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On the higher regularity of solutions to the

p-Laplacean system in the subquadratic case

Abstract. We study the regularity properties of solutions to the non-homo-
geneous p-Laplacean system, p € (1,2), in a bounded domain Q. Under suitable
restrictions on the exponent p, we construct a Wé’z(Q) N W22(Q) solution. Then we
prove higher integrability results of the second-order derivatives of the solution.
Finally, by means of semigroup properties of solutions to a special parabolic system,
we prove a global pointwise bound for weak solutions under the only assumption

2n
pe (n +27 2)'
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1 - Introduction

This note deals with the existence and regularity issues for solutions of the p-
Laplacean system

p—2

-V ((u+ |Vul?) T Vu) =f, inQ,

(1.1)
u=0, ondQ,

with p € (1,2) and x > 0. Here we shall assume that Q is a bounded domain of R",
n > 2, whose boundary is C?-smooth, and . : Q ¢ R" — RY , N >1,is ascalar or a

vector field.
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Our main purpose is to prove “global” (on the whole Q) L%-integrability
properties (¢ € (1,00)) of the second derivatives of solutions to system (1.1).
Hence, by the Sobolev embedding theorems, we deduce “global” high regularity
(CY(Q)). Our results are developed under two main assumptions. The former
assumption concerns the bounded domain Q. Indeed for unbounded domains the
problem becomes more involved. In this connection it is enough to note that
already in the case of the boundary value problem for the Laplacean in exterior
domains, an estimate of the second order derivatives by means of a suitable
norm of f does not hold for q € [@,oo) (see [21]). The latter assumption is that
we consider high regularity properties of solutions to the p-Laplacean operator
and not to more general elliptic operators, whose structural properties have the
p-Laplacean as a prototype. Indeed, a lot of results have been produced for
more general quasilinear problems. We just recall a few of them. For instance
we recall problems with quasiconvex functionals, initiated in [12] for p > 2 and
achieved in the subquadratic non-singular case in [7], and, for both the singular
and degenerate case in [10]. Moreover we mention problems with more general
operators, including the p-Laplacean with coefficients, where borderline reg-
ularity conditions both for coefficients and for the data are taken into account.
We refer for instance to the papers [2], [11], [15] and [16]. However, a case of
more general quasilinear system is considered for global L*-estimates, see
below.

The regularity problem for the p-Laplacean system and also for more general
quasilinear systems has been extensively studied, especially as far as the interior
Holder continuity of the gradient is concerned. For a broader and deep discussion
on the known results we refer to the recent survey article [22]. For results ad-
dressing the issue of integrability of the second derivatives of solutions of the
homogeneous and non-homogeneous p-Laplacean system we mention, in parti-
cular, the pioneering paper [1] and the paper [25] for interior regularity, the
paper [5], for up-to the boundary regularity in the three-dimensional case, and the
paper [6], where results close to those we are going to present here are proved
under some heavier restriction on p. Indeed in [5] and [6] the integrability ex-
ponent g > 2 of the second derivatives and the exponent p are connected by a
relation of the kind (2 — p)@(q) < 1, for a suitable constant C, with q — oo iff
p — 2. In our paper at a first stage we obtain the same result by a different
technique. The method employed enable us to show, in the non-singular case, the
same higher integrability result for second derivatives by requiring only that
(2 — p)C(n + ¢) < 1. This means that we obtain the first W2%-regularity result,
q > n, where the exponent p and the integrability exponent ¢ are made in-
dependent. The drawback of the method employed to show this latter result is
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that it does not seem to work in the singular case'. Further, we prove global L*-
2
estimates of solutions requiring p > n—fZ It is nice to point out two main facts.

The first is that this result uses the Nash technique of the well known paper [23].
Actually the estimate of the L>-norm of the solutions is not deduced by means of
Sobolev embedding theorems (which is not always available, see for example [20]),
but this result is based on the semigroup properties of solutions to a special
parabolic system, that we employ as adjoint of our steady problem (1.1) (for the
connection between semigroup properties and Sobolev’s inequality see also [14],
chap. 6). The second fact is that with the same technique we are able to deal with
a more general quasilinear system.

It is interesting to note that we do not prove that a weak solution has some
integrability properties by applying regularity methods as the difference
quotients technique. We prove the existence of a solution u € W&’z(Q)ﬂ
W?22(Q), that, by uniqueness, coincides with the unique weak solution, in the
usual sense of Definition 3.1. The main tool is to appeal to an idea introduced
by Prodi [24] in the context of non-stationary Navier-Stokes equations, where
the existence of a solution was proved by the Galerkin method with eigen-
functions of the Stokes operator as basis functions. Clearly, here we replace
this basis with the one given by eigenfunctions of the Laplace operator. In
this regard, our technique seems to be new in the context of p-Laplacean
system, even though it partially goes back to analogous topics in other PDEs
systems.

Our main results are summarized in Theorems 1.1, 1.2 and 1.3 below. Let us
introduce two main notations. We introduce the constant C(r), » > 2, defined as
follows: for v € Wé’z(!)) N W2"(Q), one has

(12) |D?l, < T(r)l| o],
with C(r) depending on r and Q. The constant C(r) is connected with a Calderén-
Zygmund type constant. Further we set
_ 1

H b
where H is the constant introduced in Lemma 2.1 in Sec. 2. We refer to this section
for this and for further notations.

(1.3) D=2

! Tn this connection, we would like to thank L. Diening, who has pointed out to the authors
the impossibility of extending to the singular case the technique used in the case u > 0.
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Theorem 1.1. Let u >0 and p € (1,2) if Q is convex, p € (p,2) if Q is not

2n
3 q ) ) >
convex. Assume that f € LI(Q), with q € [n(p T2 p),oo) if n >3, and
g>2if n=2 Then, if 2—p)C@ < 1, with 6—% fg<mn ¢g<nif

q=n, and q = q if ¢ > n, there exists a unique solution u € W1 K(9la qu(Q) of
system (1.1), with

1 T
(1.4) [ llys < CC + 111157,
where C is a constant independent of u and u.

Theorem 1.2. Letu >0, p € (1,2) if Q is convex, p € (p,2) if Q is not convex,
and assume that, for some ¢ > 0, (2 — p)C(n + &) < 1. Assume that f € LU(Q), with
q > n. There exists a unique solution u € Wé Q) N W2UQ) of system (1.1), with

(1.5) sy < COIFITT

where C is a constant independent of u.

By the Sobolev embedding theorem, if ¢ > » the previous theorems furnish the
following C1*(Q) regularity result.

Corollary 1.1. Let the assumptions of Theorem 1.2 be satisfied Then the
unique solution u of system (1.1) belongs to CY*(Q) for any A € [0,1 — 7] Ifu=0
the same regularity holds, provided that (2 — p)C(q) < 1.

We note that if Qis a convex domain, then Theorem 1.1 for ¢ = 2holds for any pin
the range (1, 2), without further restrictions from below, since for such a domain C(q)
can be taken equal to one (see Lemma 2.1).

Further, we observe that an approximation different from the one used in this
paper can lead us to a result of LP-integrability for the second derivatives, where the
restriction on the exponent p does not depend anymore on the shape of the domain.

3 2
Indeed we can get u € W2P(Q), for any p € (max { §’n—f2 },2) which could be a
wider interval with respect to (p, 2). We do not develop these ideas here, and refer to
[9] for the corresponding formulation in the parabolic setting.
Finally let us consider the quasilinear problem
-V - (u+A-Vu Vu)¥Vu) =f, inQ,
u =0, on 0L,

(1.6)
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where 1 > 0 and A(x) = A;,jp(x) € L>(Q) is a fourth-order tensor, satisfying the
following ellipticity and boundedness conditions:

0|¢f < Aiajﬁ(%)éfff < O, VEe R™ | ae. in Q.

This kind of structure was considered, for instance, in [16] for elliptic equations and
in [2] for parabolic systems, when x = 0. Clearly if A;,j3 = Ji,0j3 and u = 0, we go
back to the p-Laplacean.

Definition1.1. Letu>0andp € (1,2). Letf € W‘Lp/(Q),%—I—% = 1. Afield

w: Q — RY is a weak solution of system (1.6) if u € W,?(Q) satisfies

(1.7) J(u AV ® V)T Vu- Vyde = (f.y), Yy € WiP(Q).
Q

2 ,
Theorem 1.3. Let x>0 and p € (n—fzz) Let f € W9(Q) 0 L"(Q), for
np

some r > m Then the unique weak solution u of system (1.6) belongs to

L>*(Q) and satisfies

20
(1.8) lll~ o) < eM7IF IS

72
—1,p"

r(n —p)
npr + pr —nr — np’

L 1
with Mi = ¢ (@zz—p””fuljip + ﬂ%|g|%), notiy = —qandy =

Our second result gives a global pointwise bound for weak solutions. Note that,

1
since y; + o = T estimate (1.8) is completely in agreement with the dimensional

balance of estimates (1.4) and (1.5) for the solution of the p-Laplacean.

2 - Notations and some preliminary results

By Q we mean abounded domain of R”,n > 2, whose boundary 0Qis assumed C2-
smooth. For ¢ € [1, oc], by L%(2) we denote the Lebesgue space of functions defined
on Q. The norm of a function is indicated by || - ||,, and, in the case ¢ = 2 we put
|- e =1 - I|. W™4(£2) denotes the usual Sobolev space of (m, ¢)-order of functions on
Qand || - [[,,, is its associated norm. Since it will be clear by the context, then, we do
not introduce special notations of the functional spaces to distinguish the scalar and
the vector spaces. Finally by ¢, C we denote numerical constants whose value is
unessential for our aims. As well as, we can find in the same line k > 1 and kc < c.
Relevant dependences are specified as, for instance, C(u).
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For the reader’s convenience, below we recall some known results. Firstly, we
recall the following inequality, for which we refer to [17] (chap. I, sec. 5) or [18] (chap.
I1, sec. 6), and to the more recent paper [3], where its extension to the L7-norm,
q € (1,2), is considered.

Lemma 2.1. Assume that v € W*3(Q) N Wy *(Q). Then
ID*|| < H|4v,
where the constant H depends on Q. If Q is a convex domain, the inequality holds

with H = 1.

Note that, from the equivalence of the norms ||v||y, and ||D?v|, the previous
lemma ensures the validity of the following estimate [|v||y5 < C(Q) [|4v]| .

We recall the classical “fixed point” theorem, for which we refer to [19], Lemma
1.43.

Lemma 2.2.  Let P be a continuous function of R™, m > 1, into itself such
that, for some p > 0, P(¢)- & >0, for all £ € R™, with || = p. Then there exists a
& € R™, with |&| < p, such that P(&) = 0.

Further we recall the following regularity theorem, as given in the book [13],
Theorem 7.3.
Lemma 2.3. Let v be a W?2-solution of the linear system
ApjpDigv; = fi,

with Ayjp € C(Q) satisfying the Legendre-Hadamard condition. If f belongs to
LY(Q), for some q > 2, then. D*v € L4(Q), with

ID%0]|, < Clg,n, L) (|| f ]|, + ID*0])).

where L is the constant of the Legendre-Hadamard condition and w is the modulus
of continuity of A.

We also give a useful inequality, referring, for instance, to [8].
Lemma2.4. Letp € (1,2)and u > 0. For any given real numbers a, b > 0, the

Sfollowing inequality holds true:

11 _2-p
O N (7R ) B

2.1) la —b).
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Finally we give a result of existence and some semigroup properties for the so-
lutions ¢ of the following integral equation

t t t
(2.2) J((p, w)dt — VJ(W, Vy)dr —J((u +J,(A-Vo ® V)T Vo, Vy)de
0 0 0

= (p®), y @) — (p,,w(0)), Yy € C;°([0,T) x Q),
wherev > 0,1 > 0,p € (1,2),J, Friedrich’s mollifier and v € Wé’p (2) independent of
t and satisfying
(2.3) I(u+A- Voo Vop|h <M,

for a suitable constant M > 0 depending on A. The proof of the following result can
be immediately obtained following the proof of Lemma 2.4 in [9]. We omit the details.

Lemma 2.5. Let pe (nz—fz,Z) and let v e Wé’p(Q) satisfy (2.3). Then,

for any o, (x) € C(Q), there exists a wunique solution ¢ € CO0,T; LAQ)N
L0, T; Wé"Q(Q)) of (2.2). Moreover, for any r € [1,2],

le®Il, < llpoll,, vt €[0,T).

Further,

(2.4) lp(®)ll, < eM# o[t 09, vt e (0,T),
and

(2.5) Vo), < eMZEDjp, ¢, vte (0,7),
with

(2.6) ﬁ:m

and ¥ conjugate exponent of r.

3 - The approximating system

Let us introduce the following auxiliary elliptic systems

2—p

—du — (p — 2)A(p,u) - VVu :f<,u + |Vu|2)77 in Q,
u =0, onoQ,

(3.1)

with p € (1,2) if Qis convex and p € (p, 2) if Qis not convex,
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and
2;[;
2

— AU ~ (p = 2)A(1, U) - VVU = f (u+ (VO 7, in @,

U=0, ondQ,

(3.2)

with p € (1,2) if Q1is convex and p € (p,2) if Qis not convex,

where J, is the Friedrich’s mollifier and by A(u,v), & > 0 and v vector field, we
denote the fourth-order tensor

Vo ® Vv
3.3 A(p,v) i = ——.
(3:3) V) PR

Without loss of generality, throughout this section we assume u € (0,1]. We set

2n

34 ST D ree p)

Firstly we prove the following existence result for solutions of problem (3.2).
Proposition 3.1. There exists a solution U € Wé"Z(Q) N W22(Q) of problem
(3.2), with
1
(35) 101z < €+ 1716 )

where the constant C is independent of U, ¢ and u, provided that f € L*1(Q) with
s1=Sin#£2 ands; >2in=2

Proof. Let {a;} be the eigenfunctions of the Laplace operator 4, and denote by
{4;} the corresponding (positive) eigenvalues:

—da; = /05, in £,
a; =0, on 0Q2.

Recall that {a;} is a complete system in Wé’z(.Q) N W22(Q), orthogonal in Wé ’Z(Q). We
construct the Galerkin approximations related to system (3.2), such that, for each
ke N,

k
(3.6) Ur(e) = (),
j=1
and
Qj(cr) = —(4U*,a))— (p — 2)(A(, U") - VVU*, a;)

(et VUHE) E gy) =0,
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for any j =1,---,k, with ¢; = (cy, - - -, cg). This is a system of k equations in the
unknowns cj.. Set

Pj(cx) = —(4U*, Jjaj)—(p — 2)(A(w, U*) - VVU*, 4j)
(3.8)
— (G VLVUI Y ),

j=1,--- k, and observe that

1
(3.9) Qj(cr) =+ Pj(ck).
4j
Let us verify that P(cy) - ¢, > 0 for suitable c;. Note that, from our choice of the basis,
we have
P(cy) - ¢ = [AU*|* + (p = 2) (A(g, U*) - VVU*, 4U")
(3.10)

+ (Flat WTUR ) E aU").

Let us estimate the L?-scalar products on the right-hand side of (3.10). We start by
considering the case of 22 convex. Then, from Lemma 2.1 we have

(3.11) ID*U*|| < [|4T*|.

Therefore, since |A(u, U*)| < 1, one readily gets

(312) (2 —p)(A(w, UY) - VVU¥, AU*) < (2 = p)||4U*|*.

For the last term in (3.10), we distinguish betweenn = 2 and n > 3. Let be n > 3. By
applying Holder’s inequality with exponents s; =5, 2n/(n — 2)(2 — p) and 2, we have

ATV U PP AU¥|| < ||f||81||Jg(VUk)II zn”HAUkH
(3.13) ) )
</l IVU IIM"IIAU I

2
If n = 2, we apply Hélder’s inequality with exponents 7, % and 2, with r such that
2 <r <spand 22 — p)r/(r —2) > 1 and we obtain

LFT(VTFPAUE| < IF I (VUk)Ilu MHAU}“H

(3.14) ) )
< C|fll,IIVU ||(z Sl 4T

In both cases, by the Sobolev embedding theorems and then by appealing to the
estimate (3.11), we get

(3.15) TV U PP AUF|| < || aU*|P7) £,
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Therefore, using Young’s inequality in (3.15), (3.10) can be estimated as follows

P(ey) - e > ||4U* | ((p = DIIAU*| = C | 4U* P77 | £, — 1) £1)

C
2(p—-1)

> 1409 (P 14U = 5 s IR = 211 2 0
provided that | 4U*| > C(||f|§1+l+u2%p\|f||). Therefore, since || AU*| >
1 lex] = 41 R, where /; is the smallest eigenvalue of the Laplacean, then for suf-
ficiently large R we have P(c;) - ¢ > 0. By using Lemma 2.2, this proves the ex-
istence of a solution of the algebraic system P;(c;) = 0, for some |c;.| < R. Recalling
(3.9) we also obtain a solution of the kind (3.6) for system (3.7). Now, we look to an
estimate of || 4U*|| uniform with respect to k € IN. Since ¢, solves (3.8), that is
P(ci) =0, from (3.10) we get

2-p

|AU*|? + (p — 2) (A, U*) - VVUF, AU*) + (f(u+ |V UHP) 7, 4U*) = 0.

Hence, employing estimates (3.12) and (3.15), by using Young’s inequality in (3.15),
and observing that s; > 2, we obtain uniformly in &

(3.16) l4UH| < C(Z|F 1+ 1FIRT) < C(+ 1 FIRT)-

The bound (3.16), thanks to the Rellich compactness theorem, implies the existence
of a field U and of a subsequence, still denoted by {U*}, such that

U* — U weakly in W3*(Q) N W22(Q),
U* — U strongly in W'(Q),

2
for any r € [1,4+o0) if n =2, for any r € [1’7@—1%2)’ if n > 3, and, from the lower
semi-continuity,

[Ull55 < CG& + |1 15D

Finally, we show that the limit U is actually a solution of system (3.2). Let ¢ be an
arbitrary function in C5°(£2). Then

lilgn (UU* — AU, ) =0,

thanks to the weak convergence. Moreover, by using the inequality (2.1)

2—p

|+ [TV UDDPP = (u+ (VD)7 | < T

.V UR) — J(V U,
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and the strong convergence of the gradients in L*(Q2), we get

tim ([e+ T UIBF = (v D] o)
< e lim || [(VUH) = T Dllgll. < ¢ lim | £[[VU* = VU], = 0.

Let us prove the convergence of the non linear term. We write

gy AU VYU =G 0)- VYU ) = (A U = 403, 1) TV U )
. + (A, U)-(VVUF=VVT), ).

We recall that L" convergence of the gradients implies the almost everywhere
convergence of a subsequence. Therefore A(u, U¥) — A(u, U), a.e. in Q. Further
|A(u, U¥)| < 1 point-wisely. Hence from Hélder’s inequality, the Lebesgue domi-
nated convergence theorem and the uniform bound (3.16), it follows that

lim ((A(g, U") = A(p, U) - VYU, )
< lim |A(g, U") = A, D)[IVV U g = 0.
As far as the second integral on the right-hand side of (3.17) is concerned, it

tends to zero thanks to the weak convergence of U* to U in W?%(Q) and since
A(u,U) - ¢ € L2(Q). We have therefore shown that

AU + (p = A, U) - VYU +f(pu+ [TV D))* ", 9) =0,

for all p € Ci°(2), which ensures that U satisfies (3.2) a.e. in Q. Now, we conclude the
proof considering 2 not convex domain. This case follows simply replacing estimate
(3.11) with the estimate of Lemma 2.1

(3.18) |D*U|| < H|4U¥|
and consequently modifying (3.12). Indeed, estimate (3.18) implies
(3.19) (2—p)(A(u, U") - VVU*, 4U*) < H(2 — p)||4U"|?,

1
hence, under our assumption p € (2 I 2) we can repeat all the considerations

leading to the result in the case of Q2 convex. The proof is accomplished. O

Let us consider the problem

ﬂ
—w — (p = 2A(1, U) - VYV = f(u+ TVO)F) 7, in @,
w=0, ondQ,

with p € (1,2) if Qis convex and p € (p, 2) if 2 is not convex,

(3.20)
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where U is the solution of system (3.2), constructed in Proposition 3.1, and A(y, U) is
defined in (3.3).

We set
ng(p -1 . _
=———""_ ifgels,n)and n #2,
(3.21) 9 <n ifq=m+#2,
=q ifg>mn.

We note that ¢ < q. Further we define

qq , -
/\—(2 - ) f [ ) ]7
(3.22) r@) =494 pronaes

00 ifg>mn.

Lemma3.1. Letf e LUQ), q>sifn#2 q>2ifn=2 and let q be given
by (3.21). Then

D@ — p)a@) < 1 there exists a unique solution to problem (3.20), with
2—p pr
(323) ol <€ (171, + 11T VI ).
where r(q) is given by (3.22) and the constant C is independent of U, ¢ and yu;
1) if. for some o €[0,1], U € C**(Q), then there exists a unique solution to pro-

blem (3.20) which satisfies estimate (3.23), with a constant C depending on .

Proof. Let us consider the regularized problem

s2e) A= (0= 2AnU) YV =f(u+ WVDF) T, g
w' =0, on 02,
where
iSO
w+ |J,(VU)|

This is a linear elliptic problem with C*(R") coefficients. Observing that
flu+ |J(VU )|2)# € L?(Q), we can employ the Galerkin method, following the same
arguments used in Proposition 3.1, to claim the existence of w”’ € W22(Q). In par-
ticular, as ¢ > 2, we get

(3.25) |DPr| < el f (e + (VO E] < ell £+ W(TU)) 5.
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By using Hélder’s inequality the Li-norm of the right-hand side is estimated as

2-p
2

(3.26) 1f (1+ (VU)P)

2-p 2—
[ < e fll+ CIIfIIqIIJa(VU)IIT(A”,
q9)

with ¢ > 5 and 7(q) given by (3.22). Therefore, observing again that g > 2 for any
q>sifn>3,andq = ¢ > 2ifn = 2, Lemma 2.3 for the linear elliptic system (3.24)
ensures that w" € W24(Q) with

D#url < Cloa) (15 (1+ LTUIR) -+ 10201
(3.27)

< €0 (W11 + A1V DI ).

If 2 — p)C(Q) < 1, we can make estimate (3.27) uniform both in # and x. Indeed let
us multiply equation (3.24) by ¢ € C3°(2) and integrate over Q2. We get

.
|~ ()] < @~ Py, 1) - VI, + | (f (1 + LT DE) )|
2-p
< @ = p)|VValklloll, + [1f (1 + 7 DIF) T Illolls,
whence we obtain

Z;p
e =sup [, )] < @ — VW + 1 (14 WV DP) 7
00 @)

ol =1
By using estimates (1.2) and (3.26) we have

4 < @ = PYC@ |+ ¢ 6 fllg 4 € £ WV DIEL
Hence, the assumption 1 — (2 — p)C(g) > 0 gives

|t < el eI O,

uniformly in # >0, non-singular in x> 0. Applying again inequality (1.2) we get
(328) WDl < T F I+ el £, |V, for all > 0 and g > .
Let us remove the assumption (2 — p)@@) < 1andlet U € C**(Q). Then, setting

Ay, U) = Ay(p, U) = A, U)) + Ap, U),

one easily shows that the boundedness of the modulus of continuity of A, is uniform
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in #>0, but does not hold uniformly in x> 0. Therefore (3.27) becomes
2-p _
329 1Dl < CO (W -+ 11T D), for all g > 0.

Since both the bounds (3.28) and (3.29) are uniform in #, from the family of solutions
{w"}, we can extract a subsequence, still denoted by {w”}, whose weak limit w, as
7 — 0, belongs to W24(Q). The convergence is also strong in W'"(Q), for any r if

q > n, and for any r € (l’nn——qﬁ)’ if ¢ € [2,n). Let us show that w is a solution of

system (3.20). Let ¢ be an arbitrary function in C°(€2). Then

liH(l) (A" — Aw, ) = 0,
]’]—)

from the weak convergence. We write
(A’?(iuV U) - VvV _A('u7 U) - VVuw, (ﬂ) :((A?](iu7 U) _A(:uv U)) ’ vvwna (ﬂ)

(3.30)
+(A(u, U) - (VY — V), 9).

We recall that the L"-convergence of J,(VU) to VU, implies the almost everywhere
convergence of a subsequence. Therefore, along a subsequence, A,(u,U)—
A(u,U) — 0, a.e. in Q. Further |A, (1, U) — A(y, U)| < 2, point-wisely. Hence from
Holder’s inequality, the Lebesgue dominated convergence theorem and the #-uni-
form bounds (3.29) or (3.28), it follows that

lim (A, (1, U) = A, U)) - YV, 9) < lim |4, (1, U) = A, D) [V [l = 0.

As far as the second integral on the right-hand side of (3.30) is congerned, it tends
to zero thanks to the weak convergence of w’ to w in W24(Q) and since
A, U)-p € L7(Q). Recalling that w” solves (3.20), we have shown that

(w + (p — DA, U) - VVw +f(u+ [TV D> P,9) =0,

for all p € C3°(2), which ensures that w satisfies (3.20) a.e. in Q. Finally, we prove the
uniqueness. Let us consider another solution of (3.20) and denote by w their dif-
ference. We have
—Aw — (p —2)A(u,U)-VVw =0, inQ,

w=0, ondQ.

Since ¢ > 2, multiplying the above equation by 4w and integrating on £, then em-
ploying Lemma 2.1, one readily recognizes that, under our assumptions on p, one has
|| 4w || = 0. Hence @ = 0 holds. The lemma is completely proved. O
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Proposition 3.2. Let U be the solution of system (3.2), constructed in
Proposition 3.1 Let fcLUQ), q>5in#2 q>2ifn=2 If 2—pC@Q < 1,
then U € W24(Q), where G is given in (3.21), with

(3.31) 1Ulz<c(d+1117),

where the constant C is independent of U, ¢ and .

Eroof . From Lemma 3.1-7), the unique solution w of problem (3.20) belongs to
W24(Q). In the sequel we prove that w = U, which completes the proof. By taking
the difference of (3.2) and (3.20), side by side, and by setting V = U — w, we get

—AV —(p —2A(u,U)-VVV =0, 1in Q,
V=0, onodQ.

Multiply the above equation by 4V and integrate in Q. By appealing to arguments al-
ready used in Lemma 3.1 to prove the uniqueness of w, one readily recognizes that,
under our assumptions onp, thefield V € Wé’Z(Q) N W22(Q) satisfies |4V || = 0. Hence
V = 0 holds. Therefore, U € W24(Q) too. Next, we obtain an estimate of the W24-
norm, uniform in ¢. Firstly we observe that, by standard embedding theorems, U €

WZ-E (2) implies VU € L’”@(Q), with 7(q) given in (3.22). From estimate (3.23) we have
10l <€ (WEI£ I+ If 0T UL

Therefore, using the properties of the mollifier of a LT@ (Q)-function, estimate (3.5) and
Young’s inequality, we get

2—p

2p _ 2p cC,, .5 1
1017 < (w217 + IAIIVUIER ) < Gt + ST +5 100,

L 1
<c(+ 1757 +5 105,
which gives the result. O

From Proposition 3.2 and by a Sobolev embedding, we get

Corollary 3.1. Let feLUQ), q>n>2 1If, for some ¢>0,
@ —p)Cn+¢) <1, then U € CY*(Q), with o =1 — HLH and

(3:32) Ul < C(u%+ ||f||z_1) ,

where the constant C is independent of U, ¢ and p.
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Corollary 3.2. Let felLi(Q), q>n>2 1If, for some &>,
@2 —p)Cn+e) < 1, then U € W294(Q), with

339 Uy < o (#+ 1715 ).
where the constant C is independent of U and .

Proof. From Corollary 3.1 the solution U belongs to CY*(Q), with
a=1- TLLH Therefore we can apply Lemma 3.1-i7) and obtain that w € W29(Q)

and satisfies (3.23) with C = C(u). Finally, as in the proof of Proposition 3.2, one
shows that U = w, so that U satisfies (3.33). O

Proposition 3.3. Let f € LUQ), ¢ >5ifn#2 q¢>21in=2 Then
1) 12— p)@(ﬁ) < 1, then exists a solution u € Wé"q(Q) N W24(Q) of system (3.1),
q given in (3.21), with

1 =L
g <0+ 17157,

where the constant C is independent of u and u;

1) let ¢ >n. If, for some ¢ >0, (2— p)ﬁ(n +¢) <1, then exists a solution
u e W& Q) N W2UQ) of system (3.1), with

Nl < C(ﬂ)<ﬂ% ; ||f||21> ,

where the constant C is independent of u.

Proof. The result readily follows from Proposition 3.1, Proposition 3.2 and
Corollary 3.2. Indeed, denoting by {U*} the sequence of solutions of (3.2), for any
& > 0, we may pass to the limit, up to a subsequence, thanks to the ¢-uniform estimate
(3.31). Now, let us prove that the limit, say u, is a solution. For its linear character,
the convergence of the Laplacian term is immediate. As far as the convergence of the
non linear term A(u, U*)VVU* we can follow the same arguments employed in
Proposition 3.1 for the convergence of the Galerkin approximation. Finally, for the
term f(p+ |J (VU 8)|2)2%p we observe that, by means of Lemma 2.4,

e+ [TV UDBZ = (u+ [Vl
< |+ VU — (ot (V) B

G+ VYT = (ot [V

_22-p)

<= (AU = L0 4 V) — V),

whence that the limit % is solution easily follows. |
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Definition3.1. Letu>0andp € (1,2). Letf € W*Lp/({)),}o—k% = 1. Afield

w: Q — RY is a weak solution of system (1.1) if u € Wé’p () satisfies

(334 e [wups= v vy de = 0. v e W@
Q

The existence and uniqueness of a weak solution is a well established result,
which traces back to [19] (chap.II).

Theorem 3.1. Let u> 0 and p € (1,2) if Q is convex, p € (p,2) if Q is not
convex. Assume that f € L1(Q), q >Sifn#2 q>2ifn =2 Then

) if 2— p)@@) < 1, there exists a unique solution u € Wé AN WQQ(Q), of
system (1.1), ¢ = q(s) given by (3.21), with

(3.35) g < (s + 15T

where the constant C is independent of u and 1
1) if ¢ > nand, for somee > 0, (2 — p)@(n + &) < 1, there exists a unique solution
u € Wy'(Q) N W24(Q), of system (1.1), with

1 =i
(3.36) iy < 0G0 (i + I
where the constant C is independent of u.

Proof. Let e W& AN WZQ(Q) be the solution of (3.1), obtained in
Proposition 3.3. Dividing both sides of equation (3.2); by (u+ |V u|)*?, it is im-
mediate to verify that « is also a weak solutions to (1.1), in the sense of Definition 3.1.
So the result follows from the uniqueness of weak solutions of (1.1). O

4 - Proof of Theorem 1.1 and Theorem 1.2

Theorem 1.1 for i > 0 is Theorem 3.1-7) , while Theorem 1.2 is Theorem 3.1-12).
Hence we have just to prove Theorem 1.1 for x = 0. In doing this, the starting point
is the existence and regularity result given in Theorem 3.1-i). Then we show the
convergence of the sequence of approximating solutions {u#}, as u goes to zero, to a
weak solution of problem (1.1) with x = 0. From the existence and uniqueness of a
weak solution of the p-Laplacean system, the result follows.
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In order to prove the convergence of the nonlinear term, we will not exploit any
strong convergence at disposal, for instance the strong convergence in Wé P(Q), but
we will use just a weaker one, and follow the classical monotonicity method, as in [19].
This will enable us to employ the same arguments in the proof of Theorem 1.3, where
a strong convergence in Wé P(Q) is not known.

Proof of Theorem 1.1. For x> 0, let {u#} be the sequence of solutions of
(1.12, obtained in Theorem 3.1-¢). This sequence is uniformly bounded in
Wé’q(Q)Aﬂ Wz,@ () and satisfies estimate (3.35). Therefore, there exists a field
u e Wé’q(Q) n WZ-E (2) and a subsequence, still denoted by {«*}, such that w* — u
weakly in Wz,? (2), and, by Rellich’s theorem, strongly in Wé’p (). It remains to show
that u is solution of problem (1.1) for 1 = 0.

Let us introduce the operators from W&’p (Q) to W-17(Q) defined as

(4.1) Lu(w) ==V - ((u+ [Vu )= V),
and
(42) L(y) =~V - (IVy[7 V).

They are both monotonous and emicontinuous operators® It is standard to prove
that the weak solution « € Wé’p () of (1.1) satisfies the estimate

L 11
(43) HMWSCOHSW+MMO,

with cindependent of 1 (see, for instance, [4], sec. 4). From (4.3) it follows that L, (u*)
is bounded in W~1#'(Q), uniformly in . Hence, along a subsequence, in the limit as x
tends to zero, we have

(4.4) L, (u") — x weakly in W (Q).
Let us show that y = L(u). Firstly we observe that
|+ [V Yy — VP 2Oy P =0, ae.in @

and

H _ / /
| (u+ (V)= Yy — [V P20y [P < 2 |VylP.

2 For the sake of brevity for the corresponding definitions we refer, for instance, to [19]
Ch. I1I, Sec.1.2.
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The Lebesgue dominated convergence theorem ensures that
(4.5) (p+ |Vl//|2)p2;2Vl// — |Vy[P2Vy strongly in L (Q).
Set
X, = L") — L), u —y), Yy € WyP(Q).
From the monotonicity of L, it follows that
X, >0, Yy € W,P(Q).
By using that u* is a solution of (1.1), we write X, as follows

X/z = (Lﬂ(uﬂ),uﬂ) - (Llu(u#)v [//) - (L,u(l//);uﬂ - l//)
= (f,uw") — L"), p) — (L), w") + (A (), w) .

Let us pass to the limit. Observe that
(f, w) — (f,u)
from the weak convergence of #* in Wé’p (Q),
L), ) — (1, ¥)
thanks to (4.4),
L), w) — (L), w),
thanks to (4.5). Moreover, since
(L), w) = (L), u) = (L) — Lly), w") + L), w" —u),

from the strong convergence (4.5), the uniform bound (4.3) and the weak con-
vergence of Vu* to Vu in LP(Q), we get

lim (L, (), 09 = (L))

Hence
0 <limX, < (f, )~ y) — (L), u — ).
On the other hand, it is easy to see that the limit u satisfies
(Gew) = (f,u).
Therefore we obtain
(2= L), u—y) >0, Yy € We(@).

Taking v = u — Av, for 4 > 0 and for some v € Wé”’ (Q), and then letting 4 tend to
zero the thesis follows. O
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5 - The global pointwise bound of a weak solution: proof of Theorem 1.3

For the study of global pointwise bound of a weak solution of (1.6), we introduce
the following family of approximating systems. Let p € (1,2), £ > 0, v > 0 and let us
consider the elliptic system

—vtw =V (g + A Vwe V)T Vi) =f, in Q,

(6.1)
w=0, on JQ.

Definition 5.1. Letf € W 12(Q). A field w: Q — RY is said a weak solution
of system (5.1) if w € W, *(Q) satisfies

(5.2) J(V Vi + (1 + A-Vwe V) T Vi) Vy de = (f, p), Yy € CR(Q).
Q

Note that for this system and for system (1.6) the existence and uniqueness of a
weak solution can be proved by using the methods of monotone operators (see [19],
chap. II, sec. 2). We further note, for later use, that the test functions in (5.2) can be
replaced by test functions in WS’Z(Q), by density arguments.

The following estimate can be proved in a standard way by using the properties
of A(x)

2-p L 1 1
(53) ool < c(m IFIPT, +ﬂZIle),

with ¢ independent of i and v. In virtue of (5.3), the constant M introduced in (2.3) can
be specified as

(54) M= oA, + ).

2 ,
Lemma 5.1. Let p e (n—fzz) and i > 0. Let f € W-7(Q) N L"(Q), for
np

some r > m Then the weak solution u of system (1.6) belongs to L*°(£2)

and satisfies the estimate

r(pp-1) 2(r—pf)

e o
(55) lulloe < M7 NFIE AT

with M given in (5.4) and f given in (2.6).

Proof. Letw" be the unique weak solution of the approximating system (5.1).
In the sequel, to easier the notation, we drop the superscript v. Let us consider the
parabolic system (2.2), with v = w and with the test functions y in the completion
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space L0, T; W&’Z(Q)), w, € L?0, T; L?(Q)). Then w satisfies the assumption (2.3)
with M given by (5.4). Let us choose w(z, x) = h(t)w(x) as test function in (2.2), where
h belongs to C5°[0, T) and satisfies i(r) = 1, if t € [0,¢], k(r) = 0, if 7 > 2¢. Therefore
we get

t
(0.0,) = (0, ¢"(£) + v J(Vw”(r), Vuw)dz
0

t

+J((u+J,7(A Y © V)T Vel(7), V) de.
0

On the other hand, by density, we can use test functions in (5.2) belonging to WO1 2 Q).
Therefore, employing the regularity of ¢”, ¢" € C(0, T; L*(Q)) N L*(0, T Wé"z(!))), we
can use ¢" as test function in (5.2) and obtain, from (5.6),

t
(0,0,) = (1, 9(t)) + j(ﬁ #(0))d
t ’ .
(57) +J((M+J,7( V0 ® Vi) T — (i + A - Vi ® Vo)) (V' (1), Vaw)de
0

t
= (w,¢"(t)) + J(f, ¢'(r))dr+1,, Vt>O0.
0

One easily verifies that the integral I, goes to zero, as x goes to zero, along a sub-
sequence, by using the boundedness of Vv € LP(Q) and of V" € L?(0, T x Q) (for
details we refer to Lemma 2.5 in [9]). By using (2.4) in Lemma 2.5, and the Sobolev

embedding theorem with embedding exponent nnp , we have
7) np— n+ ) 7 n+
(58) 1,0 )] < 0" Ol _eo_llwleo < ellp, M 755 Mot 57,

np—n-+p
for all £ > 0, uniformly in > 0. Moreover, for any 0 < ¢ < ¢

t i t

(5.9) |j< )di| < j £1o(2)de] + | j(f,qo%))dﬂ.
0 0 t

np

B lying Holder’s i lity with +'
y applying Hélder’s inequality wi T<2n—2p

1 1
and - + o= 1, then employing
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estimate (2.4) in Lemma 2.5, we can bound the first integral as follows

| (f> ¢”(T))d7| S ||fH7' || W(T)Hr’ dr < c

It

O e
O e

_pB
<clof Wing

1 1 . . . . .
where = + == 1. Similarly, by applying Hélder’s inequality, and then using estimate

(2.5) in Lemma 2.5, we can bound the second integral as follows

t
IJ( pl@)del < cllfll -1y [IVO' @I, dz

Nl_eﬁ

1-p

2 ]
< eMEPD|f) Ly ylleu i@ -7
1. 2pppl Spe
<e|QFM =Ry lleallzt
From the above estimates and (5.7)-(5.9), letting t — co we get

‘(wa (00)‘ S c |Q%<
ol

_1-1

L), )

for all p, € C;°(22). Hence the last estimate implies

- [1)/1’ 1__

oy < el M 1L, MFODTE)

Since the right-hand side is uniform with respect to 7, letting 7 — oo, we obtain

_1-pp
w)

21)

(2 77)/5 - 1—— 2—p 1
ol < e ( TS CEIT I

Lo 1 vz, - 2r .
Choosing t = (||f\|r ||f\|_17p,) M7  with y = Py o we obtain
2op) 177 2 Hrp »1 Her )rjﬂ
(5.10) ], < eMFLIT D) 1y = — M I NI

Let us give back the superscript v to the solution w’. From (5.3) and the above
arguments, the sequence of solutions {w"} is bounded in WO“9 (2) N L*>(£2), uniformly
in v > 0, and satisfies estimate (5.10). Therefore, by Rellich’s theorem, passing to a
suitable subsequence, we have

w’ — u strongly in LP(Q), as v — 0,
Vw' — Vu weakly in LP(Q), as v — 0,

w” — u almost everywhere in Q, as v — 0.
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Hence
lu(e)] < lu(e) —w'(@)| + [w'(@)] < |u(e) —w' ()] + [|w’|

r(pf-1) 2(r—pp)

) 2-p) — —
<fu(x) —w"(@)| +cM 7 | FI" N7

o0

(5.11)

for each v > 0, almost everywhere in Q. Passing to the limit in (5.11) and using the
expression (2.6) of 8, we get (5.5).

We want to show that « is a weak solution of (1.1) with x« > 0. To this aim, we again
appeal to the monotonicity trick, with some suitable changes. Set

p2
Ly)=-V-((u+A-Vy o V)T Vy),

L) = -V - (A-Vy o V)T vy),
and
Xv = (L/A(wv) - L/t(l//)vwv - l//) 2 07 VW € Wép(g) ’

By using (5.3) it is easy to see that L,(w") is bounded, uniformly in v, in W-LP(Q).
Hence
L,w") — 7 weakly in W7(Q).

Let us show that ¥ = L,(u). By using that " is a solution of (5.1), we write X, as

follows
X, = L"), w") — (L, (w"), ) — (Ly(w), w” — w)

= (f,w") — v||V'||* — L"), w) — L), w" —w).
Passing to the lim sup and observing that

lim sup ( — v||Ve'||%) = — liminf (]| Vo' ||*) < 0,

we get
0 < limsupX, < (f, ) +limsup (—v||Ve'[|*) — (Z.9) — (L), 0 — )
<(f,u) — (g w) — L), u — ).

On the other hand, the limit » satisfies
(5.12) (x:u) = (f ).
In this regard we note that, for any y € C;°(Q),
V(" p)| = v[(Vaw', V)| <v[[Va'[|, [Vl
and therefore tends to zero, thanks to (5.3). Hence
0 = tim [ —v (', ) + (L"), ) — (£.)]
=0Lw = (f,w), W e G (Q),
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which implies (5.12), by using a density argument. Summarizing we have found
(7= Ly, u —p) = 0, Yy € We?(@).

Taking v = u — Av, for A > 0 and for some v € W&’p (2), and then letting 1 tend to
zero the thesis follows.

Proof of Theorem 1.3. Let us consider, for all x > 0, the sequence {u*} of
solutions of (1.6). From Lemma 5.1, {u#} is bounded in Wé‘p (2) N L*>*(£2), uniformly
in u > 0, and satisfies estimates (5.5) and (4.3). Therefore, by Rellich’s theorem, in
the limit as u tends to zero, the sequence {u#} converges weakly in Wé"’ (), strongly
in LP(Q) and, almost everywhere along a subsequence to a function «#. Denoting the
subsequence by the same symbol {u#}, for any x > 0 we have

lu(@)| < |u(x) — w'@)] + |w'@)| < |ulx) — w@)| + ||[v| ., a.e inxeQ.

Passing to the limit, recalling (5.5) and using the expressions of f and M we get (1.8).
The fact that the weak limit « a solution of (1.6) follows by using the same argument

lines as in the proof of Theorem 1.1. |
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