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Abstract. In this study we show that a technique introduced in the parabolic
setting works also in the elliptic context. More precisely we prove a space expansion
of positivity for solutions of an elliptic equation with anisotropic growth.
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1 - Introduction

Let Q be an open set in R"(n > 2). We consider the elliptic differential
equation

n—1

o
(1.1) o Ap (.2, D) + ;@Aq,i(z,u,pu) =0.

We assume that the functions A,(z,u,Du), Aq;(z,u,Du) are defined for
2=, y) =@y, ..., Yn-1) €2, u: 2C R" — R and ¢ > p > 1. Let these func-
tions satisfy the following structural conditions with some positive constants Cy, Cy
and a nonnegative constant Cs:
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A, &, u,Du) - Dyu > Co|Dyu|’—Cs

n—1
ZAq-i(zau7Du) : D?/iu Z CO|D‘7/u‘q_CQ
(1.2) =

|Ap(z, u, Du)| < Cy|DyulP +Cy
|Agitz.u, Du)| < Cy|Dyu|""+Cy

n—1 %
foranyi=1,...,n— 1. Here |Dyu] - (Z |D%u|2) .
We use the notation i=1

WHPAQ) = {u € L1(Q) : Dyu € Ly(Q), Dyu € Ly(Q),Yi=1,...,n —1}.

Moreover, W, P9(Q) = WHra(Q) n Wyl (Q).
A function u € WHP4(Q) is called a weak solution of equation (1.1) if it satisfies
the equality

8[// ’ﬂ,—l a'// B
(1.3) JAp(z,u,Du)%dz + J ;Aw(z,u,Du)a—yidz =0
Q o=

for all test function y € W& (),
Recently Liskevich and Skrypnik ([10]) proved Holder regularity for weak

. . . 0
solutions of equation (1.1) assuming p = 2 and Ay(z, u, Du) = 6—7; Moreover they
assumed that

(1.4) 2<q< P

1 1/1 n-1 _
where — == -+ ——) and p<n.
p on (2 q )

We recall that under such assumptions the solutions are locally bounded (see [1],
[2], [13]) and this condition is sharp (see [1], [8], [11], [12] and [14]). In [10] a so-called
lemma of the expansion of positivity in space is crucial. An expansion of positivity in
time was first proved in [4] for degenerate parabolic equations and it plays an es-
sential role to prove Holder regularity and Harnack inequality (see for instance [5],
[6], [7] and [9]). The aim of this note is to use in the elliptic context the same approach
used in the parabolic approach.

In this note we focus our attention only on the expansion of positivity in the space
variables (see Lemma 1.1 below). We consider local bounded solutions of equation
(1.1) with general operators A,(z,u,Du), Ay;(z, u, Du) for any couple ¢ > p > 1.
Moreover the assumption that « is bounded allows us to avoid the condition (1.4) that
is a necessary condition in [10].
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We follow a slightly different approach with respect to [10], hoping to clarify this
difficult subject of Holder regularity for anisotropic elliptic equations.

Assume that « is a bounded weak solution of (1.1) in a bounded domain 2. Without
loss of generality, we may assume that the origin belongs to Q.

In the sequel we say that a constant depends only upon the data if it depends only
upon 7, Cy, C1, Ce, p, q and |[ull;, (o)

Let B, be the ball of radius r in the y variables,

(1.5) B.={yeR" |y <r}.

Denote by w the oscillation of u in Q and let x_ be the ess inf of » in Q.
Assume that L and » are such that

[ — Loé, La#] x By C Q.

Lemma 1.1 (Space expansion of positivity). Let u be a weak solution of the
equation (1.1). Assume that u is bounded and

(1.6) w>p_+n

m [ —e¢,&] X B, where ¢ is a positive constant and 0 <n<w. Then there are two
positive constants Cs and Cy, depending only upon the data such that either

(1.7) n<Csr
. 1
on, for any (x,y) satisfying |y| < gand o] < éLW% we have that

(1.8) w(w,y) > p_ + Canll] + 1),

This lemma says us what is the sharp decay of the solution in the direction of «.
We recall that from this result Liskevich and Skrypnik deduced the Holder reg-
ularity of the solution. In a forthcominig paper we intend to study the Harnack es-
timates for such kind of operators.

Remark. With the respect to the parabolic case there is an important dif-
ference: even if the initial operator is homogeneous, we have the presence of an
alternative, (i.e. either the oscillation is small or the decay (1.8) occurs). In the proof
we will point out in detail the differences with respect to the parabolic case.

Remark. Assumption (1.6) is not so strong. By the DiBenedetto’s approach,
the first step to prove the regularity of a solution, is to find a region where the
solution is strictly positive (for more details see the monograph [6]).
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The following regularity result is a consequence of the expansion of positivity
lemma, i.e. Lemma 1.1 (see [10], see also [4]).

Theorem 1.2. Assume that condition (1.2) holds. Let u be a locally bounded
weak solution of (1.1), then u is Hélder continuous.

More precisely, in analogy with the parabolic case (see Chapter 3 of [3]) it is
possible to prove that there are two positive constants <1 and K depending only
upon the data such that for any compact I strictly contained in Q and for any
21 = (@1,y1), 22 = (02, y2) € I

(=) N B
[y — vzl + |ull, g1 — @2l
(p,q) — dist(I", Q)

(1.9) u(z1) — u(ze)| < Kllully, (

q=p
where (p,q) — dist(I",0Q) is the infimum of |y — ye| + [Jul|,’ ql®1 — x2|§ ranging
(x1,y1) € I’ and (x2,y2) € 0.

In Section 2 we state some preliminary results and in Section 3 we prove
Lemma 1.1.

2 - Preliminary results

In this section we collect some results that we will use in the sequel.
Define the following cylinders in Q,

QR,T = [ - RaR] X BT

where B, is defined in (1.5) and R > 0.
Let @1 := Qg such that @, C  and Q2 := Qg, ,, Where By <R and r; <7.
Now define the function

1 1

Gu) := - .
O ey @iy

Here 0<a<1,0<H<land Gu) =0ifu > u_+ 1A — a)wH.

Lemma 2.1 (Logarithmic lemma). Let u be a locally bounded weak solution of
equation (1.1) and assume that condition (1.2) is satisfied. Then there exists a
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constant C > 0 (depending only wpon the data) such that

How P
. e < p
(2.1) J D, ln+u E——i dz<C J |D¢|Pdz

Q:NA Q1NA

1 dz
(u—pu_ +awH? "’

+C J D& w — p_ + awH)" Pdz + C J
@iNA QNA

here A={ze€ Q:u<u_+ 1 —a)wH} and & € C* is a function such that E=1in
QZ} éZOanle

Proof. Let take G(u)&? as a test function. Then using equation (1.1), we have

n—1
JAp(z, u, Du) % (G)ET)dz + J > Ayitz,u, Du)
=1

Q

i(G(u)fq)alz =0.
0y;
If we use the definition of G(u) and condition (1.2), then

1
—u_ +awH

(-G | Dty e

QiNA

1
+(p—1DGC J |Dyu|q(u —p_ + awH)’ e

QiNA

1
(w— p_ + awH)P™!

< qCy j IDufP! &1D, &l de

QinA

1

q—1
e T ¢ Dotldz

+4Cs J
Q1N

1

(w— p_ + awH)P™! &t [Dy¢ldz

+qn - 10 J \Dyu|"
RiNA

1

(u — p_ + awHP ™ D¢ d

+ q(n — 1)02 J
QNA

1

q
u— p_ + cLa)H)IOgt dz.

L2(p— 1)C; J :
QinA
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Using Young inequality in the right hand side above, we obtain

1
— —_ P '
(p—1—¢)Cy J |Dul w—p + acoH)pé e
@inA
+(p—1—e)C J Dy’ : S
2)Co YU = i+ awH)P

QNA

< Cle1) J |D,¢|Pdz + Clez) J \Dyfyq(u —u_ +awH)Pdz

QNA QiNA
s J 1 £V dz + Cles) J \D,&Pdz
) =i+ awHY ’ !
QiNA QiNA
1 ] .
i | ey e Ca [ Dl a7
QNA QNA

1
q
u— +0La)H)7’5 dz

L2(p - 1)Cy j(
QiNA

&1 and & can be chosen to make the constants positive in the left hand side of the
inequality above. If we consider the properties of £ and the fact that @2 C @y, then
(2.1) can be obtained from the last inequality. O

Remark. If the operator is homogeneous, the following inequality holds:

p

Ho dz

D.ln, ———MM
J ’ xl”u—,uf—i—awl—]

Q:NA

<c [ papas+c | Defa—u +aoty
QinA QiNA

Lemma 2.2 (Sobolev-Troisi inequality [16], see also [15], [17]). LetQ C R" bea
bounded open set and consider u € Wé’[pl‘“'"””](.()), pi>1foralli=1,...,n. Let

n 1 ., /n/i)

)

11
p ni:l Pi n—p
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Then there exists ¢ depending on n,p1, .., Py if p<n such that

n
hellz, o< e [ 1Dy, (o)
=1

Lemma 2.3 (Algebrical lemma[3]). Let{Y,},m=0,1,2 ... be asequence of

positive numbers, satisfying the recursive inequalities
Y1 < Csb™YLH

m

where Cs,b > 1 and 1 > 0 are given numbers. If
Yo < C7 b7,
then {Y,,} converges to zero as m — oc.
Lemma 2.4 (Generalized of Caccioppoli’s inequality). Let u be a locally

bounded weak solution of (1.1). Then there exists a constant Cg > 0 (depending only
upon the data except w) such that for every test function 0 € CA(€2), we have

Jeq(mx(u —k)_P+|Dy(u — k)_|")dz
Q

< Cs J [097P|D, 0 |(w — k)P +|D,0|"|(w — k)_|"+0%1dz
Q

for any constant k > 0.
Note that an analogous result also holds if we deal with (u — k),.

Proof. Let consider (1.3) with the test function
y =y =0R)"u-k_, 0cCyQ).
Since
Dyy = q0 ' (w — k)_D.0 + 0'Dyu, Dyy = q0" (u —k)_D,,0 + 0“Dy,u,

and recalling that these functions are defined in the set {x € Q : u(x) <k}, we have

0= quqfl(u — k)_A,(z,u, Du)D,.0dz + Jqup(z, u, Du)D,(u — k)_dz
Q Q

—

i=1

IS
Il
—

n—1 n—
+ J q0" ! Z(u —k)_Aqi(2,u,Du)D,,0dz + J@q Agi(z,u,Du)D,, (u — k)_dz.
Q o
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If we take into account (1.2), we obtain the following inequality

Co J 0/(|Dy(u — k)_[P+|D,(u — k)_|")dz
Q

<qC ng_l‘(“ — k)_||D,0)|Dy(u — k)_ P dz
Q
+qCs Jeqﬂ(u — k) ||D.0|dz
Q

+(n — DqCy J9q71|(u —k)_||Dy0||Dy(u — k),|q_1dz
o

+(n — 1)qCs J 0w — k)_||D,0|dz + 2C; J 0dz.
Q Q

[8]

Writing 67! = 07507 and applying Young inequality to the last expression, we

obtain

Co J /(D — k)_[P+| Dy — k)| “)dz
Q

< e Jeqwx(u —k)_Pdz + Cley) J 07| D0 |(u — k)_|Pdz
Q

Q

+é Jeqyyy(u —k)_|"dz
Q

+Cle) J\Dyay‘ﬂ(u —k)_|%dz + & Jeq-f’|0xe|”|(u —k)_|Pdz
Q Q

+C(e3) J 0ldz

Q

+&4 J]Dy0|q|(u —k)_|%dz + C(eq) J 0%dz + 2Cs Jﬁqdz.
o o 0

Then the required inequality can be obtained from the last estimate.
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Remark. If the operator is homogeneous, the following inequality holds:

Jempx(u —k)_["+|Dyw — k)_|)dz
Q

< Cs J[eqﬂpxem(u —k)_["+|D,0|"| (w — k)_|")dz.
Q

In the next lemma we will consider a De Giorgi type lemma. It is necessary to
introduce the intrinsic geometry related to the anisotropic elliptic equation. It is a
geometry that is induced by the anisotropy of the operator itself (for more details
about the intrinsic geometry see [3] and [18]). .

Let Ry, ko > 0 be given numbers and R, = R}k, . Define

R, R, Ry Ry
Qr, = {z = (@, y) : [x[<r;, |y|<R;}, 7= ?T‘FszlaRj =5 Tont
with
3.5 pn—1
Q| = ciRoky” By,

where c¢; are equibounded positive constants converging to strictly positive con-
stant ¢ .

Define
ko ko
Ds,j = {z:(x,y)eQRs 'I/L(Z)Sk]}, kj:EJrﬁJr,U,
|Dg;, |
and Z; := AN
T Qry)

Let denote D, as the intersection of the sets Dy; ;, i.e,
ko
Dy :TDzj,j =42 €Qp, ruk < E%—/J_ .

Lemma 2.5 (De Giorgi type lemma). There is a number v > 0 depending only
upon the data (but not depending on u, Ry, and ko) such that either

(22) ko <R0

orif Zy<vthen {Z;} converges to zero as j goes to infinity.

Proof. If we consider the set Dy;.» j,1, Wwe can write

J Ju |’ dz > (j — kj1 ¥ Dajiz i1,

Dyji2 11
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Then

2j+2, j+1

v
(kj — kj1)?

1

7 7

Dyjia,j
here 05,1 € C* is a function such that 0y;,1 = 1 in Qg,,, and 0y, = 0 out of Qp,,,

_ 47 4 -, .
with satisfying |D,0s;.1| < ¢ 7 |D,0s1| < € 7 for a positive constant ¢ and for all
€ 0

(@, y) € Qry., -
If we use Holder inequality, we obtain

2
i

J Oojn|t— kP dz|  Dojrr i F,

2j+1,j

1
D . . < - -
| 2J+2.,J+1| = (kj _ kj+1)p

D, p* are defined as in Lemma 2.2.
Now if we use Lemma 2.2, we have

1 1—£
(2.3) Dajiz jal < & —lorry Doy,
" n—1 "
J Dyl au—kpPdz| ] J Dy, 01 (u — k)| *dz
D2j+1.j =1 D2j+1.j
1 -2
Sc———— Dol 7
(e — ke
b B
n qn
J D05 1(u — k)| dz J D, 0541w — k)| "dz
Dyji1.j Dyjirj

Let estimate J | D051 (u — k)| dz,
Dyjia
J ]Dxﬁgjﬂ(u — k])|pd2'

Dyji1,

< | (1Dl = )"+ 0., D~ )P )

Dajsy,j
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Considering the properties of function 0y;, 1, we have

J | D051 (w — k)["dz

Dyji1,4

47p » »
SC’SR—%g J {(u—k])l dz + Cg J |Dx(u—k,)] dz.

Dyjia,j Dyjia,j

If we pass to the larger set Dy; ; and use function 0; with exponent g, we obtain

103

47p
J IDullyi (0t — k)2 < Cy J \u— kp)[Pdz + Cs J 0D, — k)|

Dyjiaj Dy j Dy, j

Here we can apply Caccioppoli’s inequality of Lemma 2.4 to the second integral on

the right hand side and we get,

47p
J Dulya(u )|z < Cs J (@ — kpdz + Co J D60, o — k|

Dyjia, Dy Dy j

+Cy J D, 05" |u — k;|"dz + Cy J 0%.dz.
Dy Dy

If we use the properties of 0s;,

) 47p 47p
J Dityat k) 'dz < Cro J (= k" dz+ Cuo T J . — ke

Dyjirj Dy, j Dy, j

471 q
+Cuopg J | = kj|*dz + C1o|Dy 1.
0
Dy, j

Then we can write,
J | D051 (w — k)["dz
D2j+1.j
4P 474
Coopp J |(u — k|’ dz + Cio g J |u — kj|"dz + C1o| Dy |-
X 0
Dy Dy;.

Similar estimate can be obtained for also

J ’Dy92j+1(?/t — k])‘qdz

Dyji1,
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p  pn—1
Then since v + p(n ) = 1 we obtain from (2.3),
n qan
(2.4) 1Doji0. 1] < C L 1Dy V7
. 2j+2,5+1| =~ V10 (k7 _ ](7_;'4.1)@ 2j+1,j
47p 474
= J | = kp|'dz + g J ju = kj|"dz + Dy |-
! Dy, 0 Dy, j

Note that |[Dsji1 ;| <|Dsjj|. Moreover, noting that in Dy ; we have
o < u < kj<u_ + ko, we get |u — k;| < ko. Therefore from (2.4)

2(j+2)p s
Dojis, j1] < Cro=———|Dgj i p*)[

4G+Dp kg 4+q kg ]

% Rl Rl

0

By the definition of R, and recalling ¢ > p we can write the last expression as

2URIR e B KG RoY'
|Dyj2,j1] < Cin i 121 40t ql?g {1 + (%) }
Assume ko > Ry (otherwise (2.2) holds) and divide both sides by the measure of Qsz
to have the following inequality (using the fact |Qg,| < |Qr,;,, |221)

Zj+1 < 0122(j+2)i74(j+1)qzj1+i

where 1 := < —%)
p

Then the required statement follows by Lemma 2.3. O

Remark. Ifthe operator is homogeneous, the alternative does not occur, i.e. it
is possible to prove that there is an absolute number v > 0 depending only upon the
data (and not depending on u, Ry, and k) such that if Zy <v then {Z;} converges to
zero as j goes to infinity.

3 - Proof of Lemma 1.1

In order to simplify the proof, instead of (1.6), assume that « is continuous so that
we can ask that #(0,%) > u_ +# in {0} x B,, where B, is defined as in (1.5). The
general case can be treated analogously.
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Let sy be an integer and define a set A° in B,

0 1. 4 L
A"=qyeB;:Jrve O,ELW’ sule,y) —u < poal €

with assuming Lii< g

105

Lemma 3.1. For any positive constant v € (0,1), there exists a positive in-

teger sy such that either

(3.1) w < Car

for a positive constant C13 depending upon the data, sy and L (but not depending
Upon u), or

(32) A% < |B,|.

We prove this result only in the cylinder [0, Lfr%] x B,.. The case [ — Lr%, 0] x B,

is analogous.

1
Proof. Lety € A% Then3Jx € |:07§L7"Z] such that w(x,y) — p_ <
Therefore,

— ﬁ —S0
s0_1< anru(O,y) i+ Lire

we,y) — u_ + Litie—%
L L

In

i w,y) — u_ + Litie—5 ’ w0,y) — u_ + Litie—5

X LL
- JD'” In, ;7
0 w(t,y) — u_ + Lr-ie=%

g
P

rol—

»
L=

D,In
i u(t,y) —u_ + Litie—s

dt.

Lr
S J
0

Now if we integrate the inequality above over the set A°, we obtain

m
<)

L
es
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Using Holder inequality, we have

1
P

%Lr% Lﬁ P -
(s — DIAY < J J D.In, | dz [L¢%|BT\] T
! w— p_ + Li-ig=0

Here we apply Lemma 2.1 choosing £ =1 in [O,%Lr%] x B, and & =0 out of
[O,Lr;’i] x By, and putting Ho = L7 and @ = e~*. Note that in order to apply
_p

p L —
Lemma 2.1 with Ho = L3, it is necessary that H = %< 1 but this condition is

satisfied since L7 < g < g Hence by Lemma 2.1
(so — D]A]
1
LWZ’ Lw% Lw% s

p—1

) ae| [prtm]

<Cy IJ J|Dxélpdz+J J\Dyflq”dzlj l (z(j—

Let estimate the right hand side of the last inequality taking

1
- q »

Lo? p-1
= JJ|Dx¢|sz [Lr%w,,\]T
|B, 0
7 7 -
II = JyquqL*sz [m%|3,|]’_’
B, 0
b ) 7 -
11 = J J(j_) dz [Lr%|BT|}T.
B, 0 o

If we consider |D,¢| = % and |D,¢| :% for some constants d;,ds, we get
e

I <w|B,| and II < w|B,| (with positive constants vy, v2). Moreover,
111 < v3|B,|L77 7.

Choose the integer s sufficiently large to have v; + vo < %(so - 1.
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Then either V3L‘l b < — (30 —1) (and (3.2) holds) or L < C'v# for a constant C'.
Considering Lemma 2.1, note that we set in the proof Hw = L 7, therefore we get
w < Cygr, i.e. the alternative (3.1) occurs. Note that Cig depends upon H, i.e. also
upon the length of the cylinder. Note that if the operator is homogeneous, the
alternative does not occur. O

The previous lemma says that, if one defines A” = {y € B, : w(x,y)<u_+
Can(|x| + 1)#}, we have that |A”| <v|B,|. Therefore Lemma 1.1 holds except in a
set of a small measure. In order to prove Lemma 1.1, we have to show that this
estimate holds everywhere. The idea is to apply Lemma 2.5, but we can not apply
directly to equation (1.1). Actually to be applied we need that the solution is bigger
than a constant ky (with the exception of a small set) in a suitable set given by the
intrinsic geometry and depending on ky. In this new set the solution could be
smaller and we need another larger set and so on. To overcome this difficulty, we
need an auxiliary equation as in [4] and [10].

Now let define the function

v, y) = 1+ |2)*(ulw,y) 4+ u)
P
(@—p)
Denote Ap(z,v,Dv) =Ap, A+ [x)"v — u_, DA + |x)) ")) = A,(z,u, Du),
A, i(z,0,Dv) = Az, A+ |a) v — g, D(A + |2)) ™)) = Ag.i(z, u, Du).
Since Dyv = (1 + |x)*D,u and D,v = (1 + |x))"Dyu + o(@)o(l + |x|)“*1(u + ),
by (1.2) (where with o(x) we denoted the signus of x) we have

where o =

‘Ap(Z,v,Dv)‘ = |Ap(z,u, Du)| < C1|DuP 4Cs

-1
- Cl\a + @) "Dy — a(@on(l + |ac|>—“—1]” +Cy:

Ap(z,v,Dv) Dy = Ap(z,u, Du) {(1 + [@])* Dyt + o) 7 fW]

> Co(1 + [x)*[Dul’—Co(1 + |2)* — |Ap(z, u Du)} T ‘ p

> Co(L+ fa D’ ~Coll + [ — (CalDaal ™+ G

> Co(1 + |2)*|Dyu|’ —Co(1 + |2])* — ] Dyu|’ —Cle) <1 g |> —Cs i |9C\
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= [CoC@ + la)” = &l| (1 + [zt *Dw — s@)a(d + |x|)*“71‘p

” v\’ w
G+ ) _C®<1+%Q Gt

‘Dy”‘Wl

Lt ey T

|4z, D0)| = A4y, Du)| < €Dyl +Co = €y

—_

n— n—1
Ayi(z,0,D0) - Dyv = Ayi(z,u, Du) + |y Dyu > (1 + |2)*(Co|Dyu|'~C2)
=1

||
—

i
= Co(1 + 2™ 2| Dyv|"~Co( + |])*.
As

n—1

B) B)
%Ap(z, w, Du) + ; 6—%Aq,i(z, w,Du) =0

we have that v satisfies the following equation

0

— A i(z,v,Dv) = 0.
oy *

8 - n—1
%Ap(z,v,Dv) + ;

)“(q_”, we have that v satisfies the

Formally, multiplying the equation by (1 + ||
equation

9 wg-1) § SR w0y
% (@ + |=]) Ap(z,v,Dv)) + 2z:l:a—%((l + ] Aqi(z,v,Dv))

—a(g — DA + 2"V a(@)A, (2, v, Dv) = 0.

where we recall that with o(x) we denoted the sign of «.
Hence:

(1 + [2))**A (2,0, Dv) - Dyw > Co(1 + [P} Do —Co
n—1 _ - ~

A + | 3= Agi(z,v,Dv) - Dyv > Co|Dyo|*—Co
i=1

(1 + Jac)™™

Ap(ZJ),DQ))’ < 61(1 4+ |x|)p|DxQ)|p*1_~_(jz

A+ |

Aq’i(z’ v Dv)‘ <G |Dy”|q_l+éz

(A + |oe)*@-D1 \Ap@,v,Dv)\ < Ci( + |2))P YD T +Cy
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where éo, él, (jz are bounded constants because v is bounded (this comes from the
boundness of  and the definition of v) and (1 + |x|) in the domain € is also bounded
(since Q is a bounded domain).

Note that v satisfies a nonlinear elliptic equation of Euler type, i.e.
a+ |ac|)°‘q*°‘ffp(z,v,Dv) - Dyv behaves as (1 + |x|)P|D,v].

Remark. Note that even if the original operator A, is homogeneous, the
transformed operator ffp is not more homogeneous. So either we assume stronger
coercivity assumption on A, or we are compelled to deal with alternatives of the
type (1.7) and (1.8).

Sketch of the end of the proof of Lemma 1.1

The proof, from now to the follow, is similar to the one of [4] and [10], to which we
refer the reader for more details.

Consider first the case of the cylinder [O,LT‘%] x B,. Translate this cylinder in
[1,1+ Lr#] x B,.

As already noticed, the function v satisfies a nonlinear elliptic equation of Euler
type.

Therefore, in order to have structure conditions (1.2), as in [4] and [10] we need to
change the variables and introduce the new function &(e”, y) = v(x,y).

Reasoning as in [4] and [10], it is possible to prove that @ is a weak solution of an
equation similar to (1.1) with the structure conditions (1.2).

Define A* = {y €B,: dx,y)<p_+ e-l% } where y is a suitable positive constant.
By the result of Lemma 3.1 and by the definition of @ either estimate (3.1) holds or

for any « € [0, In(1 + Lr¥)] we have |A| <v|B,.
Repeating the same argument in the cylinder [ — Lr7,0] x B, we have that either
estimate (3.1) holds or for any « € [ — In(1 + Lw%), In(1 + Lw%)] we have |A*| <v|B,|.

1
Now we have the conditions to apply Lemma 2.5. For any x € [— 5 In(1+

1
Lw%), 5 In(1 + Lr%)} consider the intrinsic cylinder @, = {z =@,y : v — x| <

P—q
q

7D (6%)7, ly| <r} and apply Lemma 2.5 to get

Y
(38) ¢(9€07 ?/) > u_+ %,

for any y € B;.
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The proof of Lemma 1.1 is therefore a consequence of the definition of @ and of
estimate (3.3).
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