

[~
L

Using (76) and (77), we get

KL L1 1 r »_pr_ oo
[ Qo2?yis ——— L7 207 = (1 275y 7.
=1

We can now take the limit in (47) to get for any y, < 0

1%+ 9]l o p, = lim [lu+0l, p > lim H(Io2”’)f Ul + 01, &,

“ LS8 [ (Ro= R g\
Ry — R 2 R 2

X |[u+ 9l g,

247

e STEP 2. Reverse Holder inequalities. Joining inequality (48) and (75) and

letting y, = —q, for any

dl)IJ )]

(p—172 7 B
pwfld[e(d—l)Jra]_gﬁ

0<g<



248 MATTEO BONFORTE and AGNESE DI CASTRO [36]

we obtain
(R — R ) RE, q
H/M/ + 5||7OCR,>C 2 " d(r—p)
SpI2P1RE, + (Ro — R )12 R ™
[ P F||%+5||q,30
2/ed +¢)\/oa|  |Bg,|i
To conclude the proof it is sufficient let 6 — 0*. O

5.1 - Reverse Holder inequalities and additional local lower bounds

In this section we will prove first a more precise quantitative reverse Holder
inequality, that holds in the smaller range of exponents s > p — 1. We have in
mind to join local upper and lower estimates to get a clean form of Harnack in-
equality (see next section). The difficulty here is that the lower bound of the
previous section has the form of reverse smoothing effect from L7 to L= for a
suitable explicit ¢, which can be very small, sometimes too small: we need to reach
higher values of q, namely above g := 7[s — (p — 1)]/(r — p) and this will be pos-
sible through a reverse Holder inequality, that holds only when p—1<
s <7(p —1)/p =s;. Under no further assumptions on the solution at hand, it is
impossible -to our knowledge- to extend this reverse Holder inequality to higher
values of s in a quantitative way.

Proposition 5.1 (Reverse Holder inequalities). Let Q2 C R and let A > 0. Let
u be a nonnegative local weak solution to —Ayu = iv® i Q, with p—1<
s<r(p—1)/p=s.. Let B, C B, CC Q. Then

u u
) gy _ g el
Bufo " 1B

Sforany q € (0,qol, with g < qo <,

{2 (nonY 1
o Pllr(p — D — pgol? 2
d

d(-1) L1 .
) 6 (p_o) "
Po—P1 41
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i pqo/r < q < qo and

n 2p=1 b o
I‘qu =3 27301)0]{5’ |: P q

» (r(q()) Q)
P1 T
+1
[r(p — 1) — pqol’ ( pl) H
(51) (09—
P\ T—pagq d
y 4rp(qo — q)w o
(r—p)qoq =
1
if0 < q < pgo/r.
Remark 5.1.

We note that the interval in which g( can vary is not empty,
since we are assuming s < s;.

Proof.

Let —(p—1) <« < 0. Consider the energy estimate (6). It implies
using ¢ as in Lemma 2.2,

J |V(u7+(71’7 1))|p dae 2p71 [0 + (p - ];)]p J 2t (P=1 de.
y lo” (po — p1)!

20

Applying now Sobolev inequality (13) with g = u**(P~DV? on the ball B, we arrive at

P

[V

1

¥
p-1), o+(p-1)
Jup’"dac <SP J )P de
B,

1
+ = uchr(p—l) da
7|

B,

1 _ P
csp [Pl (=D

+ J w P dp.
lo” (g = p1)” Pif}

B,
Letting0 <o+ (p—1)=:f<p—1, weget

[ —

. B p—1 pp _ P15

J % dae S S [ 207 f S+ <P0 Pl) ]

E —p) B —(p—1) Po

(52) "

X Juﬁdx

B,

B
)
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Let ¢ = rf/p, then

_ rs=(p-1)] 7 .
== " <qg<—(p—-1) impl
q p— <, ply

pls — (p — 1]

—p <p<p-1L

We note that the interval in which f can vary is compatible with the request
0 < f <p—1anditis not empty since we are assuming p — 1 < s < s}. With this
choice, from (52) we get, for any B, C B, CC Q,

201 o g C\PIVE il
(53) [l ), < {Sg[ - 1p,q _ (ﬂo P1> }} A
[7'(]0 ) pQ] P1 (,D() - ,01)’1

We consider separately the case pg/r < qo < q and the case 0 < gy < pg/r. In the
first case we can use Holder inequality in (53), to obtain

. ¢ 117G

201 pr g0 po—r\" T\ | o
s e A G Bl e
[r(p — 1) — pg} P (po = P1) Pt

o [[ully,,
|B,l71|q iﬁ’

|BP0|%

which is (49). On the other hand, when 0 < gy < pq/r, we can use inequality (53)
rewritten as

P—1 1P gP ooNP1YE
o g{y[ 271 p+(% m)}ytlkﬂg
a.n Pllr(p — 1) — pql Py Voo

(]O _ pl)a 745Po
so that Lemma 8.5 applied with ¢ = q, ¢1 = pg/r and y = r/q gives that for all

0 < qo < pg/r

(q9-qq)

Pa=ri or=1pp P p YD)
g, 3253 o (250) 1}

[r(p — 1) —pgl’ \py — p1
Pria—qp) % %
><(4Vp@-—qw>wwp) Mo % g ﬁ”“”%m
p(g— P 1 -
qqo(r — p) éﬁ&%wz "B, [

O

As a consequence of the above proposition we can improve the local lower bounds
of Theorem 5.1 in this good supercritical range.
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Theorem 5.2 (Local Lower Estimates). Let Q C R? and let /.= 0. Let u be
nonnegative local weak solution to —Ayu =u’ in Q, with p—1<s<s; =
r(p —1)/p, r as in (14). Then for any Br C Br C Bg, C @, the following bound
holds

. I u
inf w@) = |[u]|_wp. Loog e
xEBRx oo

" Lwg |Bgli
L Ms—(p—-1D] _ r
LY e “(p—-1
with 7 C]<(]0<p(p )
where q € (0,4 A qo] with
(d-1)(p-1)
(p-—1iz 7
54 —g = 7=
( ) g ge pa%dze

I 4 asin (46), ¢ < q and ¢ = e there, and 14, 4 as in (50)-(51).

Proof. It is sufficient to combine the local lower bound proved in Theorem 5.1,
with &= e, the reverse Holder inequality of Proposition 5.1 and put p; = R there. [

6 - Harnack inequalities

In this section we combine the upper bounds of Section 4 with the lower bounds of
Section 5 to obtain various forms of Harnack inequalities. The general form, valid in
the whole range of exponents, is given in Theorem 6.1. As far as we know, the
Harnack inequality that we derive for s > p — 1 is not stated explicitly in the lit-
erature. Unfortunately, the constant of the general Harnack inequality of Theorem
6.1 depends on % through a quotient of LY norms. Such quotient simplifies to a
constant in some cases and gives clean versions of the Harnack inequality (i.e. the
constant does not depend on u); this happens in the subcritical range, i.e. when
0<s<p-1, cf. Theorem 6.2, or in the supercritical range p—1<s <s},
cf. Theorem 6.3. In the range s} < s < r — 1, we are not able to prove such clean
forms of Harnack inequalities, and we conjecture that the dependence on some L?
norm of the solution can not be avoided, as already mentioned in the introduction.
The fact that the “constant” involved has to depend on u when s} <s <r—1is
confirmed by the results of [6, 7, 9, 8, 26, 27], [26] applied to separation of variable
solutions of parabolic problems, see also [27]. This is also related to the fact that, in
the range s} < s <r —1, there may exist (very weak, when p = 2) singular solu-
tions, cf. [24, 40, 42, 43, 44, 45].
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When s < p* — 1, in the case r = p*, so p < d, bounded weak solutions are known
tobe C1*, see [25], and the C™* modulus of continuity depends on the local L*°-norm
of the solution or on the constant in the Harnack inequality. Therefore having ab-
solute bounds (independent of «) for the solution or for the Harnack constant, allows
to have absolute bounds for the C'* modulus of continuity. What we show here, is
that the C* modulus of continuity is independent of the solution when
s <s: <p*—1, while it depends on (some L?norms of) the solution when
s; < s < p* — 1. If one wants to have a C1* modulus of continuity independent of u
also when s > s?, one has to add some extra hypothesis on the solution, and this will
be done in the next section, for the special class of stable solutions.

Theorem 6.1 (Harnack inequality for 0 <s < s.). Let Q C R?. Let u be a
nonnegative local weak solution to —A,u =Iu’ in Q, with p>1, 1>0,
0<s<s.:=r—1,rasin(14). Then for any Bp,, C Br, C Qand ¢ > 0, we assume

2 _@d-D(p-1

(p—1p2> _ rls=(p-Dl
pafded—D+ea 1TTTT e

0<q0§ge::

Morveover, if 0 < q < st = r(p — 1)/p we also assume

H(p-Dlr—p)-rpls—(p-D]
log ( gpr—p)—1pls—(p-DIL. +)

log %

18 mot an integer.

Then the following bound holds true

(55) sup u(x) < Hslul 6i]rglf u(x)

xEBRoc
where Hg[u] depends on u through some local norms as follows

Hlul =H[uld,p,r, Ry, R, q, qo, &)

1 rls—(p—Dl4

q {r—p)g—rls—(p—DI+}

u? dx }uq dx
Ioo,q BRo BRO
—00,q0 9 r—p)g—rls—(p—DI
J;u% dz }u[s—w—nh e
Bp Bry

0

with I 4 as in (26) and I_ 4, as in (46) with ¢ = qo.

Proof. The local upper estimates of Theorems 4.1, give for any Br_C
BRO c Q’
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sup u(x) = [|ull . 5.,

J?EBRw
- -Vl 7 TGy
q
(56) fuq da
56
Bp, Hu” R
S : 3,
fu[s—m—m dae |BR, 1
BR%

for any q¢ > q, I, given by (26) and when 0 < g < s} we require the additional
condition (28). Moreover Theorem 5.1 states that, for any ¢ > 0,

(57) inf () — Rl g
JCGBRx l—oo,qo ||u||q0,R0

)

I_ 4, given by (46) with q¢ = qo there and

2 _@d-D(p-1

-2
poidle(d—1)+¢ *

0<qo <
Combining (56) and (57) we obtain the desired result. O

Theorem 6.2 (Harnack inequality, 0 < s <p—1). LetQ C R? and let 1 > 0.
Let u be a nonnegative local weak solution to —A,u = Ju® in Q, with0 <s <p — 1.
Then, for any Bg, C Bg, C Q the following bound holds true

(58) sup w(@) < Hs inf wu(x)
xEBR!X

WGBRM

where

2
2 ~1(p-1 Ny 7% tT
24 [(p I (ZI)) " yepa? d] Norl

Hs = 2 1 @-D(p-D no—%
(p- D27 (2)" e - Dpaid
r KI()(I;"%P)Z R%ﬂ"&{” Qﬁ
(59) x (- T
p Roo ! oy (RO - }goo)m

x {SHI2ITRE, + By~ RoPRT gl e}

Aoor (Ro— R\’ (Ry— R\’ 21|07
) ()
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with
w3 de(d—1)
log %
Py (ph 21
9 (T) (p -1, ) log - +p +1,
1 - ( e )p v
) T N ) 1 = )
co — \0"—Dp)qo TR P
_ —_DP P 1
¢ = maxd P2~ 7P - Uk <Pp ) ~
(pqo) -1/ (p+1)P
and
A ) .
AS’O:]FR{; fs=p—-1 and Agg=2P"14 if s£p—1.

Proof. The goal of the proof is to simplify the quotient of L?-norms in the
expression of the constant H,[u«] of the Harnack inequality (55). Since we are dealing
with the range 0 < s < p — 1, we can choose any ¢ > 0, hence we can let

2 (d (d-1)(p—1)

(p—1p2 >
peRdled—1) + ¢

log 21 log 21
with i.p.l . q;’]# T
Ogﬁ Ogﬁ

0<g=g =q =qo)=

In fact, we shall arrive, with a suitable choice of the parameter e, at a value of qq
smaller than r(p — 1)/p, so that the request log (pqp / log » not be integer is
necessary. The last condition means qq(e) # (p /r)’l’l(p — 1) for all » € N and this is

possible since we can always choose ¢

@-D(p-1

R
0<e—gz: S (p) ed — 1)

np—1
so that ¢g = (g) ' "(p-1),

where 7y is the first integer » such that e(n) > 0, which is

pwzde(d 1)
lo - 1)(p D
(p-1f 12— —

log £ b

+-| +1.
P
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The constants become in this case

I q*I q {|BR0|T+1 qugppcl
00,q — Loo,gg —

907' <R0—R >p
P 9o Roc

Ro— R \P & 1] ()07
+ (7) C2 + 1720 (—>
R, Cy P

< ( 7 )

_ —D|rP p 1
¢y — max] P9 =P - I < p > _
(pqo)’ p=1/ (p+1F

and since qo < 7(p — 1)/p

|Br.| 7" (Ro— R

Jot+i—1 i+l%
r r 1
) o G _ 4

S\Jo+i-1 H:I%X i+ " —p
(2) (10—(10—1)' (z) -1 P

since

log "1 log 21 1
jo = i.p. [giqof =1ip. 14—g7(i0 :i.p.[wﬁ—l —Z—J =mno+ 1.

log s log s
Moreover
o
(Ry — Ro)Ro |
I—oc,qg = d(r—p)
R,

x {Su2RE + (Ro — Ry} T

(p— it (g)”‘]_’l"—e(d ~Dpaid

(d— 1)(p 1 o —
2d {(p — 1),, lo—— <]B> +epwdd] N

X

Hence we get the expression of Hy = I 4 /1«4, as in (59).

255

O

Unfortunately, when s > p — 1 we can not join the upper and the lower bound so

easily, we need a further iteration.
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Theorem 6.3 (Harnack Inequalities whenp —1 <s <s}). LetQ C R?. Let u
be a nonnegative local weak solution to —Ayu = u® in Q, with p > 1, 1= 0 and
p—1<s<si=r(p—1)/p. Then for any Br_ C Bg, C Q there exists an explicit
constant Hs > 0 such that
(60) sup u(x) < H, igf u(x)

x€BR., TELR,

where H; does not depend on u, and is given by

qo(r—p)

I PGED= e
(61) Hs = Ioc,qo( D09 )

with q € (0, qNqol q and I_ 4 are given in (54) and (46) respectively, 14, 4 1n (50)
and (61) and I, 4, in (26) with ¢ = qo; moreover, since q < s; we require the addi-
tional condition (28).

Proof. LetBr_C Bgr C Bg, C £, then by Theorem 5.2 we have

) ll2llg, < Jag u(x)
|BR|% T Lo wEBR, ’

withg < qo <7(p—1)/p,q € (O,Q A qo],gas in (54), 14, 4 asin (60) and (51) and I _ 4
as in (46). Moreover Theorem 4.1, applied with By = R and ¢ = q¢ > ¢, gives

[s—(p—DI\ "o ==5-DI
lwlly, 2 (N2l 2 ’
sup wu(x) = ”“”ooRcc <L qoi qO[;—(p—l)]

QL‘EBRQC |BR“IO

|Br|

»
r—p)gg—rTs—(p-D1

o |Br..|
J‘ u[s—(p—l)] dx
BROC
el 2
SIOC,(IU —ql
|Bg |

X ”u”qu . {s—(p—1)]
|BR“’L0 infrep, w(x) ’

for any qo > v[s — (p — 1]/(r —p) and I, 4, as in (26). Therefore, using twice
the lower bound (62) in the previous inequality, we conclude the proof of the
theorem. O
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7 - Local absolute bounds

The interest of having absolute upper bounds for solutions of nonlinear elliptic
equations is related to several aspects of the theory of such equations. If we have at
our disposal local absolute upper bounds, then the constant in the general Harnack
inequality of Theorem 6.1 can be independent of % and also the C'* modulus of
continuity will be independent of u, as already discussed at the beginning of Section
6. The absolute estimates that we present here have a local nature, which means that
they are independent of the boundary conditions, which can be of Dirichlet,
Neumann, Robin type, or also “large”, i.e. . = + 0o on the boundary. Such absolute
bounds have many more applications, for example, they may imply Liouville-type
Theorems on R?[32, 52], they imply existence of large solutions, and the fact that the
constant is explicit is really useful although not always indispensable. For the
homogeneous Dirichlet problem for semilinear equations (namely for p = 2) , ab-
solute upper bounds, sometimes called universal bounds, have been proved by many
authors, [11, 23, 31, 32, 46, 52], but in those papers the constant was not quantitative,
and to our knowledge it can not be made quantitative with the proofs presented
there. An effort to provide quantitative global absolute bounds for this Dirichlet
problem has been done in [5].

In this section we first prove absolute upper and lower bounds for weak solutions,
in the range p — 1 < s < s} and 0 < s < p — 1 respectively. Next we want to obtain
quantitative absolute upper bounds for s > s}, which are known to be false in the
whole class of weak (or very weak when p = 2) solutions, in view of the existence of
singular solutions, as already mentioned in the Introduction, cf. [24, 40, 42, 43, 44, 45];
therefore we have to pass to a special class of solutions, the so-called stable solutions
[13, 14, 16, 22, 28, 29], for which we can bound absolutely from above the L™-norm of
the solution, for 7 sufficiently large, and we combine such bounds with the upper
bounds of type II of Theorem 4.4 to get our quantitative absolute upper bounds for

stable solutions. We can cover the whole range of s> 0 only for small spatial di-

p(p+3)

mensions, namely d < 1 for larger dimensions, it appears a new exponent

r—1 < sj;, < oo, the so-called Joseph-Lundgren exponent, and the absolute bounds
hold only until that exponent.

7.1 - Local absolute bounds for s < s,

In this section we will prove local absolute lower bounds when 0 < s < p —land a
local absolute upper bounds when p — 1 < s < s} as a consequence of the Harnack
inequalities of the previous section together with the Caccioppoli estimate (12).
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Theorem 7.1 (Local absolute bounds). Let Q C RY, Let u be a nonnegative
local weak solution to —Ayu =’ in Q, with p>1, >0 and 0<s<s;=
r(p —1)/p, r as in (14). Then for any Br,  C Br, C Qthere exists a constant H, that
does not depend on u, such that

P 21 RY
ARy — Ro)’ RY

1
supu(x)g’}-(s( ) f p—1<s<s;

QL'GBROC

with H, given by (61), and, if u # 0 on Bp,

A(Ry — R’ RY,
pp—12p-1 Rg

inf w(x) > M’

ﬂCGBROC

) if 0<s<p-1,
with Hs given by (59).

Proof. First, we note that the Caccioppoli estimate (12), with p; = R, and
po = Ry, implies when s > p — 1

1
s—(p-1)

. 1
inf w@) <| —— J w= P dy
:EEBR,>C |BRX|

=l gy

ppfl op-1 Rd #}771)
ol .
- <A(R0 — R R‘fo)

Moreover, since we are assuming u # 0 on Bp,,if 0 < s < p — 1, (12), applied always
with p; = R and p, = Ry, gives

1
(p—D—s

_— < sup ux).
usf(pfl) de — meB;I:x ( )

BRM

MRy — R.)P R% ”—>< |Br._|
preirl ) ]

The above estimates can be now combined with the corresponding Harnack in-
equalities (60) and (58) to obtain the desired bounds in both cases. O

7.2 - Local absolute bounds for stable solutions. The supercritical case

In this section we establish local upper bounds for stable solutions. From now on,
we assume p > 2. The results can be proved also in the case 1 < p < 2, but we need
some modifications in the definitions of stable solutions and in the proofs. We have
decided to deal with p > 2 in order to simplify the exposition. When 1 < p < 2 we
refer to [14] and references therein. Let us mention that the proof that we give here
is amodification of an idea originally due to A. Farina, see [16, 28, 29]; see also [13, 14]
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for an alternative approach. Our proof is slightly different from [16, 28, 29] and
provides explicit constants.

Definition 7.1. A function u is a local stable solution to —4,u = Ju?®, if and
only if 0 < u € WE(Q) and satisfies

loc

(63 j{wuvo‘?

for all bounded ¢ € CH(Q).

Vu

2
IVol? + (p —2) <W : —)

2 - )»sus‘l(pz} de >0

We recall that the stability condition translates into the fact that the second
variation of the energy functional is nonnegative, see [13, 14, 16, 22, 28, 29] for a more
detailed study of stable solutions related to this kind of problem.

Remark 7.1. From the stability condition (63) we immediately obtain

(64) 28 Jus_lgoz de < (p—1) J |VulP 2|Vl da,
Q Q

for all bounded ¢ € CX(Q).
Now we have the following estimate for nonnegative stable solutions, which we
already know to be bounded, by the upper estimates of the previous sections.

Lemma 7.1. Let Q c R? be a bounded domain and let u be a local non-
negative bounded stable weak solution to —A,u = u’ in Q, 1=0 and s >p — 1.
Then the following estimate holds true for any o > 0, J, ¢ € (0,1] and any test
function ¢ € CHQ), ¢ > 0

2
v -+ (*57)

2
p—1<1+1> (s + o) 5(p—2)]

5+
s Juswgﬁﬂjzih de <

+_

4 e)ls—(p-DF p

&

2
p—1<1+1> (s + o) 2
4 [

+ 5= -
s—(p-DPpd7
< Ju“+<p*1>|v¢|p¢%*p de.
Q
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Proof. Let0 < ¢ € CH(Q). Using a standard approximation technique (recall
that u is bounded), we can use as test function ¢? := u**1¢’, with

S+

i=———>1, since a>0
A ()

in (64) and Young inequality with & > 0, we get

2
Z8 Jus”éﬁ de <(p - D(1 +¢) ((x;l> Ju“*IIVulqu" de
2 Q

-1 1 Y

+ pT (1 + E) A J [Vl 2wt Ve|Pe 2 da.
Q

Again using Young inequality with 0 > 0 and exponents p/2, p/(p — 2) we obtain, for

the second terms in the right hand side of the previous inequality, the following

estimate
J|W|P*2 wHVe[Pe % de < |VaulPu*1¢ da

Q

2 :
+— Ju“+<p—1>|v¢|i’¢/*p da.
poT

Combining the previous estimates and noticing that

pya-ley 3. p’ £(pD)
J'W'“ ¢d”*[a+<p—1>]?°ﬂv<” )
Q Q

'8 do

we arrive at the desired result. O

Combining the previous estimate, coming from the stability condition (64), and
the following form of the energy estimate (5),

et [\
o+ (p—DF
Q
ipls —(p—1)] whs gtis
_poc[S—(p—1)]—(S+oc)5(10—1)Ju g
(66) @

I S+ o
e Upoals—(p—1D]—(s+a)e(p —1)}

% Juw(lfl) |V¢|P¢%—P due
Q
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for any

_ _pas—(p-1]

O<e< , a>0 and s>p-—1.
s+ o)(p—1) b

For the proof of the above inequality we have to follow the proof of Lemma 2.1 and
change slightly the test function (we have to use u“qbsf(;iv instead of (u + 8)"$). We
get the following.

Lemma 7.2. Let Q C R? be a bounded domain and let u be a local non-
negative stable weak solution to —A,u = u’ in Q, 2> 0 and s > p — 1. Then the
Sollowing estimate holds true for any

_ _ 2 _ _
(67) 0ca<gos-P-Di2ys-sp-1

and any test function ¢ € CH(Q), ¢ >0

(68) Ju5+d¢$pil) de < cq4 Ju1+(p71)|v¢|p qS%,p d.’)(},
@ Q

where cq 1s a positive constant that depends on s, p, A and o.

Proof. Using (66) to estimate the second term in the right hand side of (65) and
operating some simple manipulations, we get for any o > 0

Sto _ Sto
Ky Juoc+s o1 de < ke Juoc+(l) 1)|v¢|p ¢s—(}771) p de,
Q Q

where k; =ki(x,0,¢6,8,p,8) >0, i=1,2, for any ¢>0, d>0 and 0<e<
pols —(p — DI

, more precisely,
s+ap-1 preasey

ky

_ pls — (p — 1] s(oc B E(}? — (o + s))
pls—(p—D]e—(s+aw)e(p—1) pls — (p —1)]

a+1\2 1 +a? (p-2(p-1)
— —DD(1+e¢ o1+~ .
[(p ! H)( 2 >+ < +8)[8—(]0—1)]2 4p

First, we notice that letting ¢ = € = 0 = 0 in the above expression, gives a positive
number whenever 0 < o < &. As a consequence of the explicit continuous depen-
dence on the parameters ¢, d and &, we can always fix them sufficiently small so that
k1 > 0 when 0 < o < @, therefore the constant ¢4 = k2 /k1 > 0. O
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Theorem 7.2. Let Q C RY. Let u be a local nonnegative stable weak solution
to —dpu = v’ in Q, with 2>0 and s > p — 1. Then for any B, C B, CC Q there
exists a constant that does not depend on u such that

(69) [tlls 1, < €5
for any
(70) 0<acg—s-P=D+2 Sz_s(p_1)7
=
and
1 -1 T g
) o= E L

Proof. The result follows from the previous lemma, Holder inequality and
using the test function defined in Lemma 2.2. Indeed, by Hélder inequality with
exponents (s + o)/[oe + (p — 1)] and (s + a)/[s — (p — 1)], applied to the right hand
side of (68), we have

a+(p-1)
Jus”qb% dx <ey [ Jus” T dw

Q Q

s=(p=1)

|v¢|p>%dx] o
e

Hence, we arrive to the desired results simplifying and choosing ¢ as in
Lemma 2.2 O

The Joseph-Lundgren exponent s;;,. The above theorem proves absolute
bounds for some local L™ -norm, and we would like to have 7 sufficiently large,
namely

W_%>7‘[8—(]0—1)]:q
r—p
to be able to combine the above absolute bounds (69) with the upper bounds of type 11
of Theorem 4.4. Letting then m = s + o, with « satisfying the condition (70) , we
have that

2s—(p—1)+2y/2—s(p—-1)

g<Mm=s+a<s+a=s+

where we take » = p* = pd/(d — p), the Sobolev exponent, i.e. we are in the case



[61] QUANTITATIVE LOCAL ESTIMATES FOR NONLINEAR ELLIPTIC EQUATIONS ETC. 263

p < d. Notice that when p > d, we can take r large enough and the above condition is
always satisfied. In the case under consideration, namely 1 < p < d, the above
condition is satisfied by all the s in some interval, more precisely, there exists an
exponent sz, such that for all s € [0, s;;,) we have

rls —(p — 1]

| wll7 R, < 5, with m > .

where c; is given in (71). Moreover, we call the exponent s;z, the Joseph-Lundgren
exponent and it has the explicit form

. [(p — Dd — pP + pP(p — 2) — pX(p — Dd +2p>\/(p — 1)(d - 1)

(72) d—pIp—Dd—p(p+3)]

if d > [p(p +3)1/(p — 1) and

p(p+3)

Sy = +00 if d<
p—1

See [29, 30, 35] for more details on the derivation of the Joseph-Lundgren exponent.
All the above discussion can be summarized in the following:

Theorem 7.3 (Local absolute bounds for stable solutions). Let Q C RY. Letu
be a local nonnegative stable weak solution to —A,u = u’ in Q, with >0 and
p—1<s <sy. Then for any B C Bg, C Q there exists a constant that does not
depend on u such that, for any m > r[s — (p — D1/(r — p),

(73) [wllor,. <6
where
ey _ Wrls—(p-Dl 50
(74) 6 = _ A — |A® + A® jmpirm g P e v D o
(R() B Roo)m m m

and A%), 1=1, 2, 3, are as in Theorem 4.3 with ¢ = m and cs 1s given in (71).

Proof. Combine the upper bounds, established in Theorem 4.4, choosing
q = m there, with the absolute upper bounds (69), with p, = Ry and p; = R, to get

" @ ®) i _ sl sy
> m ) r—p—rls—(p—1)] r—p)—rls—(p—D]
Am + Am i a .

U <—7
H Hoc,Rm (R() . ROC)WIZP)

where Ai_ni), 1=1,2,3, are as in Theorem 4.3 with ¢ =m > q and c5 is given in (71).
O
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8 - Appendix
8.1 - The John-Nirenberg Lemma and reverse Holder inequalities

First of all we recall a quantitative version of Lemma 7.20 of [33], proved in [4]
(see Lemma 4.2 there).
From now on we denote, as usual, by M"(Q2) the Marcinkiewicz spaces for any
m > 1 and by V,[g] the Riesz potential of a function g, that is
Vgl = [—9Y _qy ue11
| r— y|d(1 H)
Q

Lemma 8.1 (A “potential” version of the Moser-Trudinger imbedding). Let
g € M°(Q) with ¢ > 1 and let us suppose ||g||y7.q) < K. Then there exist two con-

stants ko and ks such that
Vilgla)
Jexp ——— | da < ks.

ke K
Q

One can take

diam (Q)d sewq

Vern ks—(o—1e’

Now we state a quantitative version of Jonh-Nirenberg lemma for convex do-
mains; for the proof see Lemma 4.3 in [4].

ko> (@ —1e and ky=|Q|+

Lemma 8.2 (Jonh-Nirenberg). Let g € W(Q) where Q is convex, and sup-
pose there exists a constant K such that

J |Vg|dx < KR, for all balls Br C Q.

BrnQ

Then the following inequality holds

where for any ke > (d — 1)e

_dje| o _ @ diam (@) (kz + o)
"Tdam@? T ke—@-De

1
and go :@Jgdw.
Q
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The John-Nirenberg Lemma has an important consequence when applied to the
function g = log (u + ), 6 > 0.

Proposition 8.1 (Reverse Holder inequalities). Let 0 > 0 and let u be a
positive measurable function such that log (u + ) € WHH(Q), where Q is convex,
and suppose there exists a constant K (independent of d) such that

|Vlog(u+6)|dz < K R, for all balls B C Q

BrNQ
Then the following inequality

||u+5||q,Q k?/q
%+ 9]l g0 ™

holds for any

1
<—
0<qs<p

where the constants k; are given in Lemma 8.2.

Proof. See Proposition 4.4 in [4]. O

We conclude this section by showing that reverse Hdélder inequalities hold for
local solutions to our problem, as a consequence of Caccioppoli estimates (see
Corollary 2.1).

Proposition 8.2 (Reverse Holder inequalities). Let Q C R and let .= 0. Let
u be a local weak solution to —Ayu = Au® tn Q, with 0 < s < s, =r — 1, rasin (14).
Then for any ¢ > 0, the following inequality holds true for any 0 > 0 and for any
Bp, C Q

(75)

)

{ e r/q [+ Sllgm, _ 1+ 01y,
d 1 — _1
20(ed +e) |BR, |7 |Br,| 1

2 _(d-1(p-1)

(p— l)EZ)T o
paidled—1)+e

forall 0<q<

L)

g
Proof. The Caccioppoli estimate (11), with p; = R and p, = 2R, R any positive
real number less or equal than Ry, implies that

9d+p-1 pp Rd-p wg
(p—1°

b

J |V 1og (u + 6)[P doe <

Br
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hence the hypothesis of the previous proposition are satisfied, more precisely

1

P
J Vlog (u + 0)| da <|Bp|'" J|Vlog(u—|—5)|pdx
I;ROrW13R Bp

ptd-1
p

(p—1y

<Ry

ptd—1

. 2 . .
Therefore putting K = wy pipg, taking an ¢ > 0 and choosing ks = e(d — 1) + ¢,

— P

p
by the Proposition 8.1, we get the desired result. O

8.2 - Technical tools

In this section we recall, in order to be complete, some tools that we use in this
paper. The first lemma concerns the geometric convergence of some sequences of
real numbers.

Lemma 8.3 (Numerical Iteration). Let Y, >0 be a sequence of numbers
such that

Y, <I°"Y, . with I, ;<I,C"?

n—1

for some o, Iy, C >0, 0 € (0,1). Then {Y,,} is a bounded sequence and one has

g al
Y, :=limsupY, <Ij’Ca-o*Y,.

Nn—~+00

Proof. See for example Lemma 7.1 of [34]. |

The following lemma is due to E. De Giorgi and its proof is contained in several
books and papers, see for example [34], Lemma 6.1.

Lemma 8.4 (De Giorgi). Let Z be a bounded nonnegative function in the in-
terval [ty,t1]. Assume that forty <t < s < t; we have

A
Z@) < 0Z(s) + G0

with A >0,0>0and0<0<1. Then

Aca, A, 60)
VA [t S
W) =Gty
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where
1

" 0
a-a (1_2_“>

This lemma has an important consequence, indeed it is necessary to obtain ex-
tending local upper bounds (see Section 4). More precisely, it allows to prove that, if a
reverse Holder inequality holds for some 0 < q; < g2 < oo, then it holds for any
0<g<ge<oo.

(o, 2,0) = for any 4 € (0,1).

Lemma 8.5. Assume that the following bound holds true for some
0 < q1 < g2 <ooandforany R < p; < py < Ry,

g, < oy [

Then we have that for all 0 < ¢ < q1 < @2 < 00

9192—9)

4(91-9) q1 (qz _ (]) 7 K 7g3—qp)
< 8.2 |4 : .
il . <3255 (4 DO DY T T

Moreover if go = o,

N
n- AV v

Proof. See Lemma 3.7 (Extending Local Upper Bounds) of [4]. O

8.3 - Numerical identities and inequalities

Now, in order to be complete and to simplify the reading of this paper, we recall
some numerical identities and inequalities used in the paper.

=N S =Ny OV P
(76) j;y:m, Vi<s<l = ;(;):T—p’ for » > p.

SN a1/ 1
Zst]:[sg} (1—8),vo<s<1,NeN
=1 B

and so
N s N pr
(77) j9=——,V0<s<l = il=)= ,
]; 1 -5 ; (r) (r —py*
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for r > p.

for r > p.
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(1—) kLN k
25‘7 i i , V0<s<1l = ;(g)jrfp{l(%}

x J
j:zk;ls? 1838 V0<s<1 — ];1(7.) Tfp(g),

Stirling’s formula:

0 1 1
_ \/2m<§) e with o <a <o

—
Do
S

¢-version of Young’s inequality:

(79)

o—1b

1 9
g g1

&
a-b<=a+
o

for any e >0,a,b > 0and o > 1.
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