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1 - Introduction

In this article we discuss the regularity properties— such as the weak Harnack in-
equality and Holder regularity— for functions, u : I x R% — R, which are solutions of

(1.1) ou(t, x) — Lu(t, x) = f (L, x), (t,x)el x Q,

where Q denotes a bounded domain in R? and I an open, bounded interval in R. L is
an integro-differential operator of the form

(1.2) Lu(t,x) =p.v. J [ut,y) — ut, v)]alt, x, y)ulx, dy) .
Rd

Previous results (discussed in Section 2) have focused on the case in which
1(x, dy) is absolutely continuous with respect to the Lebesgue measure, and so the
key motivation for this note is to prove that in fact similar results still hold when
u(x, ) is only a measure. Furthermore, we take this article as an opportunity to
present a small survey on a rapidly expanding and important family of results sur-
rounding the study of regularity properties of solutions of (1.1).

We first present the set-up and assumptions for (1.2) and our main results, and
then in Sections 2 and 3 we provide a somewhat extensive discussion for (1.1).

In [28] properties of solutions are studied under the assumption that the mea-
sures u(x,dy) are absolutely continuous with respect to the Lebesgue-measure
in R?. Here we try to avoid this assumption. We assume that a : [0, c0) R? x
RY — [1,2] satisfies a(t, , y) = a(t,y,x) for all t,x,y and (u(w,-)), e is a family of
measures satisfying the following assumptions. On one hand, we assume the sym-
metry condition that for every set A x B ¢ R? x R?

(1.3) J J/z(x,dy) dx = J Jﬂ(x,dy) dx.

A B B A

On the other hand, we need to impose conditions on the singular behaviour of the
measures u(x, dy) at the diagonal {x = y}. We assume that for some o € (0,2) and
some A > 1 and every x € R%, p > 0and v € H*/2(B,(0))

(K1) P2 J e — y|* (e, dy) + J o, dy) < Ap™*,

[vo—y|<p [vo—y|>p

2
J [v(x) — v(y)] dedy

o — |

A1 J me) o) Pute, dp)de < @ - 2) J
B B

=]

(K2)
< AJ J[?J(m) —v(y)Pule, dy)de, where B = B,(xo).
BB
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Remark. We assume these conditions to hold for all p > 0 because it sim-
plifies our presentation. It would be sufficient to assume (K;), (Ky) for small p, say
for all p € (0,1].

Remark. A standard example satisfying the above assumptions is given by
1D, dy) = | — y|7d7°‘dy for some o € (0,2). In this case the constant 4 would
depend on o and blow up for « — 2—. This would affect our results because the
constants in our theorems depend only on d, a lower bound for « and A. If, instead,
one chooses x®(x,dy) = (2 — o)|e — y|7d7°‘dy, then assumptions (Kj), (K5) are sa-
tisfied for one fixed A4 and all for all « satisfying oy < o < 2. In this sense our results
are robust, i.e. the constants stay bounded for « — 2—. This is a natural assumption
considering the fact that it is u(x,dy) = 2 — o)|x — y|7d7“dy, a(t,x,y) = 1, which
ensures (1.2) to converge to c(d)( — Au as o« — 2—, where c(d) is a dimensional
constant.

Here are our main results:

Theorem 1.1 (weak Harnack inequality). Assume (K;) and (Ky) hold true for
some A >1 and o € (09, 2). There s a constant C = C(d, oy, A) such that for every
supersolution. u of (1.1) on Q =(—1,1) x Ba(0) which is nonnegative in
(—1,1) x R? the following inequality holds:

(HI) ol < € (ipf e+ 1flimco

where Ug, = (1 - (%)a, 1> X B12(0), Us = (—17 -1+ (;)a) X B1/2(0).

Theorem 1.2 (Holder regularity). Assume (K;p) and (Ks) hold true for some
A>1anda € (g, 2). There is a constant f = (d, o, A) such that for every solution
wof (1.1)in Q =1 x Quwith f =0 and every Q' C Q the following estimate holds:

(HC) sup utt, ) u(s,@{)I 7S Pl /leRd) ’
e (jo —y| + [t —s['%) 7

with some constant n = n(Q, Q") > 0.

It is worth pointing out the fact that both Theorems 1.1 and 1.2 only require (1.1)
to hold in some region I x Q, where 2 may not be the whole space R%. There are only
very few such local results for integro-differential operators in “divergence form”
form, see Section 2.1 for a definition. One of the standard approaches in variational
calculus, proving a local Caccioppoli inequality, already is nontrivial. Global
Caccioppoli inequalities are easier to obtain, though. Note that in this work we prove
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and use local Caccioppoli inequalities for negative and small positive powers of su-
persolutions only.

Let us briefly comment on the weak Harnack inequality. We recall that (HI) is
called weak Harnack inequality, cp. [49, Sec. 1] and would be called Harnack in-
equality or strong Harnack inequality if [lul|,; , were replaced by supy_ u. In
terms of Holder regularity the weak Harnack inequality is as good as the (strong)
Harnack inequality, i.e. both imply the same a priori bounds in Holder spaces.
However, with regard to other results such as heat kernel bounds one wants to know
when a Harnack inequality holds true. In our general set-up it can easily be seen that
this is not possible. As explained in Section 3 our assumption allows to study the
generator L of a process X = (X1,X2) where X; are one-dimensional symmetric
stable processes. A strong Harnack inequality cannot hold for such a process, even
not in the elliptic case. One can construct a sequence of functions u, : RY — R which
are harmonic in the unit ball B, nonnegative in RY but satisfy uy,(x,) /%, (0) — + 00
for an appropriate sequence x,, — 0. We remark that such a counterexample exists
also in the case where wu(x,dy) is of the form u(x,dy) = j(x — y) dy for a specific
choice of the function 7, see [9].

The article is organised as follows: In Section 2 we review related results from the
literature on nonlocal parabolic problems. We explain the notion of nonlocal opera-
tors in divergence form and non-divergence form. In Section 3 we present two ex-
amples of measures u(x, dy) which are not absolutely continuous with respect to the
Lebesgue measure in R? but satisfy the conditions (K;) and (K3). In Section 4 we
explain the arguments used in the proofs of Theorem 1.1 and Theorem 1.2. We
concentrate on the ideas and refer to [28] for technical details.

2 - A short survey on results for parabolic equations involving nonlocal operators

For a start let us look at a simple example. Choose a(t,x,y)u(x,dy) =
|x—y|7d7“dy, where dy denotes the Lebesgue measure. For this choice and
for smooth functions u, say u € C;°(R x Rd), Lu equals —c(d, a)( — A%y where
we use

(5 Ju(t,w—u(t,m

2
— (= A2 =
(2.1) (= A" ult, ) = — oy — o

This definition implies for v € CgO(Rd)

(= 2720 = |90
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Thus ( — 4)*/? is a pseudodifferential operator with symbol |¢|* which justifies the use
of the symbol and the name “fractional Laplacian”. In place of —( — A)*'% we write
A2, The precise value of the constant c(d, «)~!in (2.1) is not important but the
following property is: The quantity c(d, o) 'a(2 — o) remains positive and bounded
for o« — 0+ and o« — 2—.

Thus the equation (1.1) reduces in the most simple case to

(2.2) opult, ) — APult, x) = f(t, x), (t,x) € (0,00) x R%,

In the case f = 0 the solutions can be obtained as

) = | 0zt oty = [ 99— 4 Oalw)dy
RY R?

when () = u(ty, ), D is the fundamental solution and p@(t,x,y) = DDt x; 0, Y).
The function p® is often referred to as the heat kernel of the corresponding semi-
group. Only in the case « = 1 an explicit expression for p™(¢, x, %) is known. But one
can prove that there is a continuous function ¢<°‘) (R — (0, c0) which is rotationally
invariant and satisfies c*1|ac|7d7“ < &) < c|x|7d7°‘ for some constant ¢ > 1 and
all  with || > 1 such that for all > 0 and all z,y € R?

p(ot)(t7 x, Z/) _ tfol/ocp(oc)(l7 t’lx, til.’)c) _ tfd/aqb(a)(tfl(x _ Z/)) )

As a result we obtain for all £ > 0 and all x,y € R?

y tl Ja d+o

2.3 POt x,y) =<t~ (1 A ) .

28) v —yl

Here, the symbol < denotes that the quotient of the two expression involved stays
positive and bounded.

It is worthwile to compare the situation for nonlocal operators with the one for
local operators. For o = 2 the nonlocal problem (2.2) becomes the classical heat
equation with
1 o=y

<2)(t7967 ) =—775€
P Y (4nt)V/?

One of the main results in the theory of elliptic differential operators of second order
and in divergence form are the so called Aronson bounds. Every operator of the form
u— — div(A( - )Vu), where A(x) are uniformly positive definite matrices possesses a
heat kernel ¢ which satisfies the following bounds. There are positive constants
¢1,C2,C3,¢q such that forallt > 0and all ¢,y € R?

c1p® (¢, el — y)) < qt,2,y) < esp® (¢, calw —y)).
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This means that the heat kernel for the classical heat equation controls the heat
kernels for nondegenerate parabolic problems. Below we provide details of how this
phenomenon remains true for nonlocal problems.

A second result, and this is most important for the study of nonlinear problems,
are a-priori Holder estimates for solutions to parabolic equations involving the op-
erator u+— — div(A(-)Vu) where the dependence of A(x) = (a;;(x)) on x is only
measurable and bounded. This part of the theory is due to De Giorgi, Nash and
Moser.

During the last years there have been several attempts to work out a similar
program for nonlocal operators which generalise the fractional Laplacian like the
operator u+— — div(A( - )Vu) generalises the classical Laplacian. We expand upon
this in Section 2.1 which discusses divergence form operators.

Many cases involving operators similar to the fractional Laplacian also fall into
the category of non-divergence form operators, and there has also been much recent
progress investigating regularity properties similar to Theorems 1.1 and 1.2 above.
We mention these results in Section 2.2.

2.1 - Divergence form operators

Let us review some results from the literature which concern regularity issues
for solutions to equations similar to (1.1). By “divergence form”, we mean operators
defined as (1.2) if the corresponding energy form is well-defined. In this case solu-
tions are defined with the help of bilinear forms. If (1.3) holds, then the bilinear forms
are symmetric.

Note that all previous results in this direction assume the measures u(x, dy) to
be absolutely continuous with respect to the Lebesgue-measure on R?. Thus, for
the range of this little survey, we assume that for some appropriate function
k:(0,00) x RY x R+ [0,00) and all ¢ > 0, ,y € R?

a(t,x, yux, dy) = k¢, x,y)dedy, ki, x,y) =k, y,x).

The method of Nash is applied to equation (1.1) by Komatsu in [40, 41]. The author
assumes k(t, x, y) to be positive, continuous in ¢ and to satisfy pointwise bounds of the
form k@, x,y) < |x — y|7d7“ for small values of |x — y|. The main results are the
existence and Holder regularity of a fundamental solution together with some
pointwise estimates. Note that Nash’s method is a global one, i.e. one works in whole
of RY.

An important contribution to theory is [8]. Bass and Levin prove sharp
pointwise bounds on the heat kernel and a Harnack inequality. The state space is
7% but this does not constitute a serious limitation. The upper bounds are proved
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using Davies’ method. The lower bounds are based on the Harnack inequality
which is derived with the help of Krylov-Safonov type estimates. The existence of
a related stochastic process and its properties are essential for this part of the
proof. It is assumed in [8] that the function k(¢,x,%) is constant in %, i.e.
k(t, x,y) = K (x,y) with k'(x,y) < |x — y|7d7°‘ for all values of |x — y|.

The results of [8] are extended in [21] to a general d-set (F', v). Moreover, the
theory of Dirichlet forms is applied consistently which allows to work with the weak
formulation. Chen and Kumagai show that, under the assumption k(t, x, ) = k¥'(x, y)
with £'(x,y) =< |x — y|7d7°‘ there exists a Feller process that corresponds with the
Dirichlet form (&, F) given by

(2.4) Eu,v) = J J(u(y) —u(@)) (v(y) — v(@)k @, y)v(dx)v(dy)

FF

2
25) Fo {w € LAF, )| J J(w(y)_—w(x))v(dx)v(dy) <+ oo} |

|9C o y‘dJrot

=
~

It is shown in [21] that the heat kernel p(t, x,y) exists and satisfies

d/ tl/l d+o
2.6 t,x,y) <t 9‘(1/\ )
(2.6) pt, e,y =7l
for all x,y € F and 0 <t < 1. This is an Aronson bound for nonlocal operators,
cp. (2.3).

A more general situation concerning the regularity at |x — y| = 0 is treated by
Barlow, Bass, Chen and the first author in [2]. Again, k(f,x,y) is assumed to be
constant in t, i.e. k(t, x,y) = k'(x, ¥) but may satisfy

2.7) cole —y| T <K@y <elo—y ", w—y <1

for some positive constants ¢y, c1, o, f with 0 < o < f# < 2. The existence of a heat
kernel p(t,x,y) is shown together with some upper and lower bounds which hold
true outside of some exceptional set. Since k does not have upper and lower bounds
which allow for the same type of scaling, these results cannot be used in order to
deduce regularity results. Quite contrary to this, [2] provides an example of a
kernel satisfying (2.7) and a corresponding discontinuous harmonic function.
Moreover it is shown that the martingale problem is not well posed in general
under the condition (2.7).

The situation is better if the exponent « depends on & and has some regularity.
In [6] the main assumption is

2.8) colac — yrdf(oc(x)/\a(y)) < K(w,y) < el — y|7d7(a(x)\/ac(y))7 e —y| <1
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for some positive constants cy, ¢c; and a Dini-continuous function o taking values in
some closed subinterval of (0,2). Bass, Kumagai and the first author prove bounds
of the heat kernel and a priori Holder estimates.

As mentioned in the introduction, the results of this article are based on the work
by Felsinger and the first author in [28]. Thus we do not comment on [28] here in
greater detail. Several of the technical ingredients used in this work and in [28] are
based on ideas in [36]. The first author establishes a Moser iteration scheme for
elliptic operators corresponding to (1.1) leading to a weak Harnack inequality and
Holder regularity estimates. This article for the first time establishes a PDE ap-
proach to local regularity for nonlocal operators with measurable coefficients.
Moreover, the results are robust, i.e. the constants in the assertion stay positive and
bounded for o — 2—.

In [10] Caffarelli, Chan, and Vasseur prove Hoélder regularity for weak solu-
tions of (1.1) in all of IR?. The methods follow the spirit of De Giorgi’s program, but
there are non-trivial modifications to account for the nonlocality of L. Their es-
timates are global in the sense that all of the quantities estimated require the
equation and the behavior of % to hold globally. Their results are slightly different
than the ones of [28] in the sense that the Holder continuity is controlled in terms
of ||uf|jze, instead of [[u[|; e, and they are not robust as o — 2—. [10] also
provides an important justification of how in the nonlocal setting, results such as
[10, Theorem 2.2], [28, Theorem 1.2], and Theorem 1.2 above, also apply to fully
nonlinear equations as well as give C* regularity for nonlinear, translation in-
variant operators which could be of the form

Fu(t,x) =p.v. J & (ult,y) — ult, x))ulx, dy),
R?
assuming F' is translation invariant (typically shown as u(x, dy) = K(x — y)dy) and ¢
is a convex function satisfying some mild regularity and coercivity assumptions. Cf.
[12, Section 13] and [11] for the non-divergence elliptic setting.

It is worth mentioning a recent use of regularity results for equations similar to
(1.1) to random matrix theory and random Schrédinger equations. Erdos and Yau
[27] apply the ideas of [10] to discrete situations. In our context their assumption, cf.
[27, Thm 9.1], would allow k(t, x, %) to be unbounded as a function of £ which is not
included in our approach. In [29], Gomez uses a priori estimates for a hypo-elliptic
version of (1.1) for studying the limits of a random Schriodinger equation to a de-
terministic nonlocal radiative transfer equation. A very different application of
Theorem 1.1 appears in [34] where the authors study the asymptotic symmetry of
solutions to nonlinear fractional reaction diffusion equations. In [35] a Harnack in-
equality is used to study a fractional version of the Yamabe flow.



[91 REGULARITY RESULTS FOR NONLOCAL PARABOLIC EQUATIONS 191

Itis important to point out that this little survey is by no means complete. Several
interesting areas are neglected resp. not treated according to their presence in
journals. One such area is given by heat kernel bounds for more general nonlocal
Dirichlet forms on general state spaces. The articles [22], [3], [17] extend [21] and
treat regularity and estimates of the heat kernel. For a general introduction to off-
diagonal heat kernel bounds involving non-Gaussian tails, see [31]. A detailed study
of off-diagonal upper bounds can be found in [4]. A recent work is [30]. Therein, the
authors derive off-diagonal upper bounds from on-diagonal ones. A key feature is
that the walk dimension of the underlying space is allowed to exceed 2.

Another area concerns heat kernels for nonlocal operators in bounded and un-
bounded domains or equivalently transition densities for jump processes in such
domains. In [19] sharp two-sided estimates for the transition density (heat kernel) of
the symmetric a—stable process (the fractional Laplacian) killed upon exiting a C*!
openset Q C R? are obtained. Sharp bounds for the heat kernel up to the boundary of
a bounded domain (2 in the so called censored case, i.e. when the integral in (1.2) is
taken over Q2 instead of the full space, are proved in [20].

2.2 - Non-divergence form operators

By a “non-divergence form” operator in (1.2), we mean an operator

(2.9)  Lu(t,x) = J [u(t,y) — u(t,x) — 1p,(y — &)(Vult, ), (y — x))|m(t, x,dy),
RY
for a general family of measures m such that for all £ and x, m(t, x, dy) is still a Lévy

measure in the y variable. A less general and time-independent version which still is
characteristic would be given by:

(2.10)  Lo(x) = J [v(y) — v(x) — 1, (y — 2)(Volx), (y — )] J (e, y —)dy,

R¢

where J is a function satisfying sup, .« [min{1, |2y (e, h) dh < + cc. If ad-
ditionally J(x, k) = J(x, —h) for all x and & # 0, then the operator L from (2.10) re-
duces further to

(2.11) Lov(x) = % J [v(x + h) — 2v(x) + v(@ — b)) (x, h)dh .
R¢
The assumption J(x, k) = J(x, —h) ensures that this operator is of divergence form

with k(x, y) = J(x,y — x) in many cases. Note that the corresponding energy form
needs to be well-defined which forms an additional restriction. The bilinear form is
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symmetric if J (x, h) = J(x + h, —h) for all x and & # 0 which basically means for the
corresponding process that a jump from a by / to & 4+ & has the same probability as a
jump from « + & by —h back to x.

The second order analog of these nonlocal types of operators are of the form
(), B8 opposed to div(A(x)Vu(x)). The condition J(x, k) =J (x,—h) for all x and
h # 01is similar to the symmetry of the matrices a;;(x). In the second order case, the
main program for proving regularity of solutions of equations similar to (1.1) with
estimates that do not depend on the x-dependence of the equation (the so-called
“bounded measurable coefficients”) goes back to Krylov and Safonov [42] where they
prove Harnack inequality and Holder regularity for solutions of the second order
version of (1.1). Lihe Wang extends the Krylov-Safonov program to viscosity solu-
tions (c.f. [23]) of fully nonlinear second order versions of (1.1).

A Harnack inequality and Hoélder regularity results are obtained for linear
equations by Bass and Levin in [7] not assuming regularity of the kernel with respect
to the state variable. Global Schauder estimates are obtained by Bass in [5] where
almost no regularity with respect to the jump variable is assumed.

The key argument in the PDE approach to local regularity is sometimes re-
ferred to as a “point-to-measure” estimate or a “growth lemma” ([11, Lemma 10.1],
[15, Lemma 5.6], [47, Lemma 4.1]), the main consequence of which is what is known
as a sort of weak Harnack inequality which typically carries the name “L*-lemma”
([11, Theorem 10.3], [15, Theorem 5.1]). The main tool which is required to begin
this program is the Aleksandrov-Bakelman-Pucci-Krylov-Tso inequality which
only requires % to be a subsolution of (1.1) in a cylinder @ and less than or equal to
zero on the boundary. It gives (cf. [50, Theorem 3.14])

(2.12) sgp w < || fl o quary)

where [ is a special envelope of u, typically taken to be a concave envelope in (¢, x) in
the second order setting, but can be much more complicated in the nonlocal setting
[15, Theorem 4.1]. In fact, the absence of a nonlocal analog for the Alexsandrov-
Bakelman-Pucci-Krylov-Tso inequality as well as an appropriate corresponding
envelope, I, for the nonlocal setting has been a significant stumbling block for both
the parabolic and elliptic non-divergence results. This is especially true when one
hopes to prove results which are robust as o« — 2—. In most of the existing works, a
finite cube approximation to the estimate has been devised as a substitute for (2.12).
Holder regularity results in these situations are derived by Caffarelli and Silvestre
in [11]. So far the only result in this direction which avoids coverings is [32] by Guillen
and the second author in the stationary setting of (1.1). By construction, these point-
to-measure estimates are inherently local results, and as a consequence most of the
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corresponding regularity results along this line of work are local as well. This is in
contrast to the divergence setting discussed above.

Although it applies to the elliptic setting, a key contribution to the non-diver-
gence theory is the work of Silvestre [47], where he studies the Holder regularity for
solutions of the stationary version of (1.1). The results are not robust, but they do not
make any sort of special symmetry assumptions on the kernels, and the method of
proof of the point-to-measure estimate has been a significant inspiration for [48] and
[15]. An interesting and important phenomenon of competing scaling influences
happens when (1.1) contains a drift term, b(x) - Vu, and the order is o = 1. In this
case the gradient term (which is non-regularizing) and the nonlocal term, Lu, (which
is regularizing) have the same order— so a priori it is not clear which influence will be
dominant. In [48], Silvestre proves that indeed the nonlocal term has enough influ-
ence to regularize and solutions will be classical. Note that we do not review the
results for the 2-dimensional dissipative surface quasi-geostrophic equations. These
are equations of the form (1.1) including a drift b which is assumed to be divergence
free — so not quite within the scope of (1.1). The critical case is o« =1 and
v; € L*(BMO), see [39], [13] and [43].

Very recently the fully nonlinear, non-divergence version of (1.1) was treated by
Chang Lara and Davila in [15], where they prove robust and local Hélder regularity
via a hybrid of the methods from the stationary case [11] and a modification of the
techniques of [48].

There are also some results which use methods other than the ones above.
Related to a Hamilton-Jacobi version of (1.1) (similar to the equation treated by
Silvestre), Droniou and Imbert in [24] and Imbert in [33] study regularity properties
and deduce classical solutions in many situations. These results do not recover the
critical result of o = 1. Very general local and nonlocal fully nonlinear parabolic
problems are treated via representation formulas from optimal control in [14]
Cardaliaguet and Rainer. They prove that solutions are uniformly Hélder regular
with bounds which only depend on the relevant extremal operators— hence only
lower and upper bounds, but not on the regularity in the coefficients in x— for their
version of (1.1). An example of such an equation would be

w + H(e, Vu, D*u) — Lu = f,

where L is a non-divergence form of (1.2).

2.3 - Related areas

Let us also mention the currently very active field of potential theory for sub-
ordinate Brownian motion. A model case of a generator would be given by
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L = ¢( — 4) where ¢ is a complete Bernstein function. In this specific case one can
employ several formulas in order to prove estimates on the heat kernel or the Green
function. But if one considers operators with variable coefficients which generalize
@( — A), then one faces several obstacles, the absence of scaling properties being one
of them. Moreover, there are interesting limit cases where the order of differ-
entiability, which in general is a function and not just a number, is very close to zero
(Iess than any positive ¢) or very close to 2. We refer the reader to [38] for an in-
troduction and to [37], [18] for recent contributions concerning regularity. The
existence of solutions to parabolic nonlocal problems in non-divergence form has
been studied by several authors (and long ago). We only mention [1] Land [44] and
refer the reader to the references therein.

2.4 - Discussion of Theorem 1.1 and Theorem 1.2

Let us underline, in light of the aforementioned articles, what we view to be
the main contributions of the approach laid out in [28] and extended in the
present work.

We prove local regularity results such as a weak Harnack inequality. By a “local
regularity result” we understand an assertion for functions which are supposed to
satisfy the corresponding equation only in a certain bounded set. The assertion then
says something about these functions in the interior of this set. Harnack or weak
Harnack inequalities are protoptypes of such results. In the introduction we already
mention that our results are robust for o " 2, i.e. the constants in our main theorems
do not depend on a € (ap, 2).

3 - Two examples

The two main examples we have in mind for our results are the singular measure
supported on the axes

d
(31) :umces(xa dy) = Z |'%'l - yi‘iliadyi H 59?7(dy]) )
=1 i

! Note that one of the main assumptions in [1], condition (1.4), contains a typo, it should be
ki(x;y) > cly| ™ for small values of |y|.
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and the measure in R? supported on a cusp near y = 0

82) Heusp @ AY) = Ly fo oy ooty @ — N — |y,

Here we have used the notation for z € Rd, z2=1(21,22)and 0 < s < 1.
The canonical measure is

(3.3) (e, dy) = |x —y| ™" "dy.

The measure (,,, corresponds to a pure jump process whose coordinates are
given by independent one dimensional Lévy processes of order o. As indicated by
the product of J,, measures, this measure only charges differences of x and y
which occur on one coordinate axis, and this corresponds to the fact that each
jump occurs along one of the coordinate directions. The measure /i, is simply
the restriction of the a-stable measure |x — y|_d_°‘dy to the set where x — y fall in
the cusp region.

Remark. Itis worth emphasizing that y,, gives rise to an operator which is
not of o order, but rather of order

B=0A—-1/s)+a<a iff>0.

The lower order comes from the fact that the cusp causes spheres of small radius
to be charged with a larger power of # than in the case with the canonical
measure, /,. Not surprisingly this places a restriction on the possible choices for
s once o is fixed.

In the remainder of this section, we check the assumptions for these two im-
portant example measures. It will be useful to have some notation.

(3.4) Enn(ity0) i “(u(x) — Uy @) — v, dy)da
AB

(3.5) £ = &, for pe,dy) = v —y| ™ dy

(3.6) £ — £, for 1, dy) = oy

(3.7) ENP =&, for p(w,dy) = feysy-

Lemma 3.1. u,,,, satisfies (K1).

Proof of (Ky) for s¢,,,,. This will follow from the simple observation that the two
measures, (i,... and u,, charge any annulus centered at « with a value which only
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differs by a dimensional constant. Indeed given any » < R and R(x) = Br(x) \ B,(x),

R
d d
Hazes (0, R)) = J > [%i — il "y [[ 0 (dyp | =2 J lys| 7 dy;
Rix) =1 i i1
(2) -
= %(/}/ﬂ_“ _ R—OC)’
o
and
du cd), B
e R@) = [ o=yl =S L0 - R,

R(x)

where C(d) is the surface area of the d — 1 sphere in this case.

Now we see that writing both integrals of (K;) using e.g. dyadic rings makes the
calculation equivalent to that of the canonical measure, y,, which gives the desired
result. O

Lemma 3.2.  u,,, satisfies (K1).

Proof of (Ky) for u,. This follows almost exactly the argument of the case
of 14,0, €xcept here we can actually work with the surface measure on 9B,(x), since

Heusp 18 absolutely continuous with respect to Lebesgue measure. It is easiest to note
that we can represent the contribution of
(3.8) J Va2 @ — Pl =y~ *dS,(y)

0B,(x)

as a fraction of the contribution
(3.9) J & —y| " *dS, ().
0B, (x)

If we let m4(0) be the proportion of the sphere which is within an angle of 0 with the
positive zp-axis we see that the measure i, only allows for a contribution from a
small portion of the sphere depending on . We have

jegfsziy @ = )l — y| A8, () = ma(00) J @ =y~ dS (),
OB, (@) OB, (x)

for

O(r) = sin* <z1—(7ﬂ)> .
Va()® + 21(r)?
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Here we have used the notation that given any fixed #, z1(r) is the unique positive
solution of
7 =20 + 200

The most important feature of this relationship is that for » small (which can be
quantified in terms of s),

l21(r)| = /5.
The key observations which both identifies the correct fractional scale of the energy

associated to y,s, and the fact which allows us to verify (K;) are that for » small
(uniformly, depending only on d and s),

ma(0(r)) ~ Crd=9/s,
and for r large,
ma(0(r)) — 1.

The small » behavior of ,,, is the main determining factor for the true scale of the
operator in (1.2). Indeed we see, for example, that for r << 1

J|z|2,u(0,dz) ~ CJTO*SVSJ |2[*97dS.(2) :J J 2276548 (2).
0 0

B, 0B, 0B:

This tells us that x,, does not have scale o, but rather satisfies (K;) and (Kz) with the
scale

/3:(1—%)+o¢<o¢,

as long as f is positive. These heuristic arguments can be made rigorous in checking
(K1) by choosing a cutoff, 7y, which depends only on a lower bound of s, say sy < s,
such that

1
59(1") < sin(0(r)) < 0(r)
and
. 1 1-s 1 (1-s)/s
sin(0(r)) < 5210 < 57 ,
2 2
for all » < 7y. Then the integrals in (K;) can be split at 7y and estimated using either
m(0(r)) < C(d, so)r'

or
1> m(0() > C(d, s0). O
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Lemma 3.3. g, satisfies (K2).

Proof. of (Ky) for p,,.,. We include the details for the case d =2, and then
comment on the few modifications for the general dimensional case at the end. So
temporarily assume d = 2. First we note that it suffices to check the inequality for
v € C%(B). This assumption on v allows us to both ignore a small neighborhood of
the diagonal of B x B and to write all of the energies in terms of Riemann sums. This
will make the accounting of terms easier. We use the following notation

N fixed, depending only on v

Ah = ZNp fixed, depending only on v

Ay = Ax = Ah

Ar = Ah
4h

(3.10)
(3.11)
(3.12)
(3.13)
(3.14)
(3.15)  {(wj,yx)} = centers of the cells of (A7) x (47 B x B
(3.16) w; ~ yy if either ()1 = (yi)1 or ()2 = (Y2

(317) 7k = | — Yl

(3.18) i = ((w;) — v(ys))

(319) Ry = {yr € Byl \ Bi-nu(@) B}

(3.20)

Yim = Y. if the l4r, mA0 (polar) cell lies a majority within @ 4, (yy).

Here we include all of Ax, Ay, Ar, Ah, 40 even though we set equality
Ay = Ax = Ah = Ar and 460 = 4h/(2rp). This is just to try to indicate which integrals
we are discretizing in various lines of the calculation. The main discretization
parameter is 4k, and this is chosen based only on the C%! norm of v to ensure that all
approximations of the various integrals are within a given tolerance of the con-
tinuous versions.

It will be convenient to approximate the original energy in cartesian coordinates,

A S P Ayuw

5 Yo ik

the canonical energy in both polar coordinates in the inside integration

appm Z Z Z TJ;CAMH(A%)

YR () Jk
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and finally the canonical energy in cartesian coordinates

Exppror = D Z

&L Yk ]k

We have chosen to work with a uniform grid in cartesian coordinates, with cells
centered at (x;,y;) € B x B. Since v is fixed and in C%1, the grid size can be chosen
small enough so that this collection of cartesian grid points {(x;, %)} is sufficient to
resolve both the cartesian and polar approximate decompositions. This is relevant
because the polar approximation grid does not match the cartesian one, but if 4k is
small enough the cartesian points can be used for the polar ones without adding
significantly to the overall error.

Step 1: &35 > C(d)ER 3.

The strategy is that we can link £ with £* via an intermediate energy which
has the same weights in 7, and 4y as £ but sums over all ¢; and y;. instead of only

Yk ~ X

(3.21) Fo)=3" Z(”(“’“) lfj(y’“)) Ay( ).
Lo Yk
The inequality
(3.22) 2((W(x) — v@)) + W) —v@))) > (V@) — v(y))?

allows us to recover the contribution between any two points, « and y from that
of points which satisfy « ~ y. Specifically, given « and y, the choice of z = (1, y2)
allows for such a connection. In particular, for z fixed, all of the entries on the
axes passing through z will need to be used CN (C is dimensional) times in
connecting all of the x and y lying on the axes passing though z. This gives the
inequality

(3.23) ANEGe  =4N > Z Ah(Ah)z
T Y~ ]k
(3.24) > Z Ah(Ah) = F().
T Yk

Next we work from F(v) to £;,,,,,, by using polar coordinates for the inside in-
tegral. The reason for initially discretizing in polar is to more easily see the balance

between the unmatched powers of rj, and Ay between £ and £”.
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(3.25) F) = Ahz Z e r,kAhAh(Ah)z

T Yk ik
2
v
(3.26) =(C(d))mz SN S rar@rpao) )
G Rie)) yeeRilay) gk Ik
2
V-
(3.27) (C(d))— DD #ﬁ(mzlwiﬂ(zlx)z
i Ry(ay) ?//cERZ(Wj) Jk
2N
(3.28) = C(d)”— Y Z
96'7 Yr
(3.29) = C(ANE, 1oy -

Again, due to the C%! nature of v, N and 4k, can be chose appropriately so that we can
deduce

(3.30) Epp > C(d)Eg ps

which completes step 1.
Now we move on to the easier step.

Step 2: 3% (v,v) < C(A)ER 30, ).

We again appeal to the intermediate energy (3.10). We reuse the above calcula-
tion, where instead we make use of the inequality

(3.31) (@) — v@)? + (W(z) — v(y))2 < () — v(y)*.
(3.32) ANERS =" Z e Ay(Ax)

Tj Y~ 7]0
(3.33) < Z Z(v(xk) 1+7:(?/k)) y (Ax)z
(3.34) = CANE; 0 -

This completes the argument for d = 2.

For an arbitrary dimension, the main modification is in the number of times a
given line will be used as auxiliary points to connect arbitrary x; and y;, on the grid. In
this case, each y; in £, will be used CN~! times to make these connections.
Matching this power of N¢! is the term #?~(4h)*™! which must be introduced to
F(v) to be compatible with the approximation of £ in spherical coordinates. Thus we
end up in the same situation (neglecting dimensional constants) with a multiplication

by N1 on both sides of the inequality. O
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It turns out to be at least a little bit non-trivial to check (Ky) for the measure, 1,,-
Instead of giving a Riemann Sum argument as for y,,,., we use the fact that (Ky) has
already been verified in [25]. We note that none of the constants in the proof of [25]
depend p in the underlying set, B.

Lemma 3.4 ([25]). ey, satisfies (K2).

4 - Proofs

In this section we explain how to prove Theorem 1.1 and Theorem 1.2. We closely
follow the strategy of [28] and restrict our explanations to those parts of the proofs
which are different for our set-up.

Let us first explain what it means that a function R x RY — R satisfies equation
(1.1) in a bounded region in the weak sense. For o € (0,2) the Sobolev space of
fractional order o/2 is defined by

(4.1) H2(Q) = {v € LAQ): ||| gy < +00}
where the norm is defined by

v(@) — v(y)
(42) ||”||12L1«/2(Q) = ||7)||i2<9) +@- “)J J| a+d| dady.

We denote by H”/ 2(Q) the completion of C°(Q) under || - | Ho2RY and by H*/? the
dual of Hy /2 . By inf v and supv we denote the essential infimum and the essential
supremum, respectively, of a given funktion v.

4.1 - Weak solutions

We define a nonlocal bilinear form associated to L by

(4.3) Ey(u,v) = J J [ut, y) — ult, ©)][v(t, y) — v, ©)]at, x, y)ue, dy)dz.

R? R?

Let us recall the notion of local solutions from [28].

Definition 4.1. Assume Q=1xQ C R and f e L*@). We say that
u e L”(I;LOO(Rd)) is a supersolution of (1.1) i @ = I x Q, if

() u € Chopl; L2 I H/*(Q)),

loc

@)nLj

loc loc
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(ii) for every subdomain Q'€ @, for every subinterval [t1,t2] C I and for every
nonnegative test function ¢ € H} (I;LA(Q)) N L2 (I; H, g/ 2Q)),

loc loc

(4.4) J @(tz, )ultz, x)dx — J (1, vulty, x)de
@ @
tz tz t2
- J J u(t, )0, x)dadt + J&g(u, d)dt > J J S, 0, x)dadt.

t t @

Instead of writing that « is a supersolution in I x Q we write d,u — Lu > f in
I x Q. Subsolutions and solutions are defined accordingly. Working rigorously with
local weak solutions for parabolic equations requires some care. Instead of the de-
finition above we will use the inequality

4.4 J@tu(t, )¢t x)dx + E(ult, ), g, ) > Jf(t,x)¢(t,9c)dac for ae. tel,
o ol
for test functions of the form ¢(t,x) = w(x)u=9(t,x), ¢ > 0, where u is a positive
supersolution in 7 x 2 and y a suitable cut-off function. In particular, we assume that
u is a.e. differentiable in time. The use (4.4') can be justified using Steklov averages.
A second crucial ingredient in our proof is the scaling property of (1.1) which we
are now going to explain.

4.2 - Scaling

We will often make use of scaling. Let us explain how the operator under
consideration behaves with respect to rescaled functions. Define B,(xg) =
{x € R%: |x — m| < r} and

I,(to) = (to — 7%, 10 + 1), Qr(wo, to) = I)(to) x Br(xo),
I (r) = (0,7, Qu(r) = I5(r) x B(0),
Io(r) = (=1%0), Qo(r) = I5(r) x B(0).

Lemma 4.2 (Scaling property). Leta €(0,2), ¢ € Rd, 7 € Randr > 0. Define
a diffeomorphism J by J(x) = re + & Let u be a supersolution of the equation (1.1)
i some cylindrical domain I x Q = Q2Q,.(&, 7). Define new functions u by
u(t, x) = u@*t + t,J (@) and f by [, x) = v*fr*t + t, 72 + ).

Then % satisfies Ou — Lu > finj x J7H(Q)>( — 1,1) x By(0), where L is defined
as in (1.2) with a(t, x, dy)u(xe, dy) defined by

(4.5)  at,x,y) =a0t+rre+Ery+ &), e, dy) =r*(uo ) Jx,dy)
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where (o J)(z,A) = u(z, J(A)). The function a is positive, bounded and symmetric
as s a. The family of measures u(-, dy) satisfies assumptions (Ky) and (Kg) with the
same constants as in the case of u(-,dy).

Proof. Since the coefficient, a, is only modified by a straightforward change of
variables, we take for simplicity a(t, x,y) = 1. A general a does not modify the argu-
ment, but just adds extra notation.

Now we must verify (4.4) for % in (—1,1) x B1(0). We start with a set,
I' x @ c (—1,1) x B1(0) and a test function, ¢ € H} (I'; LA(Q")) OLZZOC([’;Hgﬂ(Q’)),

for the % equation in I xJ1Q)>(— 1,1) x B1(0). The definition of 1 is exactly
chosen so that (4.4) reduces, after a change of variables (s, z) = (**t + 7,J(«x)), to

(4.6) J ¢(82,J’1(z))u(82,z)r’ddz— J ¢(31,J’1(z))u(sl,z)r’ddz
J(@) J(2)
—J J w(s, 2)r*Osp(s, J 12)r dderdt
s1.J(Q)

S2

+ J J J(u(s,z) —u(s,w))(¢(s,J 1 (2)) —¢(S,J’1(w)))r“u(z,dz)r’ddwr’“ds
S1 Rd Rd
> J J £ (s,2)d(s,J 1 (2))r derds.

s1.J(Q)

Since r‘dgﬁ(r‘"( 41, J71(-)) is a valid test function in [s1, s2] x J(Q) C Q,(&, 1), we
conclude by the supersolution property of « that (4.6) holds true.

We also briefly verify that i satisfies (K;), (Ks) with the same constants as . First
we verify (K;). Let p > 0 be fixed, and without loss of generality we check the con-
ditions at &y = 0 as any other xy follows the same argument mutatis mutandi. We
calculate the two integrals with the change of variables ¥ = J~1(z). This gives

(4.7) p’zjlylzﬁ(O,dy):p’z j T @), dy)
B, J(B,)

(4.8) =p2 J 2 — EPr 2 u(E, dy)
By,(©)
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(4.9) Jﬁ(o,dy): J Pu(I(0), dy)
B,° J(B®)
(4.10) = J ru(E, dy).

(B (©)°

Therefore after this change of variables, combined with (K;) for x, we have

(4.11) o [ltro.ap+ | 7.y
B, B,)"
(4.12) = 7‘“(7",0)72 J |z — £|2,u(0,dy) + 7 J 10, dy) < ¥ A(rp)*,
B,(©) By

and hence (K;) holds for 1.

Next we turn to (Ky). We change variables for the 7 energy as x = J~!(w) and
y = J1(z). Then, owing to the fact that x satisfies (Ky) in the set J(B) with the test
function =42y o J~1, we have the validity of (4.15)—(4.17) below.

(413) a7 J J[v(m) — ()P, dy)dae

B B
(414) =47 J J [0 1)) — o)1 w T (I ), AT @)y daw
J(B) J(B)
415) =4" J J [ 920 ) — 20T (@)] P e, d2)duw
J(B) J(B)
(4.16) <@2-a) J J [ 20 1)) — P 1 @)] P — 2|~ dedw
J(B) J(B)
417) <4 J J [ 920 aw)) — 20T (@)] P e, d2)daw
J(B) J(B)
(418) = AJ J[v(ac) — ()21, dy)de.
B B
Hence 1 satisfies (Ks). O

Assumption (Ky) assures that we can apply standard Sobolev and Poincaré em-
beddings. We also need a weighted Poincaré inequality of the following form:
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Proposition 4.3 (Weighted Poincaré inequality). Let ¥:Bjs ;2 — [0,1] be
defined by ¥ (x) = (Q - |x|) A 1. Then there is a positive constant ca(d, oy, A) such

that for every v € LY(Bg )z, ¥ (x)dix)

J [v(x) — vy PP (x)da < cs J J [w@) — V()] (P (@) AP () ute, dy)dae
By» Bgjs Bgjs

where vy :( | ‘P(x)dac) - | v(@)¥ (x)da
Bs/o B3)s

The result is a simple application of [26, Theorem 1]. A more involved proof for a
smaller class of weights and not being robust for « — 2— can be found in [16].

4.3 - Moser iteration

The main idea of the proof is to use the lemma of Bombieri-Giusti and to apply
the Moser iteration in order to fulfill the conditions in the lemma. So we need to
iterate positive and negative powers of the supersolution. Let us first look at
negative powers. The following proposition is established by using as a test
function @(t,x) = u~9(t, x)y? 1 (x) where ¢ > 1 and w: RY — [0,1] is defined by

(R — x|
w(ac)—<R_T /\1>\/O.

1 .
Proposition 4.4. Let 5 <r<R<1 and p>0. Then every nonnegative

supersolution uin @ = I x Q, Q Q- (R), with u > & > 01 Q satisfies the following
mequality

(4.19) ( J

1/k
ﬁ"p(t,x)dxdt> <A J w P, x)dxdt |
QQ(?")

Qs(R)
~ o
where = u + || f |~y ¥ =1+~ and A can be chosen® as

d
(4.20) A=Cp+12((R—r)"+® —)7")  with C = C(d, o, ).

% Note that in the cases d € {1,2} one would need to adjust the definition of x.
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The only difference in the proof to the version in [28] is the following: This time,
rather than estimating

4 J J[l//(x) — )P, )y, y)dydae
Br B,

from above, we need to estimate

4 J J[l//(x) — ) Pat i, walt, ¢, y)ute, dy)de
Br B,

gm&mm—mﬂjwﬂmmm,

Br

which is possible due to assumption (K;) and properties of w. Once, Proposition 4.4 is
established, we can iterate the result and obtain:

. . . 1
Theorem 4.5 (Moser iteration for negative exponents). Let 5 <r<R<1

and 0 < p < 1. Then there is a constant C = C(d, oy, A) > 0 such that for every
nonnegative supersolution u in Q@ =1 x Q Qd3Q=(R), with u>¢e>0 i Q the
following estimate holds:

1/p

C 1/p

(421) Sup ’ﬁil < (m) J ﬁfp(t, x)d.’)cdt s
() ’

' Qs(R)

(R — )" if a>1,

where = u + ||f ||~ and G1(r,R) =
/11 @ 1 {(R“ _ /s if o<1

Let us recall that « would be different if d € {1,2}. Next, we apply a similar
procedure for positive powers of supersolutions. As a result we can estimate the L!-
norm of supersolutions % from above by the L!-norm of »? for small values of p > 0 as
in the following theorem:

1
Theorem 4.6 (Moser iteration for positive exponents). Let 5 <r<R<1
and p € 0,k 1) with k =1+ g. Then there are constants C, wy, we > 0 depending

only on d,ay, 4, such that for every nonnegative supersolution u in Q =1 x Q,
Q2Q:(R), the following estimate holds:

_ c UL o
Qa(r) Qa(R)
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R—-r" if a>1,

where i = u + . and Ga(r,R) =
171y ant G { R-1> ifa<l

At this stage we make an important observation. Since we are working
with supersolutions (and not with solutions) one cannot expect to estimate the
supremum of % in Qg(r) but only the L'-norm. Note that for nonlocal equa-
tions, under our general assumptions, this is not possible even for solutions. If
it were correct, then we would be able to prove a Harnack inequality it its
strong formulation which we know to fail, see the discussion in the in-
troduction.

4.4 - Estimates of log (u) for supersolutions u

The estimates on log (1) are always quite delicate in the theory of De Giorgi-
Nash-Moser. In the case of second order differential operators, the following in-
equality for nice positive functions w,w is important:

(4.23) J Y V( -yt > % Juﬂ(vmg w))?—2 J (V).

In the nonlocal case we have a substitute for this inequality of the following
type:
gt(w; _szil)
w(t, y) w(t, x)
> X lo —1lo
> [ [rown log "5 - 10g "0

2
> a(t, x,y)ute,dy)de — 3 Ely, w).

Using this observation and the technique of [45] we obtain the following estimate
of the level sets for log (u):

Proposition 4.7. There is C = C(d, a9, A) > 0 such that for every super-
solution uw of (1.1) m Q= (—1,1) x Bo(0) which satisfies u>¢e¢>0 1n
(—1,1) x R% there is a constant a = a(@) € R such that the following inequalities
hold simultaneously:

(4.24a) Vs > 0: (dt ® da)(Qs(1) N {logt < —s — a}) < —C|fl‘ :
(4.24b) Vs > 0 7 C|B1|
: s> 0:(dt @ do)(Q=D) N {logu > s —a}) < s

where w = u + 1|y
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4.5 - The proof of Theorem 1.1 and Theorem 1.2

Let us explain how the results of the previous subsection lead to a proof of
Theorem 1.1.

Proof of Theorem 1.1. The main idea is to apply the famous lemma of
Bombieri-Giusti, proved in [45, pp. 731-733]. The version we use can be found in
[46, Section 2.2.3].

Let u as in the assumption and define % = u + [|f|| (- Without loss of gen-
erality we assume % > ¢ for some ¢ > 0. Next, wesetw = e “u ! and w = w™!
where a = a(u) is chosen according to Proposition 4.7, 1.e. thereis ¢; > 0such that for
every s >0

= ey,

425) Qo) {logw > s} < 22U 1' U and |Qo(1)ﬂ{logw>s}|<cl| il

We apply the lemma of Bombier-Giusti twice: first to w on a family of domains
U= U(r)) <<l and then to  and a family of domains U= (IA] (7)) L<r<t- Theorem 4.6
and Theorem 4.5 are needed for this step. Let us restrict to the case « > 1. In this
case the families ¢/ and I/ are given by

UQ1) = Q(1), Ulr) =1 —-7*1) x B,,
U1 =Q-1), T@)=(-1,-1+1") x B,.

We obtain
supw = e * supﬂ_l <C and H@”Ll(U( 1y) ‘1” ||L1(U( m
U UG

Multiplying these two inequalities eliminates a and yields

nf 7
iz ||L1(U( b S0 }]r(lé)u

for a constant c; = C C that depends only on d, oy and A. This proves (HI) in the case

o > 1. The case o < 1 is similar. O

We will not explain the details of how Theorem 1.1 implies Theorem 1.2. This
implication is straight-forward for differential operators of second order. In the case
of nonlocal operators one has to take care of the fact that the auxiliary functions
M(t,x) = supg u — u(t, x) and m(t, x) = u — infg u are nonnegative in @ but not in all
of R?. That is why one cannot apply Theorem 1.1 directly for f = 0. The idea is to
define f (¢, x) = (Lu~)(t, x) which is a bounded function in a region if « is nonnegative
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in a slightly larger region. This step is carried out in [47] for elliptic equations and
works well for parabolic problems.
Note that this approach requires

(Ks) sup J & — yP e, dy) < Co
x€B2(0)
R%\Bs(0)

for some 6 € (0,1) and Cy > 1. This condition follows from (K;). If one assumes (K;),
(K5) for bounded radii p only, then one would need to assume (K3) in order to prove
Theorem 1.2.

Acknowledgments. We thank Matthieu Felsinger for several helpful com-
ments.
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