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Two remarks on the local behavior of solutions to logarithmically
singular diffusion equations and its porous-medium type
approximations

Abstract. For the logarithmically singular parabolic equation (1.1) below, we
establish a Harnack type estimate in the L}, topology, and we show that the solu-
tions are locally analytic in the space variables and differentiable in time. The main
assumption is that Inwu possesses a sufficiently high degree of integrability (see (1.3)
for a precise statement). These two properties are known for solutions to singular
porous medium type equations (0 <m < 1), which formally approximate the loga-
rithmically singular equation (1.1) below. However, the corresponding estimates
deteriorate as m — 0. It is shown that these estimates become stable and carry to
the limit as m — 0, provided the indicated sufficiently high order of integrability is
in force. The latter then appears as the discriminating assumption between solu-
tions to parabolic equations with power-like singularities and logarithmic singula-
rities to insure such solutions to be regular.
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1 - Main results

We continue here the investigations initiated in [2, 3], on the local behavior of
non-negative solutions to logarithmieally singular parabolic equations of the type

u € Cioe (0, T, LE(E)), Inue L2 (0,T;WAE))

loc loc loc

ug — A Inu =0, weakly in By = E x (0,T]

(1.1)

where E is an open set in RY and T > 0. It is assumed throughout that

N
(1.2) uw € Ly (Er) for some » > max {1; E}

loc
and that
(1.3) Inu € L5, (0,T; LY (E)) for some p > 1.

loc
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The modulus of ellipticity of the principal part is %~ 1. Therefore, the equation is
degenerate as u — oo and singular as 4 — 0. It was shown in [2] that (1.2) implies
that u is locally bounded in E'7, and hence the equation is not degenerate. Likewise
if (1.3) holds for some p > N + 2, then the solution « is locally bounded below, and
hence the equation is not singular. As a consequence u is locally, a classical solution
to (1.1). This was realized by establishing a local upper and lower bound on u, via a
pointwise Harnack-type estimate.

The main results of this note are that if « is a locally bounded, weak solution to
(1.1), then:

i. If Inu satisfies (1.3) for some p > 2, then u satisfies a local Harnack in-
equality in the LllOc topology, as opposed to a pointwise Harnack estimate.
ii. If Inu satisfies (1.3) for some p > N + 2, then u is locally analytic in the space

variables uniformly in ¢, and C* in time.

1
loc

2 - Harnack type estimates in the topology of L

For p > 0 let K, be the cube centered at the origin of RY and edge p, and for
y € RN let K, (y) denote the homothetic cube centered at y. Moreover, @,(0) denotes
the parabolic cylinder K, x ( — 0p?,0]. For 0<s<t¢ < T and y € E let p be so small
that Ks,(y) x (s,t] C E7. Since u € L%, (E7) the quantity

loc

(2.1) M = esssupu
Koy x(s,t]

is well defined and finite. Also, if (1.3) holds then the quantity

pdac)’l]

u(x, 1)
2.2 A, =
22 p=esow (| |m*
Kz (y)

is well defined and finite.

Proposition 2.1. Let u be a non-negative, local, weak solution to (1.1)
satisfying in addition (1.2) and (1.3) for some p > 2. There exists a positive
constant y depending only on {N,r,p} and A; and Az, such that for all cylinders
Ko, (y) x [s,t] C Ep, there holds

. t—
(2.3) sup J u(x, de < y| inf J w(ax, T)dx + —f ,
s<t<t s<r<t 14
K, Ko (y)
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where

(2.4) i=2-N.

2.1 - Weak solutions versus distributional solutions

The LllOc Harnack type estimate (2.3), continues to hold for merely distributional

solutions to the second of (1.1) whereby Inu is only in Llloc(ET). The assumption (1.2)
however is still in force, and (1.3) is required to hold only for some p > 1. The
constant y depends only on A, for some p > 1.

In § 5 we will prove (2.3) first for such distributional solutions. The proof is
rather simple due to the linearity of the principal part with respect to Inu. The
linearity however is immaterial, as (2.3) is a structural inequality valid for weak
solutions to quasilinear parabolic equations with singularity and degeneracy of the
same nature as (1.1). To be specific, consider non-negative, local, weak solutions to
quasilinear parabolic equations of the type

u € Cloe(0, T; LE(E)), Inu e LE (0,T; WiA(E))
(2.5)
uy — divA(x, t,u, Du) =0 weakly in E7p.

Here the function 4 : Er x R — RY is only assumed to be measurable and
subject to the structure conditions
I’
Ae,t,u,p)-p > Co—
(2.6) u a.e. in Ey,

At p)] < 12

where C, and C; are given positive constants. Assume that « and Inu satisfy (1.2)-
(1.3) and introduce M and A, as in (2.1) and (2.2). Then u satisfies (2.3) with y de-
pending on the data {N,»,p,C,,C1} and 4; and As.

The proof of this fact is more involved and it is given in § 6.

3 - Analyticity of local weak solutions to (1.1)

The precise statement of these results hinges on the notion of “intrinsic neigh-
borhood” of a point (x,,t,), as determined by the degeneracy and singularity of the
equation in (1.1).
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3.1 - The intrinsic geometry of (1.1) and main results from [2]

Let u be a non-negative, local, weak solution to (1.1). Having fixed (x,,t,) € E7,
and Kg,(x,) C E, introduce the quantity

(3.1) 0 %! s( ][ e to)dac)%

K(x,)
where ¢ € (0,1) is to be chosen, and ¢ > 1 is arbitrary. If > 0 assume that
(32) (xoa to) + QS/)(G) = KS/I(:X:O) X (to - 0(8,0)27 to] C ET-

These are backward, parabolic cylinders with “vertex” at (x,,%,) whose height de-
pends on the solution itself through the quantity 6. In this sense they are intrinsic to
the solution itself.

Continue to assume that u satisfies (1.2) and let Inwu satisfy (1.3) for some
p > N + 2. Then

(3.3) M = esssup u
(@0,t0)+Qs,(0)

is well defined and finite. Moreover the dimensionless quantity

(3.4) n= |: J; (u(jﬁ‘;o)>quj|%ﬁ: (%)ﬁ

K, (x,)

is well defined and strictly positive. Finally the dimensionless quantity

P2

(8.5) A, = esssup ( } ‘ In e, 1) dm)”, for some p > N + 2
to—08p)? <t<t, M

KS/)(xn)

is well defined and finite.

Theorem 3.1 (Pointwise Harnack estimate [2]). Let u be a non-negative,
local, weak solution to (1.1), satisfying the integrability conditions (1.2) and (1.3)
for some p > N + 2, and assume 0 > 0. There exist a constant ¢ € (0,1), and a
continuous, increasing function n — f(n, A,) defined in R* and vanishing at n = 0,
that can be quantitatively determined apriori only in terms of {N,p,q}, and A,
such that

inf u(-,t)>fn,4,) sup u

Kap(@o) @0 k) +Q2,(30)

(3.6) .
- 2
forall t e (to =00, to].
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For n— 0 and A, — oo, the function n — f(y, 4,) can be taken to be of the form

Ci

A
(3.7) ) = exp{ - ,752 } foro<n<1 and 4,1

for positive constants Cy and Cy that can be determined apriort only in terms of
{N,p,q}. Moreover

(3.8) e—=0and C1+C;—o00 asp—oo orp—N-+2.

Remark 3.1. In [2] the constant # was given a more general form. For the
purpose of this note the definition (3.4) represents the degeneracy of the equation,
quantified by M — oo. The occurrence A, — oo quantifies, roughly speaking, the
singularity of the equation.

3.2 - Analyticity in the space variable, of solutions to (1.1) at (x,,t,)

Theorem 3.2. Let u be a non-negative, local, weak solution to (1.1), sa-
tisfying the integrability conditions (1.2) and (1.3) for some p > N + 2, and assume
0 > 0. There exist two parameters C and H, that have a polynomial dependence on
fap), If (;7)]*1, N, such that for every N-dimensional multi-index o

CH"™|o|!

p\“|

(3.9) |D*u(,, to)| < (o, tp)-

Moreover, for every non-negative integer k

ak
— (X, o)

CHZ(2k)! -
ot '

S ——5— W, b)

(3.10) <

Remark 3.2. The theorem continues to hold, with the same assumptions, for
local, weak solutions to the quasilinear equations (2.5), provided the function A is
analytic in all its arguments whenever u is bounded above and below by positive
constants.

4 - Approximating (1.1) by porous medium type equations

Consider local, non-negative, weak solutions in E7p to the porous medium
equation
) 1€ Coe0. T L), w e L, (0.T: W)
ug — Aw = 0, weakly in Er = E x (0,T]
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where

mo__
(4.2) w1

m

for 0<m < 1.

As m — 0, formally (4.1)-(4.2) tend to (1.1). In [3] a precise topology was introduced
by which such a formal limit is rigorous.

The main tool that allows us to do this, is a pointwise Harnack-type estimate,
which is stable for 0 <m < 1. Under this point of view, it is worth mentioning that

-2, was first proved in [1] for the
model equation, and then extended to more general operators in [4, 7]. However,
when one needs a version of such inequality which is stable with respect to m, as it
was the case in [3] and here too, despite a formal similarity in the statements, as-

the Harnack inequality in the range 0 <m <

sumptions, results and techniques are quite different.

A natural question is whether solutions to (4.1)-(4.2) satisfy a version of the LllOC
Harnack estimate (2.3), which as m — 0 tends, in some appropriate sense to be
made precise, to that of Proposition 2.1. A similar issue arises for the local analy-
ticity of Theorem 3.2.

4.1 - Harnack type estimates in the topology of Ll , for weak solutions to (4.1)-(4.2)

loc?

A first statement in this direction is that » satisfies

(4.3) sup J w(e, tydae < y[ inf J w(, v)dw + (t - s ) 1] 7
s<t<t s<t<t P
K,(y) Koy
where
(44) Ai=Nim-1)+2.

Here y depends upon N and m and y(m) — oo as m — 0. Thus, one cannot formally
recover (2.3) by letting m — 0 in (4.3). However, (4.3) is rather general as it con-
tinues to hold for non-negative, local weak solutions to general quasi-linear version
of (4.1). Precisely

u € Cloc (0,75 LE(B)),  w € L2, (0, T; WEA(E))

(4.5)
uy — divA(x,t,u, Du) =0, weakly in Ep

where the function 4 : Ep x RV — RY is only assumed to be measurable and

subject to the structure conditions

A, t,u,p) - p > Cou™ ' |pf?

(4.6) 1
A, ¢,u, p)| < Cru™ " |p|

a.e. in Erp,
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where C, and C; are given positive constants. In such a case the constant y in (4.3)
depends also on these structural constants. The proof of these statements is in [5],
Appendix B.

A major difference between (2.3) and (4.3) is that in the latter « is not required to
be locally bounded, nor does y depend on some analogue of the quantity 4, as de-
fined in (2.2). This raises the question as to whether (4.3) holds with y independent of
m but dependent on some analogue of /,,.

Henceforth we assume

4.7 u € Ly (Ey) for some » > max {l;g(l - m)}
and that
(4.8) w e Ly (0,T; L (B))  for some p > 1.

It was shown in [5] that (4.7) implies that » € L{; (E7) and hence the corresponding
quantity M defined as in (2.1) is well defined and finite. Set

m __ m
M u(x, 1) )pdac

4.9) Ay p = esssup J ( o M

s<t<t
Ks,(y)

This is the analogue of (2.2), and, if (4.8) holds, it is well defined and finite.

Proposition 4.1. Let u be a mon-negative, local, weak solution to the
singular equations (4.5)-(4.6), in E'p. There exists a positive constant y depending
only on the data N, C,, Cy, and Awy, Ano and independent of m, such that (4.3)-(4.4)
holds true, for all cylinders Ka,(y) x [s,t] C E7.

As a consequence, (2.3) can be recovered from (4.3), with the indicated de-
pendences, as m — 0, provided proper conditions are placed, that insure the
pointwise convergence of the solutions to (4.1)-(4.2) to solutions to (1.1). These con-
ditions are identified in [3] and we will touch on them briefly in the next subsection.

4.2 - Analyticity in the space variable, of solutions to (4.1) at (x,,t,)

Having fixed (x,,%,) € Er and Kg,(x,) C I, the intrinsic geometry of (4.1)-(4.2) is
determined by

1-m

(4.10) O :e( ][ uq(x,to)dx) "

Kp(xo)
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The intrinsic cylinders are as in (3.2) with 6 replaced by 6,,. The analogues of # in
(3.4) are

(4.11) G:[ } (u(ﬁjo))qur%

K, (xo)

where » > 1 is any number such that
(4.12) A=Nm—1)+2r > 0.

In [5] a Harnack estimate of the form of (3.6) was proved for these solutions with
f(-) depending only on ¢ and of the form

of
(4.13) flo) = o)
where y(m) — oo as m — 0. The constant f depends on /, and f(4,) — occ as 4, — 0.
It was observed in [5] § 21.5.3 that, for each fixed m € (0, 1), such an estimate im-
plies the local analyticity of the solutions in the space variables about (x,,t,), and at
least the Lipschitz continuity in time.

Because of the indicated dependence of y(m) on m in (4.13), such a regularity
does not directly carry to the limit as m — 0. In [3] we established a Harnack es-
timate of the form (3.6) for solutions to (4.1)-(4.2) and its quasi-linear versions (4.5)-
(4.6), with f(-) depending on o, as defined in (4.11), and 4,,;, as defined in (4.9)
provided p > N + 2. The form of such f(-) is the same as that in (3.7) with the
proper change in symbolism. The new feature of such an f(-) is that, while de-
pending on the quantities ¢ and 4,,,, each quantifying the degeneracy and the
singularity of the equation, is independent of 7 and hence is “stable” as m — 0,
provided ¢ and A4,,, are uniformly estimated with respect to m.

As a consequence, the analyticity estimates of Theorem 3.2, can be recovered
from the analogous ones for solutions to (4.1)-(4.2) whenever solutions {u,,} to the
latter converge pointwise to solutions to the former. In [3] it was shown that this
occurs if there exists m,, € (0,1) such that

. 1
wm € LS (0, T; Lj, (E)) for some 7 > max {1; EN}

loc loc

Wy € Lo 0, T; LY (B)) for some p > N + 2

loc loc

(4.14)

uniformly in m € (0, m..). It is also required that there exists an open set £, C £
and a positive number og,.r such that

(4.15) J U, T)dxe > og,r  uniformly in m.

E,
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5 - Proof of Proposition 2.1 for distributional solutions to (1.1)

The proof is a local version of an argument of [8] for global solutions to the
porous medium equation for 0 <m<1. Let {; € CgO(RN ) be such that

0<G <1
(5.1) G=1 in K,
G=0 in RM\Ky,.

Then, by the divergence theorem

%ds:().

(5.2) J Ay dae = J Ay dac = J .

l[‘?\N KZ/I (r)KZ/;

By (6.2), for any positive constant M, any {; as in (56.1), and any non-negative
function v such that A{; Inw is integrable, we have

(5.3) J Ay Invde = J At In (%)dm

Kz/, KZ/)

Now consider {; € C°(0,+ 00) and {; as in (5.1), such that

Ci(N)

N
D5l <250, gy | < M)

o

By the previous notation, with « a solution to (1.1), we have
fJ J G Gudedt = J J Lo Al Inudxdt.
0 RjNY 0 RrY
Taking into account (5.3), for any positive constant M
da J Gude = J A (2 )de  in DO
dt 1 1 M ) )
K, K3,

Tl
and also in L;,,

(0, 7). Therefore

[ ()] < [ 14

2p KZ/’ KZﬂ

% J Cyuda In (%) de.
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By the definition of 4, and from the previous estimate

d

1
P X
< Ay < J IAC1”d%> |Ks,|”

Kg/, KZ/)
<4, CN) p%:C(Ap,N)
P2

pr

where A =2 — N. Taking into account the size of the support of {;, for any
0<s<t<T we conclude

J w(x, tyde < C(4,,N) J

K,

w(x, s)dx + t_s) .
p/»

K3,

6 - Proof of Proposition 2.1 for weak solutions to (2.5)-(2.6)

6.1 - An auxiliary lemma

Lemma6.1.

Let u be a non-negative, local, weak solution to the quasi-linear
singular equations (2.5)-(2.6), in Ep. There exist two positive constants y;, ys de-

pending only on the data {N, C,, C1}, such that for all cylinders Ky,(y) x [s,t] C Er,
and all o € (0, 1),

s K@)

J J |D“| 2 Pdadr < (1 + 41)S, +y2(/12+/12)( is),

where

S, = sup J u(-, T)dx.
s<t<t

Ka10,®)
Proof.

Assume (y, s) = (0,0), fix 0 € (0,1), and let & — {(x) be a non-negative
piecewise smooth cutoff function in Ky ,4), that vanishes outside K ), equals one
on K,, and such that |D({| < (op)_l. Let s; € [0, t] be such that

S, = sup J u(-, s)dx =
O<s<t

Ka10p®) Ka10p¥)
We also set

u(-, s1)dx.
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In the weak formulation of (2.5)-(2.6), take the test function

_ Qo 2
(o—(ln u) ¢

and integrate over @ = K14, x (0,1], to obtain

O—Jjgu<ln§) Czdmdr+JJA(x,r,u,Du)~DKln&> Cz]dacdr
ot u) g 3y
Q

=1 + 1.

We estimate these two terms separately.

I ) Cdxdr
u

[[(w%) mse ] (w5

QNu<S,]

J () (uln §+u) (@, t) d
KNt <3,] B
- J F(x) <uln i4—u> (2, 0) d.
K iopNu<S,] B
Next,

I = JJA(x,r,u,Du) -D[(ln %) cz} dx dt
+
Q

_ ” A, 7,0, Du) - D[( )Cz]dxdr

QNu<S,]
= - ” CZA(W,T,M,Du)%dxdr
QNlu<S,]
S,
+2 JJ {In EA(%‘, t,u, Du)D{dx dt

QNu<S,]
Dul?
< —Co J P 2' da de
u

S
+20, J glnﬁ%wmxdr
B u u
<

c, 2|Du| S, 1P
<-3 J % dd+—p2 “ In 27| dudr,

QNu<S,] QNu<S,]

[12]
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2
21

Co
Dul? S
G ” 20U g < J 2 (win 22 4w ) . t) due
2 u2 u
QNu<S,] K(1+,;)/;ﬁ[u<sa]

i So
ENIRLE

QNu<S,]
=J1+Js.
We have )
Ji= J () <uln % + u) (,t) da

Kaiopnlu<S,]

< J (uln ﬁ—i-u) (xc, ) dx
U

Kaiopnlu<S,]

where y = 2 —=. Therefore, we conclude that

2
dxdr

S, J o S ety de + J w(e, t) dee
S, u

Kayopnlu<S,] KaiopNu<S,]

IA

S, J In % (x,t)de+ S,

KaiopNlu<S,]

< ¥Se } In %4(90, Ddr+So < pMhS; +Sp = (1 + 4)S,,

K(1+a)p

where y = 2V, Moreover,

v |

Qnu<S,] QNlu<S,]

=. |

S,I° 2
dudr < —— ” du d
azp

In =2
u

In —
U

2
dxedr

In —
U

2dxdr:#J J

Q 0 K09y

2
14 } N Yy 2< t)
< —-— su detp < S A1 = .
T e Prsgfe\ y
Kaiop

In —
U

ln%
U

Hence, we have

2 [Duf? Vet

QNu<S,]

151
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Now, if we take the test function

u
- 1> I
’ (HSH

in the weak formulation of (2.5)-(2.6) and integrate over @ = K1), x (0,t], we obtain

| o R R G R
Q Q

=13+ 14.

We estimate these two terms separately.

(2010 ) 2dede— O olm 2\
Ig-JJafu(ln SG>+C dedr = JJ aTu(ln SJ)Cdmdr
G ,

QNlu>S,]

J () (u In Sﬁ — u) (xc,t) d

ag
K iapnlu>Ss]

a

_ J ) (u In S‘ﬁ - u> (,0) de.

K40y Nu>8,]

Next,

I, = JJA(x,r,u,Du) -D[(ln “) cﬂdmdr
q So/+

_ “ A(ac,r,u,Du)-DKln %)Cﬂdmdz

QNu>8,]
= “ A, r,u,Du)%dacdr
QN[u>S,]
+2 JJ {In %A(OC,T,%DM)DCdde
QNu>S,] 7
2
> C, ” P g e
u
QNu>S,]
-2G, ” {In —ngm dr
QNu>3,] Sa

2
—| dxdr,

g

In

5 | ez, ||

QNu>S,] QN[u>S,]
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2

where again y = 2_L. Therefore, we conclude that

Co

2
% JJ §2—|Du@2b‘ dadr < J gz(x)(uln Sﬁ)(x,O)dx

g

QN[u>S,] K iopNu>S,]
2
+ J Eleyule, t) de + —— pz ” In =—| dedr
K(1+,,)pﬂ[u>3,,] Qﬁ[u>3r,] ’
< J C(w)(uln8>(m 0)dx + S,
K(l_,,),,ﬂ[u>5‘,,] !
+-L ” N
aZp? a
QNu>S,]
M y M|?
2
< J C(x)(ulns—)(ac,O)dx—kSgﬁ—ﬁ lnS—a tpN

K40 Nu>8,]

m ¥

<S8, In —|S,
<5+ (mg)s+ L |m e

©)

153

We need to evaluate In M/ S,). As in the interval (0, 1] the function f(s) = —Ins is

convex, Jensen’s inequality yields

ln%* lan —In } u(xasl)dx

S, f w@,spde M
Katop K10y
u(x7 81)

< — =

< J: In % dx ][ In w@s) x
Katoyp Koy

<y,

where y = 2V, Hence, we have

(6.2) “ 52| i daedt < y(A; + 1S, + (/%)

QN[u>S,]

The lemma follows by combining estimates (6.1) and (6.2).

The use of (ln %) ¢# as test function can be justified using (ln
then letting ¢ — 0.

So ) and
u+e/+
O
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Corollary 6.1. Let u be a non-negative, local, weak solution to the singular

equations (2.5)-(2.6), in E'p. There exists a positive constant y depending only on the
data {N,C,, C1}, such that for all cylinders Ku,(y) x [s,t] C Er, and all o € (0,1),

SR

t
J J |A(xe, T, %, Du)|dx dr
s K,(y)

1 1
1 1 1 ft—s\|2/t—s)\?
< ymax{(l+A1)%;(A§+A§)%}[sa+g(7)] ( . > .

Proof. Assume (y,s) =(0,0), and let @ = K, x (0,?]. By the structure condi-

tions of A
lt
J J |A(x, T, u, Du)|dx dr < — JJ‘
p u
0

| %(JQJ e )
e (s

By Lemma 6.1 we conclude.

6.2 - Proof of Proposition 2.1

Assume (y,s) = (0,0). For n =0,1,2... set

n 1 ~ + ~
Pn = ng’ K, = Kp,ﬁ Pn = %7 K, K[),l
J=1

and let ¥ — {,,(x) be a non-negative, piecewise smooth cutoff function in f{n that

equals one on K, and such that |D{,| < 272 /p. In the weak formulation of (2.5)-
(2.6) take (,, as a test function, to obtain

2n+2 ©
| we e < [ uew wtda+==| [ | G0 Dudw s

i{n

71 i{n

K
< J u(w, 12)¢, dw + VZWSZH(/%)% + y4n(/%>’
K

n
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where

Sy = sup J u(-, T)de.
0<7<t
Since the time levels 71 and 12 are arbitrary, choose 72 one for which
. def
J u(-, to)dx = inf J u(,)de = I.
0<t<t

Kgp Kg/,

With this notation, the previous inequality takes the form

(S

t
Y

Sy < T+ y(data, 1, 45) 4" ,%) +y(data, Ay, 45) 2", (p

)

By Young’s inequality, for all ¢, € (0,1)

Su < eoSust + y(data, Ay, Az, 20)4" [T+ ( piﬂ

From this, by iteration

n—1

S, < &S, + y(data, /11,/12,60)[1' + (/%)} Z(4go)i.
i=0

Choose ¢, so that the last term is majorized by a convergent series, and
let n» — oo. O

The proof of Proposition 4.1 for weak solutions to the porous medium type
quasilinear equations (4.5)-(4.6), is similar, with the obvious modifications, and we
confine it to Appendix B.

7 - Analyticity in the space variables, of solutions to (1.1)

Let u be a non-negative, local, weak solution to (1.1), satisfying the integrability
conditions (1.2) and (1.3) for some p > N + 2.

Fix (x,%) € Er, assume that Kg,(x,) C E, and assume that the quantity 0 de-
fined in (3.1) is positive. The cylinder (x,,t,) + Qs,(0) is assumed to be contained in
the domain of definition of u as in (3.2). The quantities M, # and 4, are defined as in
(3.3)-(3.5).

From the Harnack-type inequality (3.6),

(7~1) [f(’?)] W@y, to) < ulx,t) < [f(’?)]_lu(xm to)
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for any («,t) within the cylinder

_ 1 2
(7.2) Q = K»)(,) x (to —250p ,to} .

Equation (1.1) can be rewritten as

(7.3) uy — div (% Du) —0.

(18]

By (7.1) this can be regarded as a particular instance of a linear parabolic equation
with bounded and measurable coefficients. By known results (for example, [10],
Chapter II) local, weak solutions to (7.3) are locally bounded and locally Holder

continuous. Consequently, (7.3) can be regarded as a linear parabolic equation with
bounded, and Hoélder continuous coefficients. Again by classical theory (see [10],
Chapter III), one can conclude that local, weak solutions are indeed C* with re-

spect to the space variable.
By (7.1) the quantity 0 can be estimated as

0 < & sup u(-,t,) < e[ fp]  uo, to)
K, (x,)

0> & inf u(-,t,) > e[ FPIul,, t,).

(Lo

(7.4)

Let 6 = o(») def e[ f(m)] and introduce the change of variables

v X — X t—t, o U
P ’ w2, to)ﬂz ’ (X, to) .
It maps @ onto to
~ def 1 0 def )
7.5 = K ——— 0 = K -—,0
(75) @ ZX( 16u(x0,t0)’}3Q6 2X< 16’}’

and within @; the function v satisfies

1 \D[?
7.6 = —
(7.6) Ve =2, 4Y 2

with
fap <v<fop.
By a result of [9], there exist constants 0 <o <1, C' and H such that
sup [D*v| < CH" o],

ao

(7.7) e

5 < CH?2k)!

Sup | = v

(%
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where Qs = Kz, X ( — 11—606, 0}. Tracing the dependence of constants gives

(7.8) C=nCo, H=ppmax{CLfm] ", [f] %}

where y; and y, are constants independent of v, and C, is a function of f(#) and

satisfies
8k
— D™

otk <C, in Qs for |a\+2k§4[%] + 16,

where [a] denotes the integer part of a. Thus in particular an upper bound on these
derivatives up to the indicated order, gives their analyticity as signified by (7.7).
Assuming such an upper bound for the moment, we return to the original coordinates

to get
w( X, o) < CH"|o]!

|Duu('%.05 tO)l = |DOC;U(O7 0)‘ I“‘ = ‘“l u(x07 tO)?
@9) ok 7,/:(90 )k ’ CHZ?*(2k)!
’Wum,to) = |5 00,0 ",;Z;’ ST - u(@o, to) .

The proof is concluded, once the dependence of C, on f(5) is determined. This es-
timation can be achieved by local DeGiorgi’s or Moser’s estimates. While the
method is known, it is technically involved and reported in detail in Appendix A.
The analogous analyticity estimates for solutions to the porous medium type
equation (4.1)-(4.2) are similar, with the obvious changes, and we omit the details.

Appendix

A - Analyticity in the space variables, of solutions to (1.1). Estimating

the first 4

%V} + 16 derivatives of v.

We will use expressions such as wf(w), w’f” and similar ones, but we only have
at our disposal the notion of weak solution, and therefore, such a way of working
does not seem justified. However, by the Harnack estimate of Theorem 3.1, solu-
tions are classical, and in these calculations we are turning the qualitative in-
formation of u being classical into the quantitative information of » being analytic.

With respect to the previous sections, we use a different notation for cylinders,
and we let Q(p,0) = K, x (—0,0].

A.1 - An estimate of ||Dv||
Take D,, of the logarithmic diffusion equation and set w; = v,, to get

1 1
Bw; — div (;Dwi - ﬁwil)v) —0.
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Setting w = (w1, ..., wy), yields
(A1) wtfdiv(lDwf%w@)w) — 0.
v %

. . , _ , 1
For all derivations below we stipulate that A<1, 4 =1 151, i< ” <4,0<1 and
p<l1.

Proposition A.1. Let w be a solution to (A.1) and { be a cutoff function in
Q = Qp,0). Then
Jw]
sup J J sf(s)dsC® da

—0<t<0
, 0

K
¢ Q
2 4
<5 [ #umbioipef asat-+ 2 | [ ottt duat
Q
A Joo]
t5; JJ o *f'((w))¢ daedt + JJ J sf(8)ds2((; dacdt,
Q Q 0
where f: R — Ry s a bounded, non-negative, non-decreasing Lipschitz con-
tinuous function.

Proof. Multiply (A.1) by wf(|w|)¢* and integrate by parts to get
[oo]

0= JJ% J sf(s)dsC® daedt + I
Q 0
where

I'= ”(%Dw - %w ® w) : [Dwf(\wl)éz +wf'(jw)D|w|? + wf(|w|)2gpg} dacdt
Q

[ |3 cubiDe + S uf D Diulc + s irecu - DL
Q

1 1
—pwew: Duwf (|lw|)Z? — Fwew: wf'(|w])Dw|C?

- 1)1—2w ® w - wf (|w)2D{|dxdt
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1 1 1
> [ ][ S0+ ol DlalFf i) + 3 ol Dol - D

1 1 1
~ = holwDlal D — = Pl £ — = wPaDCf w2 dedt.

Observing that |Djw|| < |Dw| the previous inequality yields

foo]

” [% J sf(s)dsC® + ADwf ((w)( + ;,|w||D|w||2f'(|w|)g2] dudt
Q 0

< | [[ ol rubecDpel - DE-+ pfDpul e
Q
+ A Dlw| £ (w)E + A w]*|DC| f(|w|)2§] dadt

2

A A
<} ” D dudt + - J J FQuDwlIDe dudt
Q Q
e
5 [ [ et uhe® dede -+ | [ o' 1012t o
Q
A 201 2 A4 5pr 2
5 | [ ol Drelr et dedt + 5 | [ ol deat.
Q Q O
We will use this energy estimate and Moser’s iteration to derive a bound for
1DV -

4 Proposition A.2. There exists a positive parameter o that depends only on
- such that if p € (0, ] then
AN A+ 607)
19| o.opoty < 7 7)) a—oF

where v, 1y, and uy are positive parameters that depend only on N.

Proof. We first estimate |jw]|,. In the weak formulation of (1.1) take the test
function v(2. By standard calculations

A “ \Dv[*E daedt < y J v dic+y ” v| D dacdt.
Q(p,0) K,x{-0} Q(p,0)
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Hence

£ N 0 N 140
A2 Do daedt < y=— {1 —] (-) -
(a2 “ eyl L ERA U Mgy

Q(ap,a0)
The energy estimate (A.1) with f(jw|) = |w[? and f > 0, yields

sup J|w|zﬁ+252(x,t)dac+ JJ \Dw|?|w|?’ & dadt

—0<t<0
K/ Q(p,0)

(A3)

/14
lw|PPDEP + & dadt + = ” lw|PH 3 dadt.
Qlp,0) Q(p,0)

e
<

"

Notice that v is locally Hélder continuous with the Holder norm and its exponent «
. Y\ .
depending only on 7 and N, that is
|'U(9(:, ) - 'l)(O, )| S yA,D:X
Now we apply an integration by parts and use the Hélder continuity of v to estimate
the last term of (A.3). If we freeze the time variable, then
I= | jwEde = J P - w? dae
K, K,

= | [w/?*2EDv - D — 10, ) dwe

= | -0, [Av|w|25+2¢2 + 2w/?De - Dy
K,

+2B + 2)|w|2ﬁ+1D|w|Dvgﬂ dar
(A4)

< 94 | 7 4032 42 *2DC - Do
K,

+2B + 2)[w/Z Dlw] - Dvgﬂ dae
<3 [l de sy [ ol D do
K, K,

+ P A2 J |2\ DE de.

K,
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Since all constants are independent of ¢, combining (A.3)-(A.4) yields

sup J\w|2ﬁ+2é2(x7t)dx+ ” \Dw[?|w|?’ & dadt
—0<t<0
Qlp,0)

p

A4
<% ” o 2D + ¢ dwdt

Q(p,0)
A6 2ot ZﬂD 2 Zﬂ+2 D 2
+9g ||| [l IDuf? + o DCP | dde.
i Qp,0)
Thus, by taking
A, 1
(A5) y? P =3
we have
sup | |w|/PRE . t) di + JJ \Dw w7 dedt
—0<t<0 J
Q(p,0)

A 242 2 2
| 2 ie -+ 200t
Qp.0)

P2 |DCP + & dadt,

Q)

as p?* <1 by (A.5). An application of the Sobolev parabolic embeddings gives

2

/16 1+
N+2
00|+ et < {y? “ |w\2/”2[\Dg|2 +g} dxdt} .

Qop.a0) Qlp.0)

Now take
l1-0

2%

l1-0
Pn=0p+ 7/77 6% =00+ 9) Qn = Q(/)nv 077/)7

let { be a standard cutoff function in Q,, and set

a, = 2(%) and I, = JJ|w|““dxdt.
Qﬂ

2
Letb=4"anda =1+ N Begin from 2f + 2 = a,, that is from f = 0, and apply the



162 EMMANUELE DIBENEDETTO, UGO GIANAZZA and NAIAN LIAO [24]

above estimate recursively up to 2 + 2 = a,,. This gives

A5 1 1
< apnra = — .
Iy <C"I7,  where C P {(1 - a)2p2 + a_ 0_)9}

Iterating these recursive inequalities yields

n+1

b)’(N>¢1" + 1[”’

n+1

Tyst < C2io® ™ p2ig e’ I

n+1

< (W

1
Now take the —— power of both sides and let n — co. Taking into account the

estimate of I, in (A.2), we obtain

H (1_,_9 /lz)
10| o.opoty < 7 /1 WIO

A 151 (1 + 9*/‘2)
<N A=
A 1 —o)ye
where the constants u; and u, have been properly modified. |

A2 - An upper bound for ||ve]|

Proposition A.3. Let v be a classical solution to the logarithmic diffusion
equation and assume 0< ) < v~ < Ain Q(p, 0); then

151 (1 + 0~ ﬂz)
||vt||:>oQ(apo‘()) =7 /1 W’

where v, 1y, and uy are positive parameters that depend only on N.

Proof. Multiply (1.1) by the test function v;(* and integrate over the cylinder

Q=0 (p+ap Hz 09)’ where ¢ € (0,1). Here ¢ vanishes on the parabolic

boundary of @; and takes value 1 in Q(op, g0). A standard calculation gives

0= [v?(zdxdt + %Dv[CZth + zwwc]] dxdt
@
— H (Zdacdt—i— c2 0 |Dv\ += vtCDvDC] dadt
Q1
= | | v3dwdt + J %|Dv|2g“2dx

@ Kpi0px{0}
p

- “ \Dv|? [ - LZM - lcct] dudt + JjgvtCDvDCdacdt.
2v v v
@ Q1
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This gives the estimate

”v§¢2dxdt < “ |Dv\2% |ve| Edaedt + JJ%QQHDdexdt
@ @ Q1

1
+ J J?—) |Dv||v|2{|DE | et
Q

1

4
< Jvf{zdacdt + “ DL 2 gt

J 4t
Q1 @

2 2
+ J4|€2”| |Dc|2dxdt+“@|gt\dxdt.
Q1 @1

Taking into account the estimate for |[Dv|| o of the previous section, we have

AN+ 07)
vell2.qopony < 7 7)) a_or

for some y;(N), and 1,(N) > 0.

163

Now take the time derivative of the logarithmic diffusion equation, and in the
corresponding weak formulation use the test function v, f(|v¢|)¢® where f : R, — R
is a bounded, non-decreasing Lipschitz function, and { vanishes on the parabolic
boundary of @ = Q(p, 0) and takes value 1 in Q(ap, 50). Let M = || Dv|| , . A standard

calculation yields

10 ﬂ
”g 5 v Pf Cdaedt + 4 J J \Dvs P Cdacdt
Q Q

+a J J D2 |l £ Ededt
< 24 | | |Du o D ot

+ A ” [0 | D] [ 1DVl £E -+ [ £/1Dvt| 2 + 2Jor] £IDC] | e

=h+L+1+14

Let us estimate the four terms.
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I

IA
NN

Dy daedt +ﬂ“| v Pf1DE P daedt;
Q

2 4

\Do; |Pf Cdaedt + 4 M ;A J J v f Cdaedt;
Q

o
IA
NGNS

2 44
J \Dv; || f’Czdxdt+4M 4

hen
IN
ROl N

” v Pf' Cdacdt
Q
I, < MA “ |ve|f daedt + M A J J |ve|*f | DE P dacdt.

Q Q

Summarizing we have

[ve]

sup J J of (s)dsCda + “ D2 Cddt

—0<t<0
Q

+-1J1[U?M%wavﬂédxdt
Q

[vr]

J sf(s)ds {{dxdt.

Now take f(s) = s for > 0; then

B2 42 2, (B2
su ) Cdx—i—JJDv v|"C doedt
s s [ Dl

4

< y( ) [M? + 11”W+2 [1 + B+ DL+ |§t|]dxdt.

Q

2
L =1+=
et a +N’

C—V<A> [M? +1]|1

L.
(1—0')2/)2 1 —-a)0|’

and let w % v¢. An application of the Sobolev embedding yields

4
(f)[ +1] |vt|2f¢2+|vt|3f'§2+|vt|2f|D§|ﬂdacdt

[26]
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20| P+ daedt

Qap,a0)

g( sup |l dx) | [t crPaca
—H<t<OK ¢

P

<01+ B ( J J |w|ﬁ+2dacdt) .
Q

Take @, as before and define

N+2 N +2\"
fo=0. Ba+2=G, 42 0% = g —2(TEE) -2

and

I, = ”|w|/fn+2dxdt
Q?I

It then follows that
Ly < C'I

for some positive constant b depending only on N. A standard iteration gives

n+1 n il
Loy < Ot @ pdoio ' pot

n+1

(N) n+1 '(N) n+1
< Cra N g

1
Therefore, taking the 7 bower of both sides and letting n — oo, we have

10t 0. qopony < C7O J J |v; |Pdaedt.

To conclude this section, bound the right hand side using the estimate for ||v;||, on
an intermediate cylinder. O

A.3 - An upper bound for —D“

Differentiating the logarithmic diffusion equation successively we have

& e aiv (1 - 9" 1 9l
oD d1v< DatkD Z( >6tk_]vat7DDv

(A.6) " <
o 1 ﬂ )
" |ﬁ§o¢\ </’> ;Q) 8t’f—<7'D 1) 8tJD Dv) —0,
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where k € N and o is a multi-index. For an integer n > 0 let

ot = 3

ke+|o)=n

o
?Dv.

We have the following bound for general derivatives of the logarithmic diffusion
equation.

Proposition A.4. Let v be a classical solution to the logarithmic diffusion
equation in Q(p,0) and fix o € (0,1). Assume 0<i <v 1 < A in Q(p,0). There

exists a positive parameter o that depends only 4 such that if p € (0,01, then in
Q(ap,al)

B 4 9 Fe)
(A7) ||w||oo Qap,a0) = 7)<A> W7

where v, 1; and p, are positive parameters that depend only on N and n.

Jc

Proof. Multiply (A.6) by the test function %D%f (|w|)¢?, where f : Ry — R

is a bounded, non decreasing Lipschitz function. Here { vanishes on the parabolic
1 1 0

boundary of Q2 = Q(( Jrzﬂ)p,( +20) ) and takes value 1 in Q(agp, of)). Standard

calculations and a sum over k + |o| = n give

o]
0
| 5 | sroas dud + 2 [lwDpls qupitzar
Q2 0 o

Y JJ\D D (pEdedt < 1,

k+|o|=n o

where

o ak o
I=- > ” {f(jw IatkD vD - D*vD{dadt

k+|o|=n @ ot
109
- > N6 s aoe
+|a\7nQ i<k
ol 190
-p S
+ﬂ2( )Z< )6tk D P DY
<|o j

i
{ « | Fupzn 2 o " Dot &2 %D“@f’(|w|)D\w| + 20 f(|w|) D“vDC daedt.



[29] TWO REMARKS ON THE LOCAL BEHAVIOR OF SOLUTIONS TO LOGARITHMICALLY ETC. 167

Notice that

Z k\ o7 1 7 Y Db
. otk v Ot

j<k

< Pllw| + 1]

+

Jo—j
3 (“) (k) %D 5 1gtjDﬁDv
f B\ v

A
for some polynomial P with variables {|| D" g, Tor k + [of <m;— > } Thus

A
1<t S [[102 Do uiaent

k+o|=n o

2/1 Z ” o8 D0l (wDIDLP davd

e+ |o|=

+ > “ 6tkD”v| 2 (Jw]) P daedt

IcHa\ =n

JP2(|w| + 1f () dwdt

Q@2

J|D|w||2f’(|w|)|w|ézdxdt +%JJP2(|w|2 + Do) £/ (Jw])Ededt
Q2 Q2

T j Pan] + D] £ (o)2|DE | el
Q2

We obtain the following energy estimate

ol

swp | [ ardstide + 5| [l Dlwlr GuiiPdsas

—rl <0
# 0 QZ
)' o
+5 > JJ|DatkD vPf((w])Edwdt
k+|o|=n @

2
< y(%) | [ + v upasde + | [ faupingtasa

2 2

Joo]

+ [ 2t + Dl Quiiiaear) +2 [ | [ sroasagidea,
Q2 Q 0
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and also
[w]

sup J J of (s)dsCda + 2 “ ]| D |2 (o)) 2dcdlt
()+o‘()<t<OK 0 Q
ptap 2

% J J \D|w||*f (Jw])dwdt
Q2

A\2
SVI

+ J JP2(|w|2 + Do) £/ (Jw])Ededt
Q2

2
w

Q@ 0

JJP2(|w|2 + () Cdadt + “|w| ¢ (o)) D P dacdlt

+2 J J J sf(s)ds |y |dadt.

[30]

Now we have at our disposal the sup-estimates for Dv and v; in terms of 4/4 only.

Next we assume the supremum of — o

D*vis estimated for all k + |«| <% by a similar

quantity as the right hand side of (A.7). By Moser’s method, the above energy es-
timate will yield a bound for the case k + |«| = n. These will depend on the L? norms

ak
otk H otk
Take f(s) = s” for f > 0; then the energy estimate yields

of a—D“v and a polynomial with variables {

42 2 21, 182
su w Cd.%‘JrJJDw w|”Cdxdt
=R | o IDJ o

p+op QZ

A 1 .
- y<7> rap [1 T - 0)3] | [+ otz

2

A
D“v‘ 0 for k + |oc|<n;7}.

2 A\? 1 1
Letazl—i—ﬁandC:y - 1+( + and assume |Qz| <1; then

A 1- J)sz 1-0)0
an application of the Sobolev embedding yields
| $+DF ddt

Qlop,00)
2

<< sup J ||w%|2dx)w”|p[|w| CBddt

—rb <0
ptap Q2
2

< C'P¥(1 + p)* “J(W*Z + l)dacdt]
Q2

< CUPL 4 ( [ |w|/’+2dwdt) P4 e,

Q2
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after a proper adjustment of the constant y in the definition of C. Take

1- -0
Pn=0P+ 50 onl Pa Oy = a0 + onil 0, Qn = Qp,, On).
Define
N—|—2 N +2
fo=0 barz=Grn o —2(NEE) e
and

I, = Jj|w|ﬁ”+2dacdt.
Q@
We have that
L1 < C*PP0"I; + C*P*b",

where the constant b depends only on N. A standard iteration and a proper ad-
justment of P give

n i n+1 i n N .

Iy < 22 i@ 71)(CP2)Z1':1 @y i = I “
" i n+l s n L
422 @D op2) S T (o

n+1

< (CPZ)}(N)a17+1]}(N>a11+1 + (CP2)))<N)CL

1
Take the 7 bower of both sides and let # — oo to obtain

(AS) ||wHoc,Q(ap,z79) < (CPZ)}/ JJ |?/U|2d96dt + (CPZ)}’.
Q2
p+ap O0+a0N .
Remember that Q. = Q( 5 g ); in order to conclude the proof of
Proposition A.4, we only need to estimate [[w]| g, O

A.3.1- An estimate of [Jwll, o,
It is enough to give an estimate of [|w|l3 o) -0 Replace k in (A.6) by £ — 1 and
assume k > 1. We can rewrite (A.6) as
1
otk-1

-1
otk-1

D*y; — div (1 “v) =divf,
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where

E—1\ o 10
=3 (5 e

j<k-1
o k — 1 6k71*j 1 a;
" ' D" I =D Dy,
V)}%M (ﬁ) _iﬂzl ( J ) otk—1-J v Ot

If ¢ is a smooth function in @2 and takes value 1 in Q(cp, 60), then the standard L?
estimate for the linear parabolic equations gives

ok 2
| wDuUHZ,Q(o‘p,a(})

e 2 1 1 ;o
<y ||d1Vf||2‘Q2+ = 0_)5 a)zpz Hatk 1D 7)||2,Q2 .

A
Let us denote P as a polynomial of variables {|| D"l g, for k + |o| <m; > }
Observe that

(A9

|div 5 q, < »PUL+ 12+ Is + 1]

where
81571 2
Q2
ak 2 2
Iy = | (|5 D) dudt;
Q2
ak—l 2
Iy = | (|5 Do) dadt.
Q2

Here for an integer [

D =" DM
IB1=t
These quantities can all be estimated in the same way. Indeed, they all contain
spatial derivatives and we can use the principal part of the differentiated (1.1) to
estimate them. Precisely, we write (A.6) as

o 10 k—s\ 9 1 00
CD D" DD
o T dlv( otk ]Zk:( j >8tk51 vor Y

n k—s akisij 3 i
—— D" = —D Dv) =
<3 (5) ;( 7)o "

Bl < Il
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where 1 <s <k and || = || + s. Take the test function

akfs

= D

where { vanishes on the parabolic boundary of Q3 = Q( 3+ , 3 Z a)0> and

takes value 1 in Q.. Integrating in @3, a standard calculation yields

v otk—s
Q3

__1“2
2]t
Q3
k—s\ oF 57197
— Z -2 DD
J J [¥( j )f%’cwatf °
Qs ’

n k— s\ & 1 5 ,
Y T prBZZ pfp
’ |ﬁ‘z<%7‘ (ﬁ) ]<zk:s( ] ) 3tk*3ﬁ VOt v

8k—s 5 c—s
U
x [D s D 2

< i“ 02 a1 1 _p
Sz ) WaEste Na=o0 " a—op2

Q3

”1 D8 D duat

ak—s

2
o D'v| & dadt

D'y

D”UCD€:|

This together with (A.9) gives

o 2 1 1
. — D" <
(A.10) “ atkD UHZ,Q(GPAT()) = y|:(1 — 00 + a— 0')2/)2:|P

Now the only remaining case is |¢| = %n. For this, we consider the equation (A.6) with
k = 0 and assume || = % — 1. Take the test function (*D*», where { vanishes on the
parabolic boundary of @3 and takes 1 in Q(ap, g0).

J Jl \DD*v|*Cdaedt = — J Jl 9 (D*)*Edadt
v 20t
Q3 Q3
- J J%DD“?;D“?;ZCDCdxdt
Q3

-y “(“)D“ﬂlbpﬁwmvgzdxdt
p v
1<Tol
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-3 ”(“)Da—/f %DDﬂvDD“vD“ZCDCdxdt
F1<Pl

1 1
DD"* 242
JJ| 1)|Cdacdt+{( )9 a)zpz]

A
<Z
-2

Qs

Summing over all |o| = n — 1 actually gives

o, 2 2 1 1
3 ”|D WP Cdudt < [(1_6)0+(1_0)2p2}13

Jo|=n

If we take into consideration an intermediate cylinder, then this, together with
(A.10) in (A.8), yields

1 1 ’
. < V
(A.1D) 120 Qpony < P {(1 o0 = a)p}

for some y depending only on N. The induction hypothesis and the definition of p in
(A.5) imply that

ﬂ11+@ Ho

(Alz) ||’I/U|| ,Q(ap,a0) —yl(N %)( > W

B - Proof of Proposition 4.1 for weak solutions to equations (4.5)-(4.6)

An auxiliary lemma

Lemma B.1. Let u be a non-negative, local, weak solution to the singular
equations (4.5)-(4.6), in Ep. There exist two positive constants y,, y, depending only
on the data {N,C,,Ci}, such that for all cylinders Ku,(y) x [s,t] C Er, and all
o €(0,1),

t
.D n e
J J | “‘ Cdxd‘c<y1(l+/1ml)p E Sy ;2(/@1 ,,12)32(15 )N,
s Ky(y)
where

Sy = sup J w(-, T)dx.
s<t<t
K(1+a)/)(y)
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2
Proof. In the following we restrict to 0 <m < =, since we are mainly inter-

1
ested in proving the stability of the estimates as m — 0. For m € (§ , 1) similar
arguments hold, provided a slightly different test function ¢ is chosen (see [5], §
B.1.1 for more details).

Assume (y, s) = (0,0), fix g € (0,1), and let & — {(x) be a non-negative piecewise
smooth cutoff function in K4, that vanishes outside K ,4),, equals one on K,, and
such that |[D{| < (ap)*l. Let s; € [0,¢] be such that

S, = sup J u(-, s)de = J u(-, sy)dex,

O<s<t
Kayop) Kayop®)

and set
o def 50’
S, = —.
a pN

In the weak formulation of (4.5)-(4.6) take the test function

u*%—S;? 2
9= <— &,
m

+

and integrate over @ = K4, x (0,1], to obtain

—m o %
0= “2%&) Cdadr
ot m )

Q

—m o %
+ JJA(.%, 7,4, Du) - D [(%) CZ] dxdr
+

Q
=1+ Is.

We estimate these two terms separately.

o o2
L :JJ%M<%> Cdw dr
Q +

m %

= JJ gu <u2—80> Czdx dr
ot m

QNlu<S,]
S” m S—%
STz —
=- J F(x) J 7 ds|dx
m
Kaiopnlu<S,] u(e,t)
Sa —__m

+ J 2@) JL‘S" ds | de.
m

KaiopNlu<S,] u(x,0)
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L= JJA(x,r,u,Du) D KW) gﬂ o dr
+

Next,

Q
—m o
— JJ A(x,f,u,Du)-Dl<u72mSJ )Czldxdr
QNlu<S,]
_ _% J Cu~¥ 1A, v, u, Du) - Dudz de

QNu<S,]

m o %

+2 J C<M>A(9€,r, w, Dw) - D¢ dac dt

m
QNlu<S,]
Co —m_1, m—142 2
S—? w2z " | Dul” da drt
QNlu<S,]
w¥-§,*
+2C, “ C(#)“mlDullDéldwdT

QNu<S,]

g—% ” ot 2 Duf? da dr

QNlu<S,]
n ‘—87% 2
U z—
+ “ um <7> da d,
aZp m
QNu<S,]
2
where y =4 C—l Therefore, we conclude that
0
C m
4" “ Cut 2| Duf? de de
QNu<S,]
S"_ m S—%
§7% —
< J E(x) J 27 ds|dx
m
K(1+fr)/7 Nlu< 3,,—] u(x,0)
m S—'zﬂ 2
; Uz —
+ - ” ubm <7> dac de
ap m

QNu<S,]

=J1+Js.

[36]
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We have
S" m ‘—97%
$72 —
Ji= 2@ j " ds | de
m
K(pr(,)/, N[u<Sy] u(x,0)
S, (5,)\%
al-2 (?) -1 S
< s | A—a(d) |a
m S,
KaiopNnu<S,] u(®,0)
1 1 1
—1_m —2 —1yu!
A =
m m
K(1+ﬂ)/, Nlu <Sg] (M) m
S
_ Srlfm [ 2m Y 1 ! die
- m2 _2 - my y u(x U)) "
Kaiapnlu< S,] Sa
SR u(e, 00\ * u(x, 0)
= 1-(— —(1-—=—)|du
oom (2-m S, S,
K(1+a)/,ﬁ[%<5,,] -
—l1-mr m
S; 2| m 2 wx,0 w(x, 0)) 2
- , B @0 ( (u,0\F N\
m (2-m 2-m S, S,
K(1+n)p Nlu<S,] -
1 2 w0 (1 (—“@»‘D)f%
ol-% w, Sy
= J Sh® + - dx
2-m 2-m S, m
Koy Nu<S,]
1 _q_m
< J Syt
2—-m
K(1+G)pm[u<3(i]
2 u(x,0) % — St
NR——— J u(ac,O)—( ) dx=J; + J}.
2—m m
K(pr“-)/, Nu< S,-,]
J :LSI—% J dae < Y Sl—%pzvg where y =2V
1 2 _ a >~ 2 —m T s

K(1+a)/) Nlu<S,]
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2 u(x,0)" 2 _%
JY:z_m J u(%o)#dx
K(1+J)pﬂ[u<3”]
=2 31""“(90 0 %82 — ule, 0)2
S 2-m 517m ’WLSg?
Kaiapnlu<S,]
2 a1z M% — u(x, 0)%
<55, M —ulw, 02
2—-—m mM%
Kaiopnlu<S,]
2 ol-% 2 1-Z m
<3 _ymsf’ Agapt = _ymA%,lsa 2pN% where y=2V.
Therefore,
J1 <y + Ay )pVESs 2.
Moreover,
v s (W% 5, %\’
o= uz dx dt
ap J m
QNu<S,]
o ow\ 2
. ud
= 2)/ ) uim [ 22 — | dedr
aep J musS:
QNu<S,]
m mN 2
y m M? — U2
< m dx d‘[,'
> azpz J < mM?* )
QNlu<S,]
m m~ 2
V) o% Mz — yz
< ; T agm dxdr
o’ J ( mM= )
QN[u<S,]
m m~ 2
—_m ]‘42 —uz
<5 SN sup ][ ( - ) da
a°p O<t<t mMZ
(1+0)p
) A, SENI B
=022 82
Hence, we have
C "
ZO “ Cut 2| DulPde do

(B.1)

QNu<S,]

S V(A%’l + l)pN%Si’7% m 282 Na-= t

[38]
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Now, if we take the test function

in the weak formulation of (4.5)—(4.6) and integrate over @ = K.4), x (0,t], we
obtain

0= Jjau<8f’_“> Cdxdr
ot m
Q +
(M) éz] doe dt
n +

+ JJA(%, T, u,Du) - D

=13+ 14.

We estimate these two terms separately.

Ty, -n
[3:JJ QM<M> Czdwdf
ot m
+
ST %
= JJ QM<M>§2dxdf
ot m
>

w@t) _ _m n
3 _m

= J () J %ds du

Kaiopnu>S,] Sy

w@,0) _ _m n
2 >

- | ew| ] LN P
m
Kt Nu>8,] S,
S;T_yt 5
14:JJA(9c,r,u,Du)~D o ldxdr
Q +

_ ” A(x,z,u,Du)-DKM)@]dmr
m

QNu>S,]

Next,
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—% J Cu *1A(e, 7, u, Du) - Dudi dr

QNu>S,]
,7% "
t2 J C(%)A(w, «,u, Du) - Dz dr
QN[u>S,]

m

C
> ?0 J Cu Y DulPdac de
QNIu>S,]

20, “ é%)ﬂlwuwguxdr

QNu>S,]

> % J Cut 2| DufPde dr

2

where again y = 4 % Therefore, we conclude that
0

G ” ¢ -2\ Dufda dx
QN[u>S,]

w@,0) _ _m
2

< J () J #ds dx

Kaiopnlu>8,] Sz
w_ 5% 2
S [ UZ —
+ s ” w | —— | dude = Jy +Jy.
a2p ) muzSE
QN[u>S,]
We have
w@,0) _ _m m
Ss?—8z2
Js = J ) J s |de
m
K Nlu>8,] 5

< J S * JO)—I ~(5) d<i> dx
- m S

Kty Nu>S,] S,

[40]
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m
u(x,0)
So

m — _% %_1
— J St J 1-yy dy | dx

m m
Kaopnlu>S,] 1
e (M) m
So ¢t 1 2m L\ s duc
— m m o — m
m? | (A 1
Ko Nu>S,]
—1-m _m T
S, % | (ux,0) 2 u, 0))
m Sy 2—-m S
Kaiopnu>8,] - i

—1-mr _m\
S, 2 m 2 ux,0) u(e,0)) 2
< — 1-— —
- J m |2—m + 2—-m S, ( ( Sy > ) de
K140y Nu>S,] - -

- _m

_ J s L, 2 @0 - (%7

S dx
2-m 2-m S, m

Katopnu>S,] L

1 _{_m

< J S}, 2dx
2—m
K40y Nu>S,]
2 S e, 0)° %

= J w(x, )~ (@, 0) de = Jy+ Jb.

2—m m

1 S1-Z —m m
Jy=s——8; J dacgﬁn&l, 2pNE  where y=2V.

372 -m —
K(1+n)/7 n [u>3n]
2 S, % — e, 0)%
é’ __ = J u(x, 0)#@0
2 — m
K140 Nu>S,]
2 37%—M_% 2 M%—S% m 1— 1
= 7 SU = M z NYSG Z-
2—-m m 2—m mMz=
As in the interval (0, M] the function
M% — s%

1O ="
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is convex, we can apply Jensen’s inequality and conclude that

J§ <

m m
<5y } M2 —ul@, 52

g
mM'z
K(1+rx)p

< y/lm LD ;727817_

Therefore,
Ty < 91+ Ag1)pES; *

As for J4 we have

‘Vﬂ 2
Sy
a m B

QNu>S,]

2
y 1 m Sz J 31%
7y m t 2 ) d
Arge () 1w, | oo

K(1+a)/)

3
3 m

< 17
— a2 S\ mME

O<t<t

Kaiop
_ y Sm [1/12 — _ pN(l m)
0_2 pz m

Y /1%1182'15/71\7(17%1)7

y P (- SE\ -
— t| sup J w(x, 7) d P (1—5m)

[42]

=22
where we have taken into account Jensen’s inequality once more. Hence, we have
C m
ZD JJ Cut 2| DulPde dr
(B.2) QN[u>3,]
< p(duy + DPVESY E 4 sz A SEt NP,
The lemma follows by combining estimates (B.1) and (B.2).
S, B . e . .
The use of (T) % as test function can be justified using » + ¢ instead
+

of u, and then letting ¢ — 0.

O
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Corollary B.1. Letu be a non-negative, local, weak solution to the singular
equations (4.5)-(4.6), in K. There exists a positive constant y depending only on the
data {N,C,, C1}, such that for all cylinders K4,(y) x [s,t] C Er, and all o € (0,1),

o

SR

t
1/t —

J J |A(ac,r,u,Du)|d96dT§3;(/1%,14—/1%2)2( S)SZZ

S

K,(y)

(1 + Auq ) <t — S>ZST“
2 pll g

Proof. Assume (y,s) =(0,0), and let @ = K, x (0,]. By the structure condi-
tions of A

¢
EJ J |A(x, T, u, Du)|dae dr < gjju’”‘ﬂDMdmdr
PO 4 P G

1 1
2 2

g% JJM%’Z\DMZdaﬁ dr Jjugmdac dt

1
C m — 1 m m 2
< y;l {(1 + A )pNE Sy %2—,)2(@1 - Aiﬂ’z)SétpN“f]

1
2

3
x |t sup J w2 (x, v)dx
O<t<t
Katoyp

1
C m J1-% 1 g _m|?
Syﬂ(l“?*l)’) P8y Pt Uy + A ot 2>]

1
<Jestrpro-m)’

By simple computations, we conclude. O

Proof of Proposition 4.1

We conclude as in the proof of Proposition 2.1, relying on Corollary B.1, instead
of Corollary 6.1. O
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