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Global existence of solutions to the semilinear
heat equation on Riemannian manifolds
with negative sectional curvature

Abstract. We address local existence, blow-up and global existence of mild so-
lutions to the semilinear heat equation on Riemannian manifolds with negative
sectional curvature. We deal with a power nonlinearity multiplied by a time-de-
pendent positive function A(t), and initial conditions uy € LP(M). We show that de-
pending on the behavior at infinity of &, either every solution blows up in finite time,
or a global solution exists, if the initial datum is small enough. In particular, for any
power nonlinearity, if h = 1 we have global existence for small initial data, whereas if
h(t) = " a Fujita type phenomenon prevails varying the parameter o > 0.
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1 - Introduction

Local existence, finite time blow-up and global existence of solutions to the fol-
lowing Cauchy problem for the semilinear heat equation:

O { o =Au + w in RN x0,7)

U = U in RY x {0},

where v > 1,u9 > 0,29 € L(RY), have been largely investigated. Indeed (see [5],

[6] and [11]), problem (1) does not admit global bounded solutions for
2 2

1<v<1+ N Instead, for v>1+ N global bounded solutions exist, provided

that uo is sufficiently small. This dichotomy is usually said Fujita’s phenomenon.
In [16]-[18], similar results have been stated for mild solutions from the space
C([0, T); LP(RY)), supposing ug € LP(R™).
Moreover, the blow-up result given in [5] has been extended on Riemannian
manifolds M, endowed with a Riemannian metric g (see [19]), provided there exist
C > 0 and a suitable o > 0 such that:

(a) w(B(x,r)) < Cr*, when r is large and for all x € M,

0log \/g

or
Riemannian volume on M, /g is the volume density of M,B(x,r) is the

C . .
< p when r = d(x, x), for some xy € M, is smooth. Here u is the

()

geodesics ball with center « € M and radius r > 0.

Observe that if the Ricci curvature of M is nonnnegative, then (a) — (b) are
satisfied. On the other hand (see Theorem 5.2.10 in [4], or [8], Section 10.1),
hypotheses (a) — (b) imply that 4;(M) =0, where A;(M) is the infimum of the
L?— spectrum of the operator —4 on M.

In [1], the semilinear Cauchy problem

o = A ru'  in HY x (0, T
) {tu w + hw'  in HY x (0,7)

U = U in HY x {0}

has been studied, where Y is the N—dimensional hyperbolic space, u is non-
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negative and bounded on M, & is a positive continuous function defined in [0, c0).

2
Note that 4, (HY) = W 1 D .

To be specific, it has been shown that if () =1 >0), or for some
o > 0,00 >0, >0and g > —1

(3) oat? < h(t) < agt? for any t > ty,

then there exist global bounded solutions for sufficiently small initial data .
Moreover, when i(t) = e* (¢t > 0) for some o > 0, we have the following results:

o
GAON
blows up in finite time;

@) ifl<v<l+ then every nontrivial bounded solution of problem (2)

() ifv>1+ ﬁ , then problem (2) posses global bounded solutions for small
11U
initial data ;
o
i) ifv=1+—-x-
21 (HY)
of problem (2) for small initial data.

2
and o > 3 A (HY), then there exist global bounded solutions

Analogous results to those established in [1] have been obtained in [14], for
problem
A ou = du + h@u’ in M x (0,T)
) {u:uo in M x {0},
where M is a Cartan-Hadamard Riemannian manifold with sectional curvature
bounded above by a negative constant, while 4 denotes the Laplace-Beltrami op-
erator on M. For this type of Riemannian manifolds we have 2;(M) > 0. Hence the
hypotheses (a)-(b) cannot be satisfied.

Observe that, in [14], local and global existence have been shown, supposing that

(7) there exists a supersolution to equation

Ap=2p in M,
for some A > 0, such that ¢(x) — + o0 as € — co.

Moreover, to prove global existence it is also assumed that
(77) there exists a positive bounded solution to equation
(5) Ap+ 4(M)¢=0 in M.

Note that (j) implies that comparison principle holds for bounded weak so-
lutions to problem (4). Moreover, regarding (jj), it is known that a classical
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positive solution to equation (5) exists, but it seems not to be known under which
hypotheses on M such a solution is bounded. In particular, (j) is satisfied when
Ricei curvature of M is bounded form below, while (jj) is satisfied for M = Y
(see [1], [14]).

Let us underline that in both [1] and [14] the initial datum % is bounded, thus only
bounded solutions are considered. Moreover, at first, by comparison principles and
compactness arguments, it is proved that a local weak solution to problem (4) exists,
after having provided suitable sub- and supersolutions to problem (4). Then, under
appropriate assumptions on %, global existence follows by comparison principles,
exhibiting a bounded supersolution to problem (4), constructed by means of a
bounded positive solution to equation (5). Finally, by an argument based on com-
parison principle it is proved that such weak solutions are mild solutions, too, in the
sense of Definition 3.1. Instead, if & satisfies specific conditions, the blow-up is shown
directly using mild solutions.

In this paper we shall extend results given in [14], for mild solutions
u € C([0,T); LP(M)) N C((0, T); LP"(M)) with ug € LP(M). Let us underline that
we remove assumptions () — (jj) made in [14]; furthermore, we make only use
of mild solutions to problem (4), and we do not make use of comparison prin-
ciples.

To be specific, local existence is proved using a little variation of abstract results
given in [16]; to apply such general results, preliminarily we discuss some properties
of heat semigroup on M. Blow-up in finite time is shown by similar arguments to
those used in [14] (see also [1]), based on heat kernel estimates on M. Instead, global
existence is obtained differently from [1] and [14]; indeed, we do not use () — (j)),
but adapt to the present situation some ideas of [17], where problem (1) was
addressed.

In particular, we will prove that local solutions to problem (4) exist for

N
any up € LP(M) with p > E(v —1). Furthermore, if () =e* (¢ >0) with
o> L(M)(v — 1), then we have finite time blow-up in LP'(M). Instead, problem

(6)

ouw=du + v inMx(0,T)
U = U in M x {0},

admits a global mild solution, for every v > 1. Moreover, global existence prevails
also when condition (3) is satisfied, or () = e* (¢t > 0) for appropriate « € R.

The paper is organized as follows. In Section 2 we recall preliminaries concerning
heat semigroup on M. In Section 3 we state our results about local existence, finite
time blow-up and global existence, that will be shown in Sections 4, 5 and 6, re-
spectively.
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2 - Preliminaries

Consider a complete noncompact Riemannian manifold M. Let {e~*},_ be the
analytical contraction semigroup generated by —4 on L2(M) (see [8]-[10]).

The semigroup {e '}, admits a heat kernel, more precisely there exists a
function P € C*°(M x M x (0,00)), P > 0in M x M x (0, co0) such that

(1) e U@ = | Py @, (o cM.t>0)
M

for any f € L*(M). Moreover, there hold:

Plx,y,t) = Py, x,t) for all x,y € M,t > 0;

8) JP(x,y,t)dyy <1 forall xc M,t>0;
M
9) Plx,y,t+s) = JP(x,z, P, y,s)du, forall x,y e M,t>0.
M

We have the following propositions (see [4], [12] and Section 7 (Exercises in-
cluded) in [10]).

Proposition 2.1.  The semigroup {e '}, on L*(M)

(1) 1s positive preserving;
(11) can be extended to a positive contraction semigroup on LP(M) for every
p € [1,00];
(121) can be extended to a holomorphic contraction semigroup in LP(M) for every
p € (1, 00).

Proposition 2.2. (3) There holds:

(10) () = Jmc, Y OF @, (v € M,t>0)
M

forany f € LP(M), p € [1, oc]. (11) Suppose that for every t > 0

sup P(x, x,t) < oco.
xeM
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Then

1,

(11) lle=*fll, < | sup Plx, 2, 1)
xeM
forany f € LP(M),1 < p<q < oo.

Let spec( — A) be the spectrum in L2(M) of the operator —4. Note that (see [10],
Chapter 4)
spec( — 4) C [0, c0).

Denote by 4;(M) the bottom of spec( — 4), that is

A (M) := inf spec( — A).

For every « € M and for every plane n C T,,M denote by K,(x) the sectional
curvature of the plane 7 (see [7]).

Let M be a Cartan-Hadamard manifold (i.e. is a geodesically complete, simply
connected Riemannian manifold with nonpositive sectional curvature), suppose that
K,(x) < —k? for some constant k > 0 and for any « € M and any plane = C T), M.
Then (see [13]; see also [8])

(N-17

(12) M) > k2.

Moreover, (see [10], Corollary 15.17 and Remark 14.6)

C 2\ NV/2 d2
(13) Pla,y,t) < W (1 + t) exp{—4t — D¢ — T)+}

for all x,y € M,t > 0,T > 0 and for some positive constant C; here we have set
d = dist(x,y).
From (11) and (13) it immediately follows that, for some constant C' > 0,

(14) lef1l, < CLFr@NG D],

forall T > 0,f € LP(M),1 < p<q < oo, where

-N/2

(15) Fr(t) := (min{t, T}) exp{— AL (M)t —-T),} @¢>0).

Finally, let us recall that if M is a noncompact Riemannian manifold, then
(see [3], Corollary 1)

(16) lim w — _)(M) Tocally uniformly in M x M.

t—o0
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3 - Results

In what follows we always make the following assumptions:

(Ap) h € C(0,00)), k> 0in[0, co);
M is a complete simply connected Riemannian manifold;
(A1) moreover, there exists k¥ > 0 such that for anyx € M
and for any plane n C T, M there holds K,(x) < —k%.

Observe that assumption (4;) implies (12) and that M is a Cartan-Hadamard
manifold.

To study existence and uniqueness of solutions to problem (4) we shall think of it
as an abstract Cauchy problem, namely

{ w — A = ', 0<t<T

u(0) = uyg.
As a consequence, we make the following

Definition 3.1. Let uy € LP(M),p > 1,u9 > 0,v> 1. By a muld solution
to problem (4) we mean any nonnegative function u € C ([0, T];LP(M)) N
C((0, TT; LP*(M)) N L0, T); LP*(M)) such that

¢
(17) u®) = e Muy + Je*"“*s)[h(s)u"(s)]ds t €[0,7)).
0

From now on we only say solution, instead of mild solution.
A solution to problem (4) is global, if it exists for all ¢ > 0. Clearly, a solution to
problem (4) also satisfies

t
(18)  u® = Py oudy + | [Pyt . sdyds
M oM

t€[0,7)).

3.1 - Local existence

For every 1 < p < q define

N/1 1

p
b(p,q) == ——I[1 - ap, @).
®9 7 _p[ a(p, @1
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Let
Nvyv-1 N
Define
(20) JLPP(M) — LP(M), Ju) :=u" (u e LP"(M)).

For any ¢,y € LP'(Q) such that ||¢||pv < rand ||1//|\pv <7 (r > 0) we have:
(21) [7(@) = JW)ll, < Ui —wll,,

with [ : R, — R, such that

22) ) = 00" 1) = O(r T57)  as 7 — oo;

notice that

(23) 0<alp,pv)<1.

Furthermore, under the present hypotheses on p and v there hold:

(24) 0<b(p,pv)<alp,pv)<1.

We can choose C > 0 such that

~  1-alp,pv)
I(r) < Crwwsm  forall »>1.

Take positive constants K and 7 that satisfy

T
CRK) TS Jsa@wv%l*b@’fm maxh < 1
T
0

and

1-a(p,pv)

1
CCJ(I . s)fa(p.,pv)sa(ppv)fl—b(p,pv)dsK o maxh < 1,
0

[0,7]

where C is the same constant as in (14).
Then we have the following existence and uniqueness result.

Theorem 3.1. Let assumptions (Ay) — (A1) be satisfied. Let v>1, p > 1,
uy € LP(M), uy > 0; suppose that condition (19) is satisfied. Moreover, assume
that
(25) lim sup t°PP" || e~y | o <K.

t—0
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Then, for some T > 0, there exists a solution u to problem (4) such that
(26) [ PPu)),, < K for any t € (0,T),

for some constant K > 0.
Moreover, if v is a solution to problem (4) satisfying condition (26) with u re-
placed by v, then v(t) = u(t) for any t € [0, T].

By Theorem 3.1 we will deduce next

Corollary 3.1. Let assumptions (Ag) — (A1) be satisfied. Let v>1,p > 1;
suppose that condition (19) is satisfied. Let uy € L%("’l)(M YNLP(M), ug > 0. Then
there exists a solution uw € C ([0, T];L%("*l)(M)) to problem (4), for some T > 0,
satisfying condition

(27) Tim [P u)],, = 0.

Now, instead of (19), suppose that
N
(28) p> §(V -1
then we have the following existence and uniqueness result.

Theorem 3.2. Let assumptions (Ag) — (A1) be satisfied. Let v>1,p>1;
suppose that condition (28) is satisfied. Let uy € LP(M),uy > 0. Then, for some
T > 0, there exists a solution u € L™ ((¢, T); L~(M)) (0<e<T) to problem (4) such
that

: a(p,pv) _
(29) lim ([0 u (), = 0.
Moreover, if p > v, then the solution is unique in C([0, T'T; LP(M)).

Remark 3.1. () Similar results to Theorem 3.1, Corollary 3.1 and Theorem
3.2 have been stated in [17], for problem (1) (see also [16]).

(#1) In Theorem 3.1 and Corollary 3.1, if the maximal existence time T < co, then
(30) lim u@], = oo, lim )], = oc.

This follows from Remark 4.1. The same holds for Theorem 3 in [16].
(#27) In Theorem 3.2, if the maximal existence time 7' < oo, then

(31) Tim @], = oo.
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This follows from Remark 4.1. The same holds for Theorem 3 in [16] and Theorem 3
in [17].

() If p > 1, for the solution u provided by Theorem 3.1, Corollary 3.1 and
Theorem 3.2 we have that u € C! ((0, T); LP(M )). This immediately follows by their
proofs, in view of Theorem 4.1 and Proposition 2.1-(2i7).

In view of Remark 3.1, we say that a solution « to problem (4) blows-up in finite

time, if, for some T > 0, (30) and (28) hold true, or (31) and (19) hold true.

Remark 3.2. As it can be easily seen by their proofs, results stated in this
Section remain true if instead of (4;), we assume that for any 7 > 0 there exists
C > 0 such that

Pla,x,t) < Ct* forall xec M,tec(,T).

Sufficient geometric conditions for the previous inequality can be found in [8]-[10].

3.2 - Finite time blow-up
Set

t
H@) = Jh(s)ds for any t > 0.
0

We shall prove the following finite time blow-up result.

Theorem 3.3. Let assumptions (Ag) — (A1) be satisfied; suppose that
uy € LP(M) (p > 1),u9 > 0, essinfoug > 0 for some open subset Q@ C M with
() < oo. Moreover, assume that

[H(®H)]™

(32) lim

P oman+ar — °

for some & > 0. Then any solution to problem (4) blows-up in finite time.

Remark 3.3. Let

o

> 1 (M).
v—1

If
h(t) =e* for any t >0,

then (32) is satisfied for appropriate ¢ > 0.
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3.3 - Global existence

We shall prove next theorems, concerning global existence of solutions given by
Corollary 3.1 and Theorem 3.2.

Put 11 2 1

yi=———, :
P Dpv d

TNO-1 pv
Theorem 3.4. Let assumptions of Corollary 3.1 be satisfied. Take p > 1

such that condition (19) is satisfied. Suppose that ||u0|\%(l_1) is small enough.
Furthermore, assume that

¢
(33) sup {e}'l(M)(”’”t Je*l(M)(V’ﬁv)sh(s)ds + e MODBO=DEmax } < 0.
te(1,00) 1 (1]

Then the solution u to problem (4) is global. Moreover, there exists a constant C>0
such that

(34) [F1®1 P |u@)l|,, < C forall t>0

(with F1 defined as in (15)) and
(35) |lu@)|l, < C  forall t>0.

Clearly, from standard interpolation inequalities it follows that ¢+ [[u@)], is
bounded in (0, o), for any ¢ € (p, pv), hence, in particular, for ¢ = ) v—1).

Under the same hypotheses on p and v as in Theorem 3.4, in [17], it has been
proved that problem (1) admits a global solution such that

(36) t2|u()||,, < C forall t >0,

for some C > 0, provided that Hu0||%<‘,_1) is sufficiently small.
In (36) the term t2h appears, since in RY ,

forf e LP(RY ),1 < p<q < co. Hence, in view of (14), it is natural that in (34) there
is the term [F 1(15)]*/f , instead of £2h,

Theorem 3.5. Let assumptions of Theorem 3.2 be satisfied. Suppose that
|uoll,, is small enough. Furthermore, assume that
t

(37) sup { Je”'l(M”("’Dsh(s)ds + e MDDt gy } < .
te(1,00) [1,¢]
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Then the solution u to problem (4) is global. Moreover, there exists a constant C>0
such that

(38) [F1 @O 7w, < C for all t>0,
(with F1 defined as in (15)) and
(39) lu@)l|, <C  forall t>0.

Clearly, from standard interpolation inequalities it follows that ¢— [lu@®)], is
bounded in (0, c0), for any q € (p, pv).

In Theorems 3.4 and 3.5 the request that Hu0||g(‘,71) and [uy||,, are small enough
is meant in the sense that conditions (62) and (71) are satisfied.

Remark 3.4. (i) Let h = 1. Then assumptions (33) and (37) are satisfied.
(21) If condition (3) is satisfied, then assumptions (33) and (37) are satisfied.
(127) Let

h(t) =e* for any t > 0.

If

a<pv — 1 (M),

then assumption (33) is satisfied.
If

a<y(v — DA (M),

then assumption (37) is satisfied.

Let i(t) = ¢ (¢t > 0). Comparing Remark 3.4-(i7¢) with Remark 3.3, we see that
it is an open problem to understand whether global existence holds for

y(v —1) <o < LM - 1),
and for

ADBY —1) <o < OO —1).

Note that in [14], under hypotheses (j) — (Jy), global existence of bounded solutions
is deduced when

a< M)y —1),

and [|uo||, is small enough.
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4 - Local existence: proofs

Consider the initial value problem

{ w @) — Alu®)] = h@)J[ut)] 0<t<T

(40) u(0) = &,

where h € C([0,00)),h >0 in [0,00), u is a curve in a Banach space E, u :
[0.T1 — E,¢ € E, Ais the infinitesimal generator of a Cy semigroup {e*At}tEO on K,
and J is a nonlinear function from a Banach space E; into E.

We shall deal with mzld solutions to problem (40), that is solutions to the integral
equation

t
ut) = e ¢ + Je*A(t*s)[h(s)J(u(s))]ds (t €[0,77).
0

We suppose the following:
e J(0) =0;
e J : E; — E is locally Lipschitz, thus
17D = TW)llg < 1I|$ —wlig,

whenever ||g|l;, <7, |yl <7 (@ >0), for some nondecreasing function

1 :(0,00) — (0, 00);

e EyNE is dense in E; if ¢, — ¢; in K and ¢, — ¢, in £y (as n — 00), then
b1 = Pos

o e 4P|z < Me'||§| g for all $ € E,t > 0, for some M > 0,y > 0;

e there exist C = C(T) > 0 and 0 <a <1 such that

||e’At¢||EJ < Ct™"||¢|lz forall ¢ € E,tc (0,T;
e for each ¢ € E, the map t— e 44 is continuous into E; for any ¢ > 0.

Now, we can state the following local existence and uniqueness result.

Theorem 4.1. Let E.J,E; and {e~4},., be as described above.
(a) Suppose that

Jrfil(fr’)dr<oo, for some © > 0.

Then, for some T > 0, there exists a solution u(t) to problem (40) such that, for
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some k > 0,
||t“u(t)||EJ <k forany te,T1).

If {e74%} ., is an analytic semigroup on both E and E;, then u € C*((0,T);E).
Moreover, if v(t) is another solution to problem (40) with ||t“v(@)|| B bounded in (0, T),
then uw =v i [0, T].
(b) Suppose that
Ir) = 00 *) as r — oo

for some b € (0,a). Take C > 0 such that I(r) < or' forallr > 1, and K > 0 and
7 > 0 such that

T
Me'C@2K)' ™ Jsﬂp‘p")*l*b(w) max /i < 1
0

[0,7]
and
1
cc J (1 —s) %" 1bds K's" I%(l)aiih <1.
) )
Suppose that

limsup [|t’e4'¢| 5, <K,

t—

then, for some T > 0, there exists a solution to problem (40). If {e=4}, , is an
analytic semigroup on both E and E;, then u € C? ((0, T);E). Moreover, if_v s an-
other solution to problem (40) with ||tbv(t)|| B, < 2K, then v =u 1 [0, T].

In both cases (a) and (b), z'f{e‘At}tZO 18 positivity preserving, J takes nonnegative
Sfunctions into nonnegative functions, and ¢ > 0, then u > 0.

Remark 4.1. In Theorem 4.1-(a), if the maximal existence time 7' < co, then

1' = 1. = .
Jim [[u@®)g = oo, lim [[u@®llp, = oo

Furthermore, in Theorem 4.1-(), if the maximal existence time T < co, then
Tim @], = oc.

Since h € C([0,00)) and & > 0 in [0, 00), Theorem 4.1 and Remark 4.1 can be
proved by minor changes in the arguments used to show Theorem 2, Corollaries 2.1
and 3.1 in [16], where & = 1; we omit the details.
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Proof of Theorem 3.1. LetJ and [ be as in (20) and (21), respectively. Since
N
p< §(V — 1)< pv, from (14) we obtain for any T > 0

(41) He“'tuoﬂm < Ct‘“(”"”")\|uo||p (te,7)).

Now, in view of hypothesis (25), conditions (22)-(24), Propositions 2.1 and 2.2 we
can apply Theorem 4.1-(a). Hence the conclusion follows. O

Proof of Corollary 3.1. Keep the notation as in the proof of Theorem 3.1.
We claim that

(42) lim sup P2 g~ M|, = 0.

t—0

In fact, observe that
N
(43) a<§(p - 1),pv> = b(p, pv).

Take a sequence {%o,m} C va(M) N L%(vil)(M) such that
U — Uy 1N L D) as m — .

Since {e*At}tZO is a continuous semigroup of contractions in LP'(M), using (14) with

p= g(v —1) and g = pv, we obtain

lim sup *07 e~ g,
+

t—

< Tim sup P2 [|le~* (o — o), + lletuomll ]
.

t—

<C hrfl sup £ oGy — Uomly—1) + 1%0mllp] = Clluto — somllye_1y;
here use of (24), (43) has been made. Sending m — oo, we get (42).

In view of (22), (42) we can apply Theorem 4.1-(b) to get the existence and un-
iqueness of a mild solution to problem (4).

It remains to show that u € C([0, T']; L%“’*D(M)). In fact, u € C([0, T); LP(M)) N
C((0, T); LP"(M)); hence, by usual interpolation inequalities and (19), u € C((0, T);
L%(V‘l)(M )). Thus we must only show that «(?) is continuous into L%T(V‘D(M Yatt = 0.
Hence we have to prove that

t
(44) 11_{% J ||€7(t78mu"(8)||¢;_'(v_1)d8 =0.
0
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In order to prove (44), note that, as it can be easily seen using (42),

(45) sup |[£2PPy )| o < 28Up ([P =ty | o
0,71 0,71

Furthermore, by Proposition 2.2,
t
J ||e*(tfs)Au\/(S)H%(V_l)ds
0

t
<c j (t = ) ¥l (o)l ds
0

(46)

t

<C J t— S)*%’”Sfb(p,m’)(vf1)Sfb(p,p1')ds sup ||Sb(17-,pv)u(8)‘|pv
0 0,71
= Ctt= 3 20r sup ||Cru(s)] .
0,71

2 . -,
where r := ]5 “No—D and C > 01is a positive constant. Now, (44) follows from (45),
(46) and (42). O

Proof of Theorem 3.2. Under the present hypotheses

1
0<alp,pv)< 5 < b(p, pv).
Hence

oo

_1 ) —
JT_ @ dy < oo.
1

Then, due to Propositions 2.1 and 2.2, the existence of a mild solution follows by
Theorem 4.1—(a).
We claim that

(47) lim sup P |[e”*uq||,, = 0.

t—
In fact, choose a sequence {ug,,} C LP'(M) N LP(M) such that
Uom — o in LP(M) as m — oo.

Since {e_At}tZO is a continuous semigroup of contractions in LP"(M), using (14) with
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q = pv, we obtain

lim sup t“PP" || e | o

t—0+

< lim sup ta(P,pV) [He_At(uO - uOmz)”py + ||3_Atu0AmeJ
t—0+

< Clim sup PP [P g — g |, + 140, ]p,] = Clltto — ol
t—0"
here use of (24), (43) has been made. Sending m — oo, we get (47).
We have to show that uw € L™ ((e, T);LOC‘(M)) (0<e<T). This easily follows by
standard arguments (see, e.g. [15]), in view of Proposition 2.2. In fact, choose ¢ > 0
small, let 1 := vp. By Definition 3.1,

w € L™ ((e, T); L“(M)).

Clearly,
t
(48) ut + &) = e ule) + Je’(t’s)"u"(s + e)ds.
0
N 1 N
Take o > Ky such that f; := 5 (Kl — K—) 1; this is possible since p > E(v - 1.
1 K2
N/1 1
Set fy == — (— — —). From (48) and Proposition 2.2 we get
2 \r1 K2

t
[lu(t + s)HK2 < 15‘/32||u(s)||x1 + r[r(}%chj(t e |lu(s + .s)||fCl <C) (e<t<T-—e¢).
0

Hence u € L™ ((23, T); LM )). Now a standard bootstrap argument shows that
u € L>((e, T); L>=(M)).

To prove the uniqueness we follow an argument used in the proof of
Proposition 1-(e) in [2]. In fact, take A > 0 so that

||u(t)||p <A, ||v(t)||p <A forall te[0,T]

We have:

t
w(t) — v(t) = Je(t’s)"[uv(s) —"(s)]ds.
0

Since p > v we get

" ="l < Vil ™t + 0" eyl = ]l < 204" lu — v,
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From (14) it follows

1-¥¢-1
— v—1 R —
[u@®) —v®]|, <2CA NG D %ﬁfil\% Vs
2p
which is impossible for ¢ > 0 small enough, if % # v; hence u = v. O

5 - Blow-up: proofs
Theorem 3.3 will be proved by the same arguments as in [14].

Lemma 5.1. Let assumptions (Ag) — (A1) be satisfied; suppose that
uy € LP(M) (p > 1),uy > 0, essinfouyg > 0 for some open subset Q C M with
wWQ) <oo. Let ¢ > 0. Then there exist ty > 0 and C; > 0 such that

C
(49) (e "uo) () > Wl)ﬂ]t for any x € Q,t > to.

Proof. Let &> 0. By (16) there exists ¢, > 0 such that for any x,y € 2 and
t > ty there holds

P(x,y,1) Zm%

hence

_ (Q)essinfou,
(e tAuo)(%') > JP(%%t)MO(?/)d#y > w
Q

This completes the proof. O

Lemma 5.2. Let assumptions (Ay) — (A1) be satisfied; suppose that
uy € LP(M) (p > 1),u9 > 0, essinfoug >0 for some open subset Q C M with
W) <oo. Let ¢ > 0. Let there exists a solution to problem (4). Then

(50) (euo)" for any x e M,t € 0,T).

1
=G DHO

Proof. Let r€(0,7). Let u be a solution to problem (4). We multiply by
P(x,z,t — t) equality (18) with x replaced by z, then integrate over M and use (9).
So, we get

J Plx,z,T — tulz, )du, = J P, y, Duo(y)dp,
M M
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t
+JJPmWJ—sMSMW%®W@% (t € 0,0,
oM

that is

t
(51) ¢ (,t) = ¢,(x, 0) + J J Pla,y, v — sy’ (y, )du,ds,
oM

where we have set

¢.(x,?) = J Px,z, T — uz,dp, (@€ M,t e (0,1)).
M

By Jensen’s inequality (applied, for each s € (0,7) and x € M, with respect to the
measure dv, := P(x,y,7 — s)duy),

[¢.(x,9)]" < J Ple,y,t—su'(y,s)du, (xeM,se0,1).
M

This combined with (51) yields
t
Jmm¢wgmks¢mwf¢mm (weMte ).
0

Then by a Gronwall type argument,

1
[$.(, 01" [§,Cx, 0]

(v— DH() < (xeM,te ),

hence the conclusion immediately follows. O
Now we can show Theorem 3.3.

Proof of Theorem 3.3. By contradiction, suppose that there exists a global
solution % to problem (4).
Now, take 2 C M and ¢ > 0 as in Lemma 5.1. Hence

C
(52) é.(x,0) > WIHE]T for any x € Q;7 >t

for some C; > 0 and tg > 0.
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Hence by Lemma 5.2,
1 \™ :
(53) ¢.(x,0) < <m> [H(0)] 7 forany x € M,t>0.

From (52)-(53) it follows that for any 7 > ¢y, we have

e[)vl(M)Jm‘l]T — 61 y—1

[H(7)]1 _ 1 ( 1 )vll

If we send © — oo in the previous inequality, we get a contradiction with (32);
hence the proof is complete. O

6 - Global existence: proofs

Proof of Theorem 3.4. Lett € (0,7). By (17), using (14), we get:

[F O P [u®],, < L7017 le ugll,,

t
FIFOT [ o e @1, ds < Clualyo
0

(54) N |
+ CLF.()] f‘j[ﬂ(t — )7 (s)||w' )], ds < Clloly, 1)
0

+ CLFO] 7 | [Folt — OVIF () h(s)ds sup ILF ] Puts)|]}, ds
s€(0,¢

S —

for all t € (0, T). Observe that

(55) %V y<1

and

(56) g prv<1.
Define

t
() = [F.O1" J [F .t — VIF P h(s)ds (¢ > 0).
0
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Ift <, then
t

(57) w(t) = ¥ J (t — ) Vs~ EN(s) ds.
0

Note that, for any ¢ € (0, 7],
t
0<¢h J (t —5) Fs ¥i(s)

(58) < £ {(E) Js‘%ﬁ"ds + G) J(t — s)_%}ds] maxh
2 2 [0,7]
0
1 1\
_|_ —
Y T1-X, (2) o

. 1 I 1 max[07f]h
=Sy 13y bl

since g( B —v—pv)+1=0 and (55)-(56) hold true.
If t > 21, then

w(t) = ,%ﬂei.1<M><tr>/f{T $rg= D=0y | i (M)ys =S h(s) ds

O ——

A

T

(59) + X /fv+y)e—i1 M)yt —yt—pvr) eil (M)("/—ﬁv)sh(s)ds

t
4+ ¢ Freh@DpT J t—s ‘%eh(M)ﬁ"Sh(s)ds}.

t—1

Since <y, and w € C((0,0)), from (33), (56), (57), (58) and (59) we deduce
that

rx:=C sup w(t)<oco.
te[0,00)
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Define

o0 := sup L] Puts)|ly, (€ [0,00)).

Note that p € C ([07 oo)),(p is increasing in (0, o0); moreover, by (27) and Jensen’s
inequality,

= i Eﬁ v =
9(0) = lim [|s="u(s)|,,, = 0.
From (54) it follows
(60) o) < Clluolly,1y + wlp@®1"  for all t>0.

Take ¢ > 0 such that

(61) £< (2 ) 7T,
We can assume that
&
(62) HMOH%’(\;A) < C
We claim that

p(t) <2¢ forall £> 0.
In fact, suppose by contradiction that there is ¢y € (0, c0) such that ¢(ty) = 2¢. By
(60)-(62) we obtain

(2¢)"
2e<e+ ol 1

which is absurd. Hence the claim and (34) follow.
By (17), Proposition 2.1 and (34) we get for any ¢ > 0

@, < ol + | 1@, is)ds

O —

t t
< Iluoll,, + j @), ()ds < [lull, + cj [F 1) h(s)ds
0 0

1 ¢
< lluoll, +C Js’%ﬁ"ds r[réaﬁ(h + CJ@’Al(M)ﬂ"Sh(S)dS.
0 " 1

This combined with (33) and (56) yields (35); thus the proof is complete. O
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Theorem 3.4 will be proved by minor changes in the previous proof; we give all
details for reader’s convenience.

Proof of Theorem 3.5. Lett € (0,T). By (17) and (14), we get:

[F @17 u®|l,,, < [FO17leuoll,,,

t
+ [F017 J lle” @ sy ($)]]],,,ds < Clluoll,
0

(63) t
+ CLF@] J [F ot — V(s [0 ($)]], ds < C]luoll,
0

t
+ CLF.O17 J L7t = IVIF " )ds sup [LF )] )], ds
0 se(0,

for all ¢ € (0, T). Observe that

(64) % y<l1

and

(65) gyv <1.
Define

p(@) = [F.OI" [ [F( = )V [F($)"(s)ds (& > 0).

O —

Ift <, then

t
(66) w(t) =t J (t — )" s~ ¥"N(s) ds.
0

Note that, for any ¢ € (0, 7],
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t
0< ¥ J (t )" Fs ¥ his)
0

i ¢
<i¥| J (t —s5) s 4 J(t — ) ¥y ] max
0 $
7{1}’% —Sw L
(67) <t ¥ {(E) ’ JS*%’V"dS + (£> i J(t — s)’%’ds} max
2 J 2 [0.7]

w( 1 1\
<t + 5 max
- u-Ip 1-% <2> [0.7]

_ < 1 i 1 ) Tl—%yv maxjo, 7] h

1—5mw 1-gy) 2w

since (64)-(65) hold true.
If ¢ > 27, then

w(t) = T%veh(M)(tf)y{T%7611(M)<tf>y 0D =3 () ds

T O —

A — |

T

(68) + .L.—%(BV-H’)e—h(M)(yt—yf—yvr) ell(M)(y—;'V)sh(s)dS

1 ¢~ Yrrgh(pe J t— S)‘%’yeﬂ.l(Mmsh(S)dS}_
t—t

Since y € C((0, 00)), from (37), (65), (66), (67) and (68) we deduce that

r:=C sup w(t)<oo.
te[0,00)

Define

p(t) := sup ||[F()] "us)|,, (t € [0,00)).
s€(0,t)

Note that ¢ € C ([0, oo)),ga is increasing in (0, oo); moreover, by (29) and Jensen’s
inequality,

— lim [|s¥u(s)|’. =
9(0) = lim [|s="u(s)][,, = 0.
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From (63) it follows
(69) o) < C||u0||p + klp®)]" for all ¢>0.

Take ¢ > 0 such that

(70) e< (2%) 7,
We can assume that
g
(71) H“OHg(vfl) < C
We claim that

p(t) < 2¢ for all £ > 0.

In fact, suppose by contradiction that there is ¢y € (0, c0) such that ¢(ty) = 2¢. By
(69)-(71) we obtain

2e)"
2e<e+ PSP

which is absurd. Hence the claim and (38) follow.
By (17), Proposition 2.1 and (38) we get for any ¢ > 0

t
[, < fol, + [0 s
0

t t
< Jluoll, + J L}, h(s)ds < [Juo|, + C J [F1(s)1"(s)ds
0 0

1 t
< [Juoll, +C J s ¥ds max h+C J e DS p(s)ds.
0 4' 1
This combined with (37) and (65) yields (39); thus the proof is complete. O
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