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A backward in time Harnack inequality for non-negative

solutions to fully non-linear parabolic equations

Abstract. We consider fully non-linear parabolic equations of the form
Hu = F(D*u(x, t), Du(x, t),,t) — Ou = 0

in bounded space-time domains D ¢ R"*!, assuming only F(0,0,2,f) =0 and a
uniform parbolicity condition on F. For domains of the form Q7 = Q x (0, T'), where
Q c R"isabounded Lipschitzand T' > 0, we establish a scale-invariant backward in
time Harnack inequality for non-negative solutions vanishing on the lateral
boundary. Our argument rests on the comparison principle, the Harnack inequality
and local Holder continuity estimates.
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1 - Introduction

The study of the boundary behaviour of non-negative solutions to second order

linear uniformly parabolic equations, in divergence and non-divergence form, in
time-independent Lipschitz and NTA-cylinders as well as in more general time-
dependent Lip(1,1/2)-domains and parabolic NTA-domains, has a long a rich his-
tory, see [ACS], [ACS1], [FGS], [FS], [FSY], [G], [HLN], [N], [S], [SY]. Key re-
sults in this theory, for instance in the context of domains Qp = Q x (0, T) where
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Q c R" is a bounded Lipschitz domain and 7' > 0, include the backward in time
Harnack inequality, and the Holder continuity up to the boundary of quotients of
non-negative solutions, vanishing on the lateral boundary. Important applications
include regularity results for symmetry and free boundary type problems, e.g., see
[ACS], [ACS1], [HLN]. However, the corresponding results concerning the
boundary behavior for non-negative solution for various classes of non-linear
generalizations of the heat equation, like for instance equations of p-parabolic type,
porous medium equations and general fully non-linear parabolic equations, remain
fundamentally undeveloped. Still there are some recent results for equations of p-
parabolic type, see [AGS], [KMN], [NPS], and a recent result for general fully non-
linear parabolic equations, see [BG]. The purpose of this remark is to establish a
cornerstone in the theory, the backward in time Harnack inequality, for general
uniformly parabolic fully non-linear parabolic equations in time-independent cy-
linders of the form Qp = Q x (0, T) where Q is a Lipschitz domain. So far, see [BG],
this result has only been establish in cylinders Q7 = Q x (0, T) where Q is a C11-
regular domain. In particular, we consider fully non-linear parabolic equations of
the form

(1.1) Hu = F(D*u(a, t), Du(x, t), x,t) — du = 0

in R™*! assuming that F' satisfies (0,0, x,t) = 0. Let M,, denote the set of all real

n X n-matrices and given M € M,, we let ||M| = sup |Mx|. We say that the
Je|=1
equation in (1.1) is uniformly parabolic in R" if there exist 4, 4,0 < 2 < 4 < oo

and 7 > 0, such that
(12)  n2||N|| = #ylp —q| < FM +N,p,2,t) = F(M, q,2,t) < A|N| +nlp — q|

whenever M,N € M,, p,q € R", (x,t) € R*™!. The fundamental theory for fully
non-linear uniformly parabolic equations was developed in the papers of Lihe Wang,
see [W1], [W2], but we also refer to [CKS]. Let D ¢ R"*! be a bounded open set. We
let C(D) and C%(D) denote the set of functions defined in D which are continuous and
have continuous partial derivatives up to order two, with respect to « and {, re-
spectively in D. By a parabolic neighborhood of a point (x, ) € R""! we mean the
intersection of an Euclidean neighborhood U of (xg, tp) with R" x ( — o0, #]. In the
following a local extremum is to be understood with respect to parabolic neighbor-
hoods.

Definition 1.1. LetD c R"*! be a bounded open set. A function u € C(D) is
said to be a viscosity supersolution to (1.1) in D if, for given ¢ € C2(D), we have

F(D?(x0, o), Dlaco, to), o, to) — Brd(wo, to) < 0
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whenever % — ¢ has a local minimum at (xo, ty). A function u € C(D) is said to be a
viscosity subsolution to (1.1) in D if, for given ¢ € C2(D), we have

F(D2¢(x03 tO)a D¢(%0, tO); X0, tO) - at¢(x03 tO) Z 0

whenever # — ¢ has a local maximum at (x, ). If » is both a viscosity supersolution
and a viscosity subsolution to (1.1) in D, then u is said to be a viscosity solution to
(1.1)in D.

Points in Euclidean (n + 1)-space R™! are denoted by x = (x1, ..., %y, t). Given a
set E C R", let E,0FE, diam E be the closure, boundary, and diameter of E. Let -
denote the standard inner product on R", |x| = (x - )t 2. the Euclidean norm of i,
and let dx be Lebesgue nm-measure on R". Given x € R" and » >0, let
B@,r)={y e R":|x —y| <r}. For (x,t) € R™ and >0 we let C.(x,t) =
B(x,r) x (t —r*,t +7%). Furthermore, we let d,(x,t,y,s)= (jx — yP? + [t —sPY?
denote the parabolic distance between (x,t), (y,s) € R"™L. Given E,F c R", let
d(E, F) be the Euclidean distance from £ to F. In case £ = {y}, we write d(y, F').
Recall that Q ¢ R" is a bounded Lipschitz domain if there exists a finite set of balls
{B(x;,7;)}, with &; € 0Q and r; > 0, such that {B(x;, 7;)} constitutes a covering of an
open neighborhood of 9Q and such that, for each 1,

QN B, r) ={y = W' yn) € R" 1y, > ¢:(y)} N Blaj, 77),

(1.3)
92N B, r) ={y = ', yn) € R" 1y, = $,(y")} N By, 7)),

in an appropriate coordinate system and for a Lipschitz function ¢, : R"! — R.The
Lipschitz constants of © are defined to be M = max |||V¢,|| ., 7o := min?; and we
will often refer to 2 as a Lipschitz domain with Zparameters M and ;”0. If Qis a
Lipschitz domain with parameters M and 7y, then there exists, for any xy € 02,
0 < 7 < 1y, a point A,(xp) € 2, such that

MYr < d(xg, A (o)) < r, and d(A,(x), 0RQ) > M 7.

We let Qr =Qx(0,T), T >0, and in following we let A,(xo,t) = (A,(xo),%o)
whenever (xg,ty) € Sy := 02 x (0,T) and 0 < r < 1. We here prove the following
theorem.

Theorem 1.2. LetF : M, x R" x R" x R — R satisfy (1.2) for some (4, A, n).
Let Qp = Q x (0, T), where Q C R" is a bounded Lipschitz domain with parameters
M, vy and T > 0. Let u be a non-negative viscosity solution to (1.1) in Qp vanishing
continuously on Sp. Let 0 <5< T be a fived constant, let (xo,ty) € S,

& <ty < T—&, and assume that r < min {r0/2,1/(T — to — *)/4,1/to — 6)/4}.
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Then, there exists ¢ = c(A, A,n, M ,diam (Q), T, 9), 1 < ¢ < oo, such that
u(@,t) < cu(A,(xo, to))

whenever (x,t) € Qr N C,/4(xo, o).

Note that Theorem 1.2 is proved in [BG] under the additional assumption that
Qis a C'-domain. The latter implies that Q satisfies a uniform inner and outer
ball condition based on which one can prove, using a barrier argument, see [BG],
that any non-negative function in the class S(4, 4, ) introduced in Definition 2.1
below, decays linearly at the lateral boundary. This results in a comparison
principle for non-negative functions in the class S(4, 4, #), vanishing on the lateral
boundary, based on which the authors in [BG] are able to conclude Theorem 1.2
in the case Q is a C1!-domain. Since Theorem 1.2 is stated under much weaker
geometric assumptions compared to [BG] a different route of proof is needed and
we claim that Theorem 1.2 can be proved using only fundamental principles like
comparison principles, the Harnack inequality and Holder decay estimates at the
lateral boundary. In particular, our proof relies on the following simple decay
estimate at the bottom of ecylinders. Let (xo,t) € R"™, »>0, and let
C,' (2o, t0) = Blao, ) x (fo, %0 + 72). Let F be as in the statement of Theorem 1.2.
Then there exist constants ¢ = c¢(/, 4,7), 1 <c¢ < oo, and o = a(d, 4,n), 0 < a < 1,
such that the following is true. Assume that  is a viscosity solution to (1.1) in
Cg;(aco,to), that u is continuous on the closure of C;,(xo,to) and that « =0 on
GPCZﬁ(xo, to) N {(ﬁé‘,t) = to}. Then,

¢ 1/2\ o
(1.4) lulx, t)] < C(|x+—||) sup |ul
r C; (@oto)

whenever (x,t) € C(xo,t). Note that this estimate follows from elementary
barrier type arguments and we refer to section 2.4 in [W2] for a proof of (1.4).
Furthermore, we claim that Theorem 1.2 is simply a consequence of the com-
parison principle, the solvability of the Dirichlet problem in cylinders of the form
Cy(x,t), the Harnack inequality, Holder decay estimates at the lateral boundary,
and the estimate in (1.4). In fact, we also claim that Theorem 1.2 remains true
also under the weaker assumption that 2 c R" is a bounded NTA-domain with
parameters M, 7y in the sense of [JK], and that Theorem 1.2 probably also ex-
tends to the setting of the time-dependent Lip(1,1/2)-domains considered in [N]
and in the more general setting of parabolic NTA-domains considered in [HLN].
However, for the sake of simplicity and brevity we here stay with the formulation
in Theorem 1.2.
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2 - Preliminaries

In the following we assume that F : M,, x R" x R" x R — R satisfies (1.2) for
some (4,4,n). We will use the notation C;(x,t) = B(x,r) x (t, t+12), C, (x,0) =
B(a,r) x (t —12,1),C, . (x,t) = Bla,r1) x (t —13,1),for (x,1) € R™ T andr, vy, 75 > 0.
We will work in cylindrical domains Q7 = Q x (0, T), where Q C R" is a bounded
domain, i.e., abounded, connected and open set, and 7' > 0. The parabolic boundary of

the cylinder Qr, 0,Qr, is defined as

0,Qr =Sr U@ x {0}), Sr=02x][0,T].
We let, for (x,t) € R" and » > 0,
(2.1) Alx,t,7) = Sy N Cplx, ).

2.1 - Pucct extremal operators

Following standard notation we let, given 4, 4,0 < 1 < A4 < oo, PZ 1 P denote
the maximal and minimal Puceci extremal operators corresponding to 4, 4, i.e., for
every M € M, we have

(2.2) PraM) =AY ei+i> e, P M) =iy ei+A4) e

e;>0 e;<0 e;>0 €;<0
where ¢; = ¢;(M), i = 1, ..., n, denote the eigenvalues of M. In addition we let

H g, = PXA(DZM) + n|Du| — du,
23) ,
H; gt =P ((D*u) — n|Du| — dpu.

Note that HI Ay Moy are uniformly parabolic in the sense stated above.
Furthermore, we also note that if « be a viscosity solution to (1.1), then u satisfies the
differential inequality

(2.4) H/{ A= 0>H

in the viscosity sense. Following [W1] we introduce the following standard notation.

Definition 2.1. Let D c R"™ be a bounded open set. We let S(4, A,5) =
S(4, 4,n, D) denote the set of all functions « which are continuous in D and which
simultaneously are viscosity subsolutions to the equation HI A =0 and viscosity
supersolutions to the equation H; , ,u = 0.
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Remark 2.2. Note that the class S(4, 4, 7) in R"™*! is invariant under ortho-
gonal transformations in the space variables and under translation in the ¢-variable.
This is in contrast to viscosity solutions to (1.1) which are not necessarily invariant
under these transformations.

Remark 2.3. Note that if u is a viscosity solutions to (1.1), then u € S(4, 4, %)
in R"*1,

Remark 2.4. Note that the equations HIAu =0 and H; ju = 0 are special
cases of the general structure in (1.1).

2.2 - Fundamental principles

Lemma 2.5. Let D C R™™ be a bounded open set. Let w~ be a viscosity sub-
solution to (1.1) in D and let u* be a viscosity supersolution to (1.1) in D. Ifu~ < u*t
on 8D then uw~ < u*t in D.

Proof. See [GGIS] or Lemma 2.5 and Corollary 2.6 in [BG]. O

Lemma 2.6. Consider r, 0 < r < oo, and assume that u be a non-negative
Sfunction in the class S, A,n) in C, (xo, o). Then, given 0 < by <he <1, 0< f <1,
there exists a constant ¢ = c(4, A,n, k1, he, f), 1 < ¢ < oo, such that

w(x, t) < culxg,ty) whenever (x,t) € C/;a’hﬂ(xo, o) \ C/}Tl’hﬂ,(xm to).
Proof. See Theorem 4.18 in [W1]. O

Recall, assuming that Q ¢ R" be a bounded Lipschitz domain, with parameters
M, 71y, that in the introduction we introduced the point of reference
A, (g, o) = (A,(9), tp) whenever (xg,t9) € S and 0 < » < 7. In the following we will
also use the notation

(2.5) Al (o, t0) = (An(xo), to +21%), A (x0,t0) = (Ar(xo), tg — 20%),

whenever (xy,%)) € Sy and 0 < < 7y. The following two lemmas follows im-
mediately from Lemma 2.6 and for proofs we refer to [N].

Lemma 2.7. Let Qr = Q x (0,T), where Q C R" is a bounded Lipschitz do-
main with parameters M,ry and T > 0. Let (xg,ty) € S and

r< min{'ro/Z, (T — t())/4, \/75()/4}.
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Let u be a non-negative function in the class S(A, A,n) i Qp. Then, there exist
c=ch, 4,np,M), 1<c<oo, and y=7yA,nM)>0, such that for every
(2, 1) € Qr N Cp(o, to),

(2.6) w(a, t)dp(a, t, Sr) < cr’u(A; (o, tp)).

Lemma 2.8. Let Qp = Q x (0,T), where Q C R" is a bounded Lipschitz do-
main with parameters M, vy and T > 0. Let (xg,ty) € St and

r < min {7‘0/2, v (T — to)/4, \/t0/4}.

Let u be a non-negative function in the class S(A, A,n) in Qr. Then, there exist
c=ch, A,n,M), 1 <c < oo, andy=7yA,A,n M) >0, such that

_ r ’
w(A, (o, to)) < C((W) u(, t),

whenever (x,t) € Qr N Cy(xg, to).

3 - Gaussian type decay estimates in thin cylinders

Lemma3.1. Let (xo,ty) € R"", » > 0. Then there exist constants ¢ = ¢(4, A, )
and o = a4, A, 1) such that the following s true. Assume that u be a non-negative
function in the class S(A, A,n) in C;T(aco, to), that u is continuous on the closure of
Cy,. (0, to) and that w = 0 on 9,Cy, (9, t0) N {(x,t) : t =to}. Then,

dy@,t,y,8)\”
lu(e, t) — uly, s)| < c(%) sup |u|
C} o to)

whenever (x,1), (y, s) € CF(x, to).

Proof. First, making the transformation

w(re + o, 7%t + to)

WD) = =

b

we see that % is a non-negative function in the class S(4, 4,#) in C(0,0), that @ is
continuous on the closure of C; (0,0), % = 0 on 9,C5 (0,0) N {(x,?) : t = 0}, and

(3.1) sup |u| = 1.
C; 0.0

Now, applying the interior Holder estimates derived in [W2], and the Hoélder esti-
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mate at the bottom of cylinders proved in Theorem 2.11 in [W2], we see that there
exist constants ¢ = ¢(4, 4,%) and o = a(/, 4, ) such that

u(w, ) — aly, s)| < c(dy(@,t,y,s))" whenever (x,1),(y,s) € C; (0,0).

Scaling back we get the conclusion stated in the lemma. |

Lemma 3.2 (Gaussian decay estimates). There exists a K> 1, K= K(i, A1)
such that the following s true whenever (xy,t) € R »>0 K > K. Let u be a
non-negative function in the class S(4, 4,n) in Cx, 5,(x0, to) vanishing continuously
on 9,Cp, 4,0, t0) N (B, (K — 2)r) x {to — 47‘2}).' Then, there exists a constant
¢ = c(4, A; n), 1 < ¢ < oo, such that

sup u <cexp(—K/c) sup u.
C; (x0,t) Cryr(@ot0)

Proof. In the following we let K > 1 be a constant to be chosen, we consider
K> K , and we note that we can without loss of generality assume that (x, ty) = (0,0)
and » = 1. Let &y € R" and R > 2 be such that B(&y, 2R) C B(0,2K). Furthermore,
assume that v is a non-negative function in the class S(4, 4, 7) in C;R(.%o, —4), that v
is continuous on the closure of C;,(¥9,—4) and that v =0 on 9,C;,(X, —4) N
{(x,t) : t = — 4}. Then, using Lemma 3.1 we have that

dy(x, t7?/78)> —

(3.2) [v(, ) — v(y, s)| < c(
R @~ D)

whenever (x,1), (y,s) € Cg(ico, —4). In particular, using (3.2) with (y, s) € B(%, 2) x

{t = — 4}, we have that

(3.3) [v(x,t)| < cR™ sup |y

Co o, 4)

whenever (x,t) € C; (%9, —4). Based on (3.3) we in the following let 6,0 < 6 < 1, be
a degree of freedom to be fixed and we let R be such that cR~* = 6. In particular, 6
fixes R. Using this R we let suppose K =2(R +1)+R. Hence, K = K, 4, n). Let
now &1 € 0B(0, K — 2(R + 1)) and using the function » we introduce an auxiliary
function v as follows. We let v be a solution to 7 , v = 0in Cgp (w1, —4), continuous
on the closure of Cjy(x1, —4), v =u on 8pC§’R72(x1, —4) and v(x,t) = u(x,0) when-
ever (x,t) € 0 (C;R(xl, —4)\ C;Rz(acl, —4)). Then, by the comparison principle, see
Lemma 2.5, we have that '

(34) sup |v] < sup wu.
Cop@1,—4) C50.0)
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Furthermore, using (3.3), (3.4), and the definition of 0, we see that

(3.5) [v(x, )] <0 sup u
C20.0)

whenever (x,t) € Cy (x1, —4). Note that v =« on CQRQ(%, —4) and hence

(3.6) |u(x,t)] <0 sup u
Ci (00

whenever (x,t) € C’Z+ (21, —4). Since x; is arbitrary in this argument we see that

3.7) lutee, )] <0 sup u,
Cy»0,0)
whenever (x,t) € CI}—Q(R +1),2(07 0). Repeating this argument we can conclude, by
induction, that
(3.8) lula, )| < 07 sup % whenever (x,t) € CI_{—27(13+1),2(0»0)»
Cx 20,0 '
as long as K — 2j(R + 1) > 0. Let jy be the largest j such that K — 2j(R +1) > R

and note that by construction of K we know that jo>1. In particular,
Jo~ (K —R)/(R+ 1)) and we deduce that

(3.9) lue, )| < ce®/¢ sup u
Cx20.0)
whenever (x,?) € C; (0,0). Hence the proof of the lemma is complete. O

4 - Proof of Theorem 1.2

Lemma 4.1. Let Qp = Q x (0,T), where Q C R" is a bounded Lipschitz do-
main  with parameters M,ry and T >0. Let (xg,ty) € Sy and let r <

min {7”0/2, V(T —1)/4, 1/t /4 } Let u be a non-negative function in the class
S, A,n) m Qp N Cop(ag, to) vanishing continuously on A(xg, ty,2r). There exist c,
1<c<ooc=chA,n,M), 0 =00,4,3M),0<0 <1, such that

sup %<0 sup u.
QrNCy e (o.to) QrNCy(wo.to)

Proof. Thisis essentially a special case of Theorem 2.5 in [W2], see also Lemma
2.6 in [W2]. A proof can also be found as the proof of Lemma 3.1 in [BG]. O

Lemma 4.2. Let Qp = Q x (0,T), where Q C R" is a bounded Lipschitz do-
main  with parameters M,ry and T >0. Let (xg,ty) € Sy and let r <
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min{ry/2, /(T — ty)/4,\/to/4}. Let u be a non-negative function in the class
S(4, A, n) in Qr vanishing continuously on A(xy, to, 2v). Then, there exists a constant
c=c(,4,n,M),1<c< oo, such that

u, t) < cu(A; (o, o))

whenever (x,t) € Qr N C,4(xo, o).

Proof. Using the Harnack inequality and Lemma 4.1 we see that Lemma 4.2
follows by standard arguments along the lines of [S]. O

Lemma 4.3. Let Qp = Q x (0,7T), where Q C R" is a bounded Lipschitz do-
main with parameters M, ro and T > 0. Let u be a non-negative function in the class
S, A, n) in Qp which vanishes continuously on Sy. Let 0 < 6 < /T be given. Then,
there exists a constant ¢ = c¢(4, A,n, M,diam (Q), T, ), 1 < ¢ < oo, such that

sup ux,t) <c inf  u(x,?),
(x,t)eQ‘s ><(52,T) (,)eQ’ x ((SZA,T)

where Q° = {x € Q : d(x, Q) > J}.

Proof. The lemma follows from Lemma 4.2, the Harnack inequality and
Lemma 4.2, see Theorem 1.3 in [FGS], or Lemma 2.7 in [N], or Theorem 3.4 in [BG],
for details. O

Lemma 4.4. Let Qp = Q x (0,7T), where Q C R" is a bounded Lipschitz do-
main with parameters M,ro and T > 0. Let K> 1 be given and consider
(wo, to) € St. Furthermore, assume that v < min{ry/(2K), /(T — t9)/4, \/to/4}. Let
y =y, A,n, M) € (0,1) be as in Lemma 2.7 and Lemma 2.8. Assume that u is a non-
negative function in the class S(A,A,n) i Qp, vanishing continuously on
St N Ck,. 5,0, o), and that

sup  u > QRK)”’ sup u.
QrNC; (o to) QrNCy,. (@0 t0)

Then, provided K = K(A, A,n, M) is chosen large enough,

1
(4.1) sup U > 0. Sup  u.
Q0 (B Kn)x {to—412} ) QrnC; (wo.to)

Proof. We may without loss of generality assume that » = 1. Obviously (4.1)
is true if

(4.2) sup U= sup u.
QTHC;(AZ(xO-tO) .QTQC;((%o,to)ﬁ{(ﬂ’f,t)it:tofﬁl}
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Hence we in the following assume that (4.2) does not hold. Let u satisfy
H; 4,4 =0 in Cgy(w,to) with boundary data u on (9,Cy(x0,%)) N Qr and
boundary data 0 on (9,Cx 5(wo, %)) N (R \ Q7). Then % has continuous boundary
data on o"'pC}}z(aco, to) and,'by the comparison principle u < % in (Cy 5(wo, %)) N Q.
In particular, '

sup w#> sup u
QrNCY (2o to) QrnCy (xo,t)

(4.3) >@2K)7 sup wu=@QK)’ sup u.
QrNCy 5o to) QrNCx 5o ,to)

Next, let ¢ € C°(B(wo,K)) be a function such that 0 <¢$ <1 and ¢=1 on
B(xg, K — 1). Let h satisfy HI A,nh = 0 in Cy ,(xo, tp) With the boundary data

07 (9("7 t) S apC]}"g(an tO) \ QT)
Rz, t) = < 1 — g@)ulx,t), (x,t) € Blao, K) x {t =ty — 4},
w2, t), (x,t) € OB(xo, K) x {t:tg —4 <t <ty} NQp.

Note that % is continuous on J,Cy »(%o, o). We now assume, in order to reach a
contradiction, that

sup  u,
QrNCy (@)

NI

(4.4) sup u <
.QTI'-TCI;(JL‘O ,to)ﬂ{(.’)&‘,t):t:tof‘l}

where A = 10. By construction (4.4) implies that

.1 .
(4.5) sup <— sup .
QG toni@di=to-4} A 0,0 o to)

We now note that

1
4.6 max { u(x,t) —— sup u%,0
( ) { A QrNCy (xo,t) }

is a viscosity subsolution to the equation HI AV = 0 in 01}72(900,750) and that the
boundary value of the function in (4.6), at (x,?) € GpCI},z(xo,to), is bounded from
above by &(x,t). Hence, using the comparison principle it follows that

- 1 N
w,t) —— sup % < h(x,?), whenever (x,?) € Cg 40, t).
A 2y @oto) ’

Now using the Gaussian decay estimate of Lemma 3.2, and (4.3), we deduce that
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A -1 .
( ) sup #< sup h
A i@ty @t

< ce Kle sup h
(4.7) C 5(@o,t0)
=ce X sup @

QrNCy 5 (o,t0)

<ce KC@QKY  sup @
QrNCy (@)

Since A = 10 we can now choose K = K(4, 4,5, M, A) large enough to ensure that

1
—cK Vi <
(4.8) ce K@Ky < .

Using this choice for K we see that (4.7) can not hold and hence (4.5), and therefore
(4.4), is contradicted. This completes the proof of the lemma. O

4.1 - The final proof

To begin the proof we let 0 < § < VT be a fixed constant, we let (g, t)) € Sr,

& <ty < T~ and d = min{re/2,\/(T — to — 0%/4,/(to — 5)/4}. Obviously, to
prove Theorem 1.2 it is enough to prove that

sup  ulx,t) < cu(A, (o, ).
QrnC;,.(wo.to)

We now assume that » < d and we let p be the largest number r < p < d satisfying
the inequality

(4.9) sup  u(x,t) < (r/p)  sup  wlx, i),
QrNC,, (o,t) QrnC;,(@o,to)

where yis the constant appearing in Lemma 2.7. Using Lemma 2.8 and the definition
of the point A (xy, ty) we see that

(4.10) u(Ay, (o, b)) < c(p/r)u(A, (x0,t0)).
In the following we prove that

(4.11) sup  ul(x,t) < cu(Ay, (o, to))
QTﬂCZ*/)(xo,to)

for this particular choice of p. In fact, combining (4.9), (4.10) and (4.11) we see that

(4.12) sup  u(x,t) < cu(A, (xo, 1))
QTQCZ;(JC(),to)
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and hence the proof of Theorem 1.2 is complete once we have proved (4.11). To prove
(4.11) we let K > 1 be given as in Lemma 4.4, and we divide the proof into two cases.
First, we assume that 6/(2K) < p. In this case p is large and combining Lemma 4.2
and Lemma 4.3 we see that

(4.13) sup (1) < culAgz, (o, to)) < PulAg, (o, o)),
QrNCy,(@o,to)

for some ¢ = ¢(A, 4,5, M, diam (2), T, 6, K), 1 < ¢ < oo. Hence, the proof is complete
in this case. Second, we assume that » < p < J/(2K) and we then first note, by the
definition of p, that

(4.14) sup u>Q@K)”  sup u.

QrnC;,@oto) QrnCiy, (@o,to)

Obviously (4.14) implies
sup  u > QRK)”’ sup u > 2K)7 sup u,

QrNG,, (xo,to) QrnCiy, s, o,to) QrnCy, 4,0 t0)

and hence we can use Lemma 4.4 to conclude that

1
(4.15) sup u>-— sup U
2rnCye @oton{etit=to-1602} 100500, (.t

In particular, using if necessary Lemma 4.2, and the Harnack inequality in Lemma
2.6, we can now use (4.15) to conclude (4.11). This completes the proof of (4.11) and
hence the proof of Theorem 1.2. O
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