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Statistical mechanics and dynamics
of long-range interacting systems

Abstract. This manuscript summarizes the content of a series of five lectures given
by one of the authors (SR) at the summer school on Methods and Models of Kinetic
Theory in Porto Ercole, june 3-9 2012. The paper is organized in four Sections. In the
first, introductory, Section 1 we discuss several physical systems in which long-range
interactions appear: self-gravitating systems, mean-field spin systems, Euler’s equa-
tion in two dimensions, one component electron plasmas, dipolar systems, finite sys-
tems, free electron lasers, cold atoms in optical cavities. The following Section 2 is
devoted to ensemble inequivalence, which manifests itself with exotic phenomena like
negative specific heat, temperature jumps, broken ergodicity. In this Section we
present illustrative models for which microcanonical entropy can be obtained by direct
counting: the Blume-Capel and the Kardar-Nagel model. In Section 3 we describe how
large deviation theory can be used to obtain the microcanonical entropy of several
mean-field models, especially those with continuous local variables, for which direct
counting is not applicable. Here, we also show how magnetic susceptibility can become
negative in the microcanonical ensemble. Finally, Section 4 is fully devoted to describe
quasistationary states. These are non equilibrium states that appear generically in the
dynamics of system with long-range interactions and for which a beautiful statistical
theory has been proposed long ago by Lynden-Bell. The results presented in this set of
lectures are mainly contained in Refs. [1, 2, 3].
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1 - Introduction

Various definitions of long-range interactions have been adopted in the litera-
ture. Here, we will choose the one that is related to the extensive properties of the
energy. An interaction is defined to be long-range if the two-body potential at large
interparticle distance behaves as

Vir) ~Jr
0<a<d,

with d the dimension of the embedding space and J the strength of the coupling. For
such interactions the energy per particle ¢ scales as

R
(1) &= E = Jdd/y’pi — pJ;QZ |:Rdfat _ 5d7ai|7

where J is a small distances cut-off, R is the cut-off at large distances, p is a mass (or
charge) density and Qg is the angular volume in dimension d. It is then straight-
forward to check that

e if & > d then ¢ — const when R — oo
o if0 < <dthene~ V%4 (V ~ RY).

In terms of the extensive energy £ = &V, where V is volume,

a>d E~V
v<d E~VF

and the free energy
(2) F=E-TS , S~V,

with 7' the intensive temperature and S the entropy, that typically scales with the
volume. Therefore, thermodynamic properties of long-range systems are dominated
by the energy E, which scales with volume V faster than linear. A way out from this
energy dominance was proposed by Marc Kac. It consists in scaling the coupling
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constant

(3) J — Jy#/d-t,

In this way the free energy turns out to be extensive in the volume
4) F~V.

However, this is a “mathematical trick” and doesn’t correspond to any physical ef-
fect: no interaction that changes its strength when varying the volume is known. This
trick can be adopted only for the sake of performing a meaningful large volume limit.
Once the free energy per particle is obtained, the physical description can be re-
trieved by scaling back the coupling constant.

Alternatively, one can rescale the temperature

(5) T — TV~
and then the free energy scales superlinearly in the volume
(6) F~V2ed,

Let us illustrate these features quantitatively for a case of interest in astro-
physies: globular clusters, see Fig. 1. These are gravitationally bound concentrations
of approximately 10* — 106 stars, spread over a volume from several tens to about 200
light years in diameter (1 light year = 9.4 - 10'm). For a typical globular cluster
(M2): N = 1.5-10°% R = 175 light years, M = 2 - 10%* Kg.

Fig. 1. The spherically symmetric mass distribution of stars in a globular cluster.
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An order of magnitude estimate of energy and entropy gives

 GN2M2
===

E GNM?
7 E S =kgN o~ =~ 17-10%K
@ B ST kR
where G is Newton’s gravitational constant and kg is Boltzmann’s constant. To this
extremely high temperature, one can associate a velocity by energy equipartition

(neglecting here interactions)

(8) v = 1/3];5[7‘@5.91(7/&/3.

Typical star velocities are indeed in a range between few Km /s up to 100Km/s. This

example shows that energy can compete with entropy, although E ~ V°/3, provided
temperature is big enough.

Although one can get an extensive energy using Kac’s trick, this is not necessarily
additive. This concept can be easily illustrated by considering the Curie-Weiss model
of magnetism

J
N .
9) Hey = ~on ;j 0i0j,

where g; = £ 1is a spin variable. It is a mean-field model, which can be considered as
the o = 0 limit of long-range interacting systems. The coupling is rescaled using
Kac’s trick.

Let us consider a macrostate having zero magnetization M = %" g; = 0, com-

posed of N/2 spin 1 sites and N/2 spin —1 sites, Fig. 2. Since the Zenergy is pro-
portional to the square of magnetization, the total energy of the systemis E;,;; = 0.
However, the energy of the two parts £; = E;; = —J /8N does not vanish and,
therefore, K7, # E + Eyj.

Fig. 2. A zero magnetization macrostate divided into two subsystems of positive and
negative magnetization, respectively.
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Fig. 3. Non convex shape of the region of accessible macrostates in the magnetization/
energy plane for long-range systems.

The violation of additivity is crucial in determining the thermodynamie proper-
ties of systems with long-range interactions. For instance, it determines a violation
of convexity of the domain of accessible macrostates. An example is shown in Fig. 3,
where the boundary of the region of accessible macrostates is represented by the
thick line with the shape of a bean. In standard thermodynamics, for short range
interactions, all states satisfying

(10) E=)E,+1-MDEy , M=Mi+Q-M)My, , 0<1i1<1

must be present at the macroscopic level, because additivity is satisfied. This is in
general not true for long-range interactions. This can determine a violation of er-
godicity in the microcanonical ensemble as we will discuss in Section 2.

The use of the canonical ensemble in system with long-range interactions is
doubtful, because its classical derivation from the microcanonical ensemble is based
on additivity. Let us briefly recall it. The microcanonical partition function for a
system composed by N particles in dimension d = 3 is defined as

3N . J3N
(11) QE) = J d;fg#é@ ~Hp.q),

where (q,p) are canonically conjugate variable, H is the Hamiltonian and % is
Planck’s constant. Entropy is defined as

(12) S(E) = kgln Q(E),

where an ineffective energy scale should be included in the logarithm. Using
additivity, the probability density that a subsystem composed of N particles has
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energy K is

Q1 (E)(E — Ey)

1 E) = .
(13) PE) = T 5 0B 2B - By

If the subsystem is much smaller than the system £ > E1, N > N;

08Ss

928
= 2 2
Yom, | T

1
(14) SoB B = SulB) ~ B g | 4 5B

B
where Ey = E — E;. Using this Taylor expansion, one can prove that

By exp(—pE1)  Q(E1)exp(—pEr)
(15) pEL) = [ dE\01(Br) exp(—fEy) 7 )

if No = N — N1 > Ny, where

1 95,

(18 P teaT = 0B |,

is the inverse temperature.

In the following, we will consider both the microcanonical (11) and the canonical
distribution (15). In order to justify the use of the canonical distribution for systems
with long-range interactions, that are non additive, one must resort to an alternative
physical interpretation. For instance, consider that the system is in interaction with
an external bath of a different nature, e.g. stochastic.

Models with long-range interactions can represent systems of interacting par-
ticles having the following potential energy

(17) UG,....7n) = Y V(#-FD+g > V@),

1<i<j<N i=1.N

where 7; is the position of the ith particle, V the interparticle potential and V, an
external field.
Alternatively, long-range interactions can be defined on a lattice

N
(18) U@y,...av) = Y, CiV(a,q)+g) Vo)
1<i<j<N i=1

where q; represents the “internal” degrees of freedom sitting at a lattice site r; and
the coupling

(19) CiJ':_, = , 0<a<d

bears the long-range nature of the interaction.
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Fig. 4. Different behaviors of long-range systems depending on dimension d and the
exponent ¢ = o — d.

Defining o« = d + o one can identify different regions in the d,o plane (see
Fig. 4). The non additive long-range region has —d <o <0, as discussed
above. However, the long-range behavior extends to ¢ > 0, although the en-
ergy is here additive. It can be shown that, if 0<o < d/2 the critical behavior
is characterized by mean-field (classical) exponents, exactly as for the full
region d > 4 (any value of g). Moreover, in a region ¢ > d/2 and below a given
line which is only partially known, the system maintains some long-range
features, but with non classical o-dependent critical exponents. Some points
along this line are known. At d =1 the line passed through ¢ = 1: indeed in
the whole range 0 < o <1 one can have phase transitions in one dimension.
For d =2, numerical simulations show that the line passes through ¢ =7/4.
Finally, renormalization group techniques suggest that the line reaches o =2
from below at d =4. Above this line and below d =4 the system becomes
short-range.

A model with Hamiltonian of the type of (18) has been introduced by Dyson. An
Ising spin variable g; = +1 sits on the ith site of a one-dimensional lattice with N
sites and the Hamiltonian is

J X 0,0;
(20) HY =5 Y 20
yson 2 #]z::l |Z _.7|17L
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The scaling properties of the energy are

6>0 E~N,
—1<6<0 E~N'""7,

The model is known to display a ferromagnetic phase transition for 0 <o < 1 and no
phase transition for ¢ > 1. This is in accordance with a theorem due to Dyson and
Ruelle. At ¢ = 1 it has been proved that a jump in magnetization at the transition
point is present, together with a diverging length and correlations decay as a power
law of the distance.

For —1 < ¢ < 0, one can apply Kac’s rescaling

(21) J —J=JN°

and get an extensive free energy /' = E' — T'S ~ N. In this range of values of ¢ one
can prove that a continuum limit exists, meaning that for Hamiltonian (20) the fol-
lowing property holds

(22) Hpyson = NHpysonlm] + oN)
where
1
J , m(r)ym(r’)
(23) HDyson[m] =73 J dr J dr m

0

is a functional of the local magnetization m, with » € [0, 1]. The proof of this results
relies on dividing the lattice in K boxes, each of side length [ = N/K and introduce a
box-averaged magnetization my, k=1,...K. In the limit N — oo, K — oo,
K/N — 0 the magnetization becomes a continuous function of 7. The construction
can be easily generalized to higher dimensional lattices and to other types of in-
teractions.

The most notable and fundamental example of long-range interaction is gravity,
for which the potential energy is

1

7

(24) UG, ..., ) = —Gm? _
1<igen i

In order to get a finite microcanonical partition sum, one has to confine the self-
gravitating system in a box of volume V. This is necessary also when doing the
statistical mechanics of the perfect gas. Hence,

(25) QE) = J [[d7dpioE — K — U) o J [[ 7@ —vy*¥-272,
\4 : 14 ‘
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where K is kinetic energy and a first integration over momenta has been performed.
The integral in (25) behaves as aﬂfj_sN/ % when rj = |#; — #j| — 0, i.e. when two bodies
get close. Hence, it diverges for N > 3, determining a divergence of microcanonical
entropy S(E) = kgln Q(F) (similarly, the canonical partition function diverges).
There is no way to prevent this short-distance divergence other than regularizing
Newtonian potential. This can be done in different ways: softening, hard-core, Pauli
exclusion. Irrespective of the way gravitational potential is regularized, the non-
additive features related to the long-range nature of the interaction persist. These
are significantly represented by the presence of negative specific heat. This phe-
nomenon can be heuristically justified using virial theorem, which for the gravita-
tional potential reads

(26) (K)=-5(U) . (K)=-E

where (-) denotes a temporal average. Since kinetic energy K is always positive, it is
clear that this theorem can only be valid for bound states, for which E is negative.
Using equipartition theorem, average kinetic energy is proportional to temperature
and, hence, the second identity in (26) tells us that specific heat ¢y, which is pro-
portional to dE/dT, is indeed negative. However, this is just handwaving and this
type of argument uses plenty of hypotheses. More rigorously, it can be shown that
regularized self-gravitating systems confined in a box have an entropy that is a non
concave function of the energy, as shown in Fig. 5a. Since specific heat is related to
the second derivative of the entropy with respect to energy

(27) Ps/0 = —(cyTH T,

se) a) 'Be) b)

o
slope=py ./ .
S
g

& & §&§ € & & & & & g

Fig. 5. a) Schematic shape of microcanonical entropy per particle s=S/N as a function
of energy per particle ¢ = E//N (solid line) showing a “globally” convex region in the range
[e1, 2], the thick dashed line realizes the “concave envelope”. b) Inverse temperature f as
a function of ¢. According to the Maxwell’s constructions the areas A; = Az. The curve fi(e)
represents states that are stable (solid line), unstable (dotted line) and metastable
(dashed lines).
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it follows that in the energy range [¢,, ¢;], where the entropy is convex, specific heat
must be negative. For short-range additive interactions all states within the wider
range [, ] would have an entropy that is represented by thick dashed line in
Fig. 5a. In Fig. 5b, the inverse temperature f is plotted as a function of ¢, in the
negative specific heat region, temperature decreases as energy increases.

Another important example of a system with long-range interactions is Euler’s
equation in two dimensions

8ﬂ I N = o

(28) SH@DT=0 . V5=0 , T=@.y).
Using vorticity

ov, OV,
29 —_Yy_Z
(29) o, y) =5 oy
Euler’s equation can be rewritten as

860 L =

(30) St Vo=0.

The long-range features of this equation are made explicit introducing the stream
function yw(x,y)

Oy
vx—'i‘a—y

Oy
U=

This function is directly related to vorticity by the Poisson equation

(31) w=—4A4y.

whose solution in a given domain D is

(32) w(F) = Jd?’ o) GF 7).
D

In the infinite domain, the Green function is
AN 1 ==
(33) G(’I",T)—f%hlh"f?ﬂ,

which decays in space slower than any power of the distance, the « exponent would be
here equal to zero. One can also easily show the non additive features of the energy

1, 1, 10 .
E = Jdﬂré(vx +17) = Jdré (Vy)* = EJdT (P ()
D D D

S J Jdmw o a@)ln [F - 7|
4n
DD
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Fig. 6. An example showing the non additivity of energy in the Euler equation for a
shear flow.

for the shear flow
(34) Vpo=—-Y , =0, wo=1 | W:—yz/z.

The energy per length L, E /L, along x of the flow within —1 < y < 1is larger than
the energy of the separate flows: -1 <y <0,0<y <1

E 1 Eip 1
(85) L73 L #

Coulomb systems are another example of long-range interactions

L 1 & L
(36) U@, ..., Ty) = mzeiejV(lTi =70,

i<y

where ¢ is the vacuum permittivity and e; is the charge located at 7;. For such
systems, it can be shown that the excess charge is expelled to the boundary of the
domain and the bulk is neutral. A typical configuration has a distribution of charges
of equal sign surrounded by a “cloud” of particles of opposite charge, which “screen”
the interaction at long-range. The effective two-body potential is therefore

(37) Vi oc SR/ 0),

where 1p = (g/ (2nezﬁ))1/ % is the Debye length and # is particle density. Coulomb
systems are effectively short-range. Rigorous proofs of this result exist only at low
density and high temperature.

A plasma of electrons can be confined by a crossed electric E and magnetic B
field. As shown in Fig. 7 the electrons are contained axially by negative voltages and
radially by a uniform axial magnetic field B,. At the temperature and density of the
experiment, electrons are collisionless. They bounce axially very rapidly and drift
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(o]

Fig. 7.

across the magnetic field with velocity
V¢ x 2
(38) v=—p

As for an effectively incompressible fluid, electron density 7 (x, y) obeys the evolution
equations

on
(40) 2H="=
&

where —e is electron charge. These equations are isomorphic to the two dimensional
Euler equation with vorticity @ = en/g and stream function v = ¢/B,. In some
sense, the electron plasma is the best experimental realization of 2D incompressible
inviscid fluids. Dipolar interaction is marginally long-range, o = 3 in d = 3. The in-
teraction energy of two dipoles is

po |Hi - iy 3 - Ty - 7y)
(41) Eii:4_ ~ 3 ~ 5 )
7| 17l 171
where g is vacuum permeability and j; is the dipolar moment at site 7. Because of the
anisotropy of the interaction, dipolar systems are strongly frustrated: several con-

figurations have the same energy. For ferromagnetic samples of ellipsoidal shape

2
(z#)
(42) HY, ZEZE“=E0V—|-1/J —— "D
ipolar 2 o Y 2 0 4
where K is a local energy depending on crystal structure and D is the so-called
shape-dependent demagnetizing factor: D = 1/3 for spherical samples, D = 0 for
needle shape samples, D = 1 for disk shaped samples. An important result is due to
Griffiths: The free energy of a dipolar magnetic system is shape-independent. This
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implies that the macroscopic state cannot be ferromagnetic. However, ferro-
magnetism can exist in mesoscopic samples, paving the way to the possible experi-
mental detection of long-range effects.

Even if the interactions are short-range, systems of linear size comparable with
the range of the interaction are non-additive. Examples are: atomic clusters,
quantum fluids, large nuclei, dense hadronic matter. Atomic clusters of a few atoms
show phase transitions: both solid-liquid and liquid-gas. Their signatures are: the
bimodality of the density of states as a function of energy; the negative slope of the
microcanonical calorie curve, i.e. negative specific heat; large fluctuations in the
partition of potential and kinetic energy; approach to the real axis of the zeroes of the
partition sum as a function of complex temperature in the canonical ensemble.

Experiments have been performed which claim to have found signatures of ne-
gative specific heat. The first set of experiments is realized using atomic sodium
clusters Na{@n and hydrogen cluster ions HS+ (H2)m<14. In the first case, negative
specific heat has been found in correspondence with a solid-liquid phase transition,
while in the second case in the vicinity of a liquid-gas transition. Sodium clusters are
produced in a gas aggregation source and then thermalized with Helium gas of con-

0 40 80
Energy(eV)

Fig. 8. Temperature vs. energy in a hydrogen cluster experiment, showing a region of
negative specific heat.
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trolled temperature and selected to a single cluster size by a first mass spectrometer.
The energy of the clusters is then increased by laser irradiation leading finally to
evaporation. A second mass spectrometer allows the reconstruction of the size dis-
tribution, and correspondingly of their energies. Performing this experiment at dif-
ferent temperatures of the Helium gas, a temperature-energy relation, so-called ca-
loric curve, is determined. In the second set of experiments on nuclear fragmentation,
the presence of negative specific heat is inferred from the event by event study of
energy fluctuations in excited Au nuclei resulting from Au + Au collisions. The data
seem to indicate a negative specific heat at an excitation energy around 4.5 MeV/u. In
the third set of experiments, performed with hydrogen cluster ions, the energy and
the temperature are determined from the size distribution of the fragments after
collision of the cluster with a Helium projectile. The experiments, see Fig. 8, show a
negative specific heat region, corresponding to a liquid-gas transition.

An experimental apparatus where long-range forces are at play is the free
electron laser. In the linear free electron laser, a relativistic electron beam propa-
gates through a spatially periodic magnetic field, interacting with the co-propagat-
ing electromagnetic wave, see Fig. 9. Lasing occurs when the electrons bunch in a
subluminar beat wave. After scaling away the time dependence of the phenomenon
and introducing appropriate variables, e.g. the length z along the lassoing direction,
it is possible to catch the essence of the asymptotic state by studying the following
equations of motion, first introduced by Colson and Bonifacio,

av; _

dz D

% = — Aemj _ A*e_mj
dz

dA . 1 _io,
%:zéA—i—N;e Wi,

magnets

electron accelerator g N g N

gun I [ N B N B

N| [S]| |N| |S

Fig. 9. Sketch of a linear free electron laser.
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High finesse optical cavity

Fig. 10. Collective interactions between light and cold atoms.

which derive from the Hamiltonian

=
3,

N
(43) HY, = E — NoA® +2A4) “sin(0; — ¢).
j=1 j=1

The p;’s are related to the energies relative to the center of mass of the N electrons
and the conjugated variables ; characterize their positions with respect to the co-
propagating wave. The complex electromagnetic field variable, A = A ', defines
the amplitude and the phase of the dominating mode (A and A* are canonically
conjugate variables). The parameter ¢ measures the average deviation from the
resonance condition.

Essentially the same Hamiltonian (43) describes the phenomenon called
Collective Atomic Recoil Lasing (CARL). The experimental setup is displayed in
Fig. 10. A cold atomic gas is enclosed in a high finesse optical cavity. Above a critical
pump beam (black) intensity, a probe backscattered beam (red) switches on a reaches
a saturation level. A full modelisation of the phenomenon requires a description of the
internal atomic dynamics, the atomic center of mass dynamics and the optical field
dynamics. In the simplified model (43) 0; is the phase of atom j in the optical potential,
pj is the scaled momentum of the atom and A is the probe field amplitude.

2 - Ensemble inequivalence

For systems with long-range interactions statistical ensembles can be in-
equivalent. For instance, the temperature-energy relation might not be the same in
the microcanonical and canonical ensemble. In the microcanonical ensemble specific
heat can be negative.
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Let us first illustrate the case in which ensembles are indeed equivalent. It means
that free energy can be obtained by Legendre-Fenchel transforming entropy and
that entropy is itself the Legendre-Fenchel transform of free energy

(44) ¢(p) = ff () = nf [fe —s(e)] , s(e) = i%f [pe — ¢(B)],

where f(f) is free energy and ¢(f5) the rescaled free energy. This involutive property
is shown in Fig. 11.

This relation is a consequence of a saddle-point limit N — oo in the following
formula

3N 7,,3N
exp(— INF() ~2(8) = | aE | ol XH(p, )~ B)exp(— )

= JdE‘ QE) exp(— pE) = deg exp(—N[pe —s)]),

where Z is the partition function.

ts(e) o(B)

slope=g” .~

Fe- s@)

-

B* 8 e* 3

Fig. 11. Upper panel: Free energy from entropy by a Legendre-Fenchel transform.
Lower panel: Entropy from free energy.
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Fig. 12. Relation between entropy and free energy at a first order phase transition.

At afirst order phase transition, entropy has a constant slope in the energy range
[e1, &2] (the phase coexistence region), resulting into a free energy with a cusp at the
transition inverse temperature f;, see Fig. 12.

A system with a first order phase transition is an extreme case of equivalence,
since there is a continuum of microcanonical states with different energy having the
same temperature, specific heat is ill defined and one must introduce the concept of
latent heat.

If entropy becomes non concave, as shown in Fig. 5, microcanonical and canonical
ensemble are not equivalent. The Legendre-Fenchel transform is no more in-
volutive: if applied to the entropy it returns the correct free energy. However, the
Legendre-Fenchel transform of the free energy does not coincide with the entropy
but rather with its concave envelope. This is the basic feature causing ensemble
inequivalence.

As a side remark, let us observe that Maxwell’s equal area condition

&2

(45) Jde(ﬁ(e) =0

&1

implies (and is a consequence of) free energy continuity at f;.

In the case of a phase transition with symmetry breaking, entropy can have two
branches, a high energy and a low energy one. For instance, for a ferromagnetic
system, the high energy paramagnetic phase with magnetization m = 0 and the low
energy ferromagnetic phase with m # 0, see Fig. 13. The two branches of the en-
tropy generically cross with two different slopes, i.e. two different temperatures. At
a given energy & two different microcanonical temperatures can coexist, we find a
temperature jump. This is not conceptually different from the energy jump (latent
heat) found in the canonical ensemble. A temperature jump can only appear in an
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Fig. 13. Left panel: Microcanonical entropy with negative specific heat and temperature
jump in a system with symmetry breaking. Right panel: Corresponding free energy in the
canonical ensemble.

energy range where entropy is globally convex. In Fig. 13 we show a situation where
also a region of negative specific heat is present, but this is not necessary for the
existence of a temperature jump. The whole region where these peculiar phenomena
appear is completely washed out in the canonical ensemble. As shown in Fig. 13, after
Legendre-Fenchel transform, one obtains a free energy which has the same features
as the one modeling a first-order phase transition. It has indeed been conjectured
that a necessary condition in order to have negative specific heat and temperature
jumps in the microcanonical ensemble is the presence of a first-order transition in
the canonical ensemble.

In order to better understand the origin of negative specific heat, it is useful to
introduce the constrained entropy

In > 6(E — H{S:}))o(Nm — M{S;}))

T {Si}
(46) s(e,m) = A;lfic N )

where S; is a discrete spin variable (e.g. S; = +£1), M = Y S; is the extensive mag-

netization and m = M /N the magnetization per spin. In'terms of the constrained
entropy, we define the corresponding free energy as

(47) Bf (B, e,m) = Pe — s(e,m).
The microcanonical and canonical variational problems can be defined as follows
(48) s(e) =sups(e,m) , f(f)= iJLlf f(p,e,m).

m €

In the canonical extremal problem we seek for values of ¢ and m that realise an
extremum of (), while in the microcanonical problem we only maximize over m. It
can be easily checked that the extrema are the same for the two problems. However,
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the stability is different. In the microcanonical problem the only condition for sta-
bility is s, <0 (the subscript mm indicates a double derivative with respect to m),

while in the canonical problem the trace and determinant of the Hessian must be

2

positive, implying that s,; and sy, are both negative and s, — sSmm > 0. The ca-

nonical problem is more constrained. It can be shown that the specific heat has the
following expession in both ensembles

ﬁzsmm
(49) V2 = suSun)
which implies that specific heat is always positive in the canonical ensemble, while it
can be negative in the microcanonical ensemble at free energy saddles s, > 0,
S <0.
A paradigmatic system showing ensemble inequivalence is the spin-1 Blume-
Capel model

(50) HgC:AZszzf%Zsisj S;=0,41.
1 1,]

The phase diagram in the canonical ensemble shows second and first order phase
transitions separated by a tricritical point at 4/J =1n4/3,T/J =1/3, see Fig. 14.
Without loss of generality, one can set J = 1. The first order transition at zero tem-
perature is easily located by equating the energies of the ferromagnetic and of the
paramagnetic phases: Ky = 4 —1/2, Epyq = 0. The second order transition at
A = 0isthe usual Curie-Weiss transition for a spin one system, obtained by solving the
consistency equation (exp(fm) — exp( — pm))/(exp(pm) + exp(— fm) + 1) = m.

2/31 ond Tricritical
= Point

l o~
YY) —
§5X 'y

ls(

F

.

1/2
Fig. 14. Phase diagram of the Blume-Capel model (50).
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The entropy of the model can be obtained by a direct counting of the number of
states. A typical configuration of the model withe.g. N =30,N, =11,N_ =9, Ny =101is

(51) ++++++————0000-————— + 40000 + ++

Given N, N_ and Ny, one can exchange any pair in the group of up, down and zero spins
without changing the energy. Therefore the number of configurations with given en-
ergy is

NI
(52) Q

T NLIN_INg!

In the Stirling approximation, Inn! = nInn — n, the entropy is

B 1 q+m 1 qQ—m
(53) S_—kBN[(l—q)ln(l—q)+§(q+m)ln( 5 )+§(q—m)ln( . )

where m = (N, — N_)/N and ¢ = (N, + N_)/N. The “quadrupolar moment” ¢ can
be expressed in terms of the energy per spin using the relation

(54) &= % = A(q — Km?),

where K = J/24. Then, by maximizing expression (53) with respect to m at fixed ¢
one obtains microcanonical entropy. The derivative of this entropy with respect to
energy gives inverse temperature. Microcanonical temperature is plotted towards

0.336 0.3321
- )
g AJ=In@)3 = 03320
0334 = F
-
' _ 0.3319
AIJ =0.462256
0.332 € €. 03318
0.331 0.332 0.333 0.334 0.335 0.3310 0.3315 0.3320
0.331 0.3285

)
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0.331 - =

- 0.3280
0.3275

K, T/J

0.330
T AJ=0.462407 e A/J =0.462748 e 0.3270
0.330 0.3265
0.328 0.329 0.330 0.3310.323 0.326 0.328
0.27 - - 0.20
0.15
0.25 0.10
f 1 - 0.05
AJ =0.476190 €
0.23 P 0.00
0.15 0.20 0.25 0.00 0.02 0.04 0.06 0.08 0.10

Fig. 15. Temperature versus energy for the Blume-Capel model for different values of
4/J, showing how negative specific heat and temperature jumps develop when entering the
region where the phase transition is first order in the canonical ensemble.
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energy in Fig. 15 for decreasing values of 4/J, starting with the value at the ca-
nonical tricritical point in panel a) (for which the derivative of temperature with
respect to energy vanishes at the transition energy). Maxwell’s constructions are
also shown by the horizontal dotted line: they define the canonical transition
temperature. A negative specific heat region appears in panel b), as soon as the
phase transition becomes first order in the canonical ensemble. At the micro-
canonical tricritical point (panel c)) the derivative of temperature with respect to
energy diverges at the transition energy (specific heat becomes infinitely nega-
tive). In panel d) one observes the development of a temperature jump. In panel e)
only a temperature jump is present, no negative specific heat. Finally at 4/J = 1/2
temperature has an infinite slope at zero energy, otherwise the curve is smooth.

The microcanonical tricritical point can be found by expanding the entropy in
series of m

(55) s = kp(so + Am? + Bm* 4 ...).

The coefficients of the expansion are

(56) so=—(010—-¢In(d —¢) —elne+¢eln2
e 1
(57) A=—Kn (2?-@)‘%
K2 K 1
(58) B=—oi—9 22 128

where ¢ = ¢/4. In order to obtain the second order transition line one has to im-
pose that A = 0 with B <0. This line coincides with the canonical second order line
in Fig. 14. The microcanonical tricritical point is determined by the condition
A = B = 0. Here is the comparison with the canonical tricritical point

e Canonical Ky, ~ 1.0820, f,, 4 = 1.3995,
e Microcanonical Ky ~ 1.0813, f5,, 4 = 1.3998.

Although these two points are quite close for this model, they do not coincide. For
other models the distance between these two points is larger. The region of the phase
diagram near the canonical (CTP) and microcanonical (MTP) tricritical points is
pictorially represented in Fiig. 16. In the microcanonical ensemble, the second-order
line continues below CTP (dashed line) and reaches MTP, from there it splits in two
lines, a signature of temperature jumps. The two lines join together, and join also the
canonical first-order line, at T = 0. In the region between the two microcanonical lines
one finds only metastable and unstable states of the microcanonical ensemble (coex-
istence region). This type of pattern of transitions is found in many different models.
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. CTP

kBT / J

MTP >

Ag

Fig. 16. Zoom of the phase diagram of the Blume-Capel model in the tricritical region.
CTP and MTP are the canonical and microcanonical tricritical points, respectively. The
dotted line above CTP is the canonical/microcanonical second-order line. The full line is the
canonical first-order line.

Coming back to temperature jumps, there is a close relation with Maxwell’s
constructions in the microcanonical ensemble. This is displayed in Fig. 17, where the
B(e) curve is drawn including metastable (dashed) and unstable (dotted) states.
Maxwell’s equal area construction is based on the identity

B
(59) J [e(B) — aldf = 0,
b,

. Be)
B

Fig. 17. Inverse microcanonical temperature f vs. energy ¢ near a temperature jump.
Stable states are represented by a full line, metastable by the dashed line and unstable by a
dotted line.
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which is equivalent to require that microcanonical entropy is a continuous function
of ¢ at .

An interesting case of ensemble inequivalence is found for the Kardar-Nagel
model

N
(60) Hyy = _Ez (8iSi1 — <ZS > :

Spins S; = £1 sit on the sites of a one-dimensional lattice and are coupled both
nearest-neighbour with strength K and with a Curie-Weiss ferromagnetic (J > 0)
term. Let U = —(1/2) > (S;S;11 — 1) be the number of antiferromagnetic bonds in a

=

given configuration cha;'acterized by N up spins and N_ down spins, e.g. N, = 12,
N_=8U/2=2

(61) R i e o [+ +++—==[++

Simple counting arguments yield to leading order

(Ny-1\[(N_-1
(62) Q. N_,U)~ <U/2_1><U/2_1>.

Expressing N, and N_ in terms of N =N, +N_ and the magnetization
M =N, — N_, and denoting m = M /N, u = U/N, one finds that the entropy per
spin in the thermodynamic limit is given by

s(e, m) :%(1 +m)In(1 +m)+%(1 —m)In(1 —m)
—ulnu—%(l +m—-—u)ln(d +m —u)
—%(1 —m—u)lnl —m —u),
where u satisfies

(63) s:—%mz—kKu.

By maximizing s(e,m) with respect to m one obtains both the spontaneous
magnetization ms(e) and the entropy s(e) = s(e, ms(e)) of the system for a given
energy. The phase diagram of the model in the (K, T) plane (J is again set to
one with no loss of generality) is shown in Fig. 18. As for the Blume-Capel
model, the microcanonical and ecanonical tricritical points do not coincide:
Kyrp ~ —0.359,Kcrp = —In 3/2\/?; ~ —0.317. The interesting parameter region
is the one with K negative, because the local antiferromagnetic interaction
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Fig. 18. Phase diagram of the Kardar-Nagel model. In the canonical ensemble the large K
transition is continuous (bold solid line) down to the tricritical point CTP where it becomes
first order (dashed line). In the microcanonical ensemble the continuous transition coincides
with the canonical one at large K (bold line). It persists at lower K (dotted line) down to the
tricritical point MTP where it turns first order, with a branching of the transition line (solid
lines). The region between these two lines (shaded area) is not accessible in the micro-
canonical ensemble.

compete with the global ferromagnetic one. Let us further remark that the
transition at 7 = 0 can be obtained by imposing that the state with alternating
down and up spins + — + — + — - -- has the same energy as the ferromagnetic
state +++++---.

A phenomenon which has been first studied for the Kardar-Nagel model is
broken ergodicity. This is expected because of the non convexity of the region of
macroscopic accessible states, see Fig. 3, which is a direct consequence of non ad-
ditivity. Let us consider positive magnetizations states, hence N, > N_. Then
0<U<2N_ =N — M, the left bound corresponding to configurations where all
down spins are isolated

(64) e s e o Il e o [ e
This in turn implies, in the N — oo limit,

e J 4
<U==+—= <1-m.

(65) 0<u K+2Km < m

As a consequence, the allowed magnetization/energy states are those within the

shaded area in Fig. 19. From this figure, it is evident that there are energies (for

instance ¢ = —0.35) for which magnetization admits values within three different

intervals: one around m = 0 and two around opposite values of m. Any continuous
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energy conserving dynamics started in one of these intervals cannot allow for a

T 7,
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0,1+ y . .
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Fig. 19. Allowed magnetization/energy states for model (60) for K = —0.4 and J = 1.

transition to states belonging to another interval. Therefore ergodicity on the en-
ergy surface is broken. An example is shown in Fig. 20. In the upper panel, the
system is run at an energy, ¢ = —0.318, for which the energy surface is connected
and the system is ergodic. Nevertheless, the magnetization jumps among the three

1
75 100

0 25 50
(MC sweeps)/1000

Fig. 20. Microcanonical Montecarlo simulation of the Kardar-Nagel model (60) with
K =—-0.4 and J =1 at different energies, showing ergodicity breaking (lower panel).
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maxima of the entropy (shown in the inset). In the lower panel, the energy is
& = —0.325 and the accessible values of the magnetization are splitted into three in-
tervals. Therefore, if magnetization is started around zero, its value remains around
zero forever, as shown in one of the time series. In the other, magnetization remains
at a positive value. No transition among these states is possible. Entropy, shown in
the insets, has gaps, corresponding to regions where the density of states is zero.
Let us briefly recall how to simulate the microcanonical ensemble using Creutz’s
algorithm. In this algorithm one probes the microstates of the system with energy < K.
This is implemented by adding an auxiliary variable, called the “demon”, such that

(66) Es+Ep=F,

with Ep > 0. The simulation begins with E's = E, Ep = 0 and attempt a spin flip. The
move is accepted if the energy decreases. The excess energy is given to the demon

(67) Es—FEg— 4K |, Ep—Ep+4E , AE > 0.
If instead the energy increases, the energy needed is taken from the demon
(68) Es—FEg+4E , Ep—Ep—4dE , AE >0.

One rejects the move if the demon does not have the needed energy, but one keeps the
configuration in the computation of averages. It can be proven that this dynamics
respects detailed balance and that the microcanonical measure (all configurations have
equal weight on the energy surface) is stationary. One can also prove that the prob-
ability distribution of the demon energy is exponential

(69) p(Ep) x exp(— BEp)

and use this property to determine microcanonical inverse temperature f.

3 - Large Deviation Theory

In this Section we will show how large deviation theory can be used to compute
the entropy of long-range systems within the microcanonical ensemble. We begin by
recalling what is large deviation theory about.

Let us consider a set of N d-dimensional random variables X;, i =1,...,N,
X; € RY, whose probability distribution function (PDF) is p({X;}).

In large deviation theory, one is interested in deriving the PDF of extensive
observable, in particular the sample mean, defined as

(70) My =
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in the limit of large N.
A large deviation principle is formulated, according to which the following
limit exists

. 1
(71) I(x) = z\lrl_lgo N InPMy € [, x + dx]),

and defines the rate function I(x). This means that, at leading order,
PMy € [, 2+ dx]) ~ exp(— NI(x)).
Let us define the scaled cumulant generating function (SCGF)

N
exp </1 X2~>
i=1

where 2 € R? and the average F[] is performed over the PDF of X;. Gartner-Ellis’
theorem states that the rate function is

(73) I(x) = sup{ix — w(D)}
JeR?

1
(72) y(3) = lim —InE

when w(1)<oo and is differentiable everywhere. If the random variables X; are
independent and identically distributed (i.i.d.) the SCGF is differentiable and as-
sumes the form

(74) () = In {exp(UX))

where () is the average with respect to the distribution of the single variable.

0.8 T T T T

0.6

0.2

0.0 e
-1.0 -0.5

Fig. 21. The rate function of biased coin tossing for o = 1/3 (long-dashed), 1/2 (full), 2/3
(short-dashed).
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Let us consider the example of biased coin tossing, which physically corresponds
to a model of non-interacting spins. The i.i.d. random variables X, take the value —1
with probability « and +1 with probability 1 — «, with o € [0,1]. The SCGF is

(75) w, (1) =In{exp(4) — 2usinh (1)} .

When o = 1/2 coin tossing is unbiased. In Fig. 21 we show the rate function for
a=1/3,1/2,2/3.

Let us now come to discuss the relevance of these results for statistical me-
chanics. In the statistical mechanics vocabulary the rate function I(x) corresponds to
the opposite of Boltzmann entropy of a macrostate characterized by a fraction x of
up-spins. More generally, and not necessarily with reference to spin systems,
thermodynamic functions, such as microcanonical entropy and free energy, can be
computed using large deviations theory. Let us briefly illustrate this approach.

The first step is to express the Hamiltonian of the system in terms of global
variables y

(76) Hy(wy) = Hy((ox) + Ry(oy)

where wy is a phase-space configuration of the N particles and Ry is a sub-extensive
rest of the full Hamiltonian of the system. Global variables play the role of the ob-
servables for which we compute the PDF. Hence, we are naturally led to take the
following limit of infinite number particles

. Hy . Hy
(7D ho) = Jm S = dm N
The second step is to compute the entropy in terms of the global variables

1
(78) s() = lim & InQy()

where Q(y) is the number of microscopic configurations wy with a fixed value of y. It
turns out that the entropy is the opposite of the rate function.
The third step is to solve either the microcanonical

(79) s(e) = sup{s())|h(y) = ¢}
.

or the canonical

(80) BF(P) = ir}l,f {Bh(y) — s}

variational problem. Free energy (80) is the Legendre-Fenchel transform of mi-
crocanonical entropy (79). On the other hand, the Legendre-Fenchel transform of
free energy is not microcanonical entropy, but rather its concave envelope. When the
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concave envelope coincides with microcanonical entropy, the two ensembles are
equivalent.

In order to illustrate this solution method on a concrete example, we consider the
mean-field three-state Potts model. Its Hamiltonian takes the form

J&
(81) Hgotts = N Z 557\5_;' )

2,j=1
where at every lattice site i we associate a spin variable S; = a,b,c and ¢ is
Kronecker’s d-symbol. We identify the spins as the local random variables. The first
step of the procedure consists in the identification of the global variables. The form
and the symmetries of the Hamiltonian suggest to define the following vector

(82) y = (na, nbv nc)
where
1
(83) Ny = Nzi: 08,0, o=a,b,c

represents the fraction of local random variables populating a given state «. Using
these global variables, the Hamiltonian reads

~ JN
(84) H]I\Jlotts - _ = (ni + n% + nz) = Nk(y).

The second step consists in the calculation of entropy in terms of the global variables.
Assuming that the three values of the local random variable are equally probable
(this corresponds to the principle of “maximal ignorance” often used in statistical
mechanics), the SCGF is

w()) =In (% T (ehtse 4 g +e/tgés.c)>

S=a,b.c
1. y Ao
=In g(e “+eM +e)
where 1 = (44, 4, Ac) are Lagrange mulipliers. The corresponding rate function is
then given by formula (73)
(85) 1(y) = sup{Agng + sy + Ace — w(D)} .
)

The extrema of the bracketed expression are A, = Inn,, with « = a, b, c. Entropy, as
a function of the global variables, is then

(86) s() = —1() + I N
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where the term In N derives from the normalization of the probability, and in this
case is InN =1n3.

In the third step one evaluates microcanonical entropy from the variational
formula
(87) s(e) = sup {— NeInng —nplnny—A—ng —np) In (A — ng — 1) |0y, np) = e} .

a1y

The solution of this variational problem is necessarily numerical, because it implies
the solution of an implicit equation. However, both the derivation of entropy and of
microcanonical temperature is straightforward. The dependence of microcanonical
temperature on energy is shown in Fig. 22: it has a parabolic shape and in the energy
range where f§ grows, [ — 0.215J, — J /6], specific heat is negative. By solving the
canonical variational problem

c

(88) Pr(p) = . I%,fw { an Inn, — %](ni +nd+ nf)}

one can get the average energy ¢ as a function of § from & = 9(ff)/9p. This curve is
also plotted in Fig. 22. It coincides with the microcanonical curve for energies below
¢l = —0.255.J. At the inverse temperature value /' = 2.75 the model undergoes a

e/J

>

i
et/ -1/6

Fig. 22. Inverse temperature vs. energy for the mean-field three-state Potts model in both
the microcanonical and the canonical ensemble. The microcanonical solution coincides with the
canonical one for ¢ < & and is otherwise shown by the dash-dotted line for & < e< — J /6. The
increasing part of the microcanonical dash-dotted line corresponds to a negative specific heat
region. In the canonical ensemble, the model displays a first order phase transition at . The
two dotted regions bounded by the dashed line and by the microcanonical dash-dotted line
have the same area, corresponding to a Maxwell’s construction.
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first order phase transition, with an associated latent heat. Hence, the results are
quite different in the two ensembles: a first order phase transition in the canonical
ensemble and no phase transition in the microcanonical ensemble with an associated
negative specific heat region in energy. We will now deal with a model whose
Hamiltonian depends on continuous variable, to show the efficiency of the large
deviation method also for this case. It’s evident that the calculation of the density of
states by direct counting is not viable for such models. Let us consider the following
Hamiltonian, which describes the motion of N XY spins on a fully connected lattice

2
N2 2
p; J - K
(89) Hxy =) S —5% ( 37;) -
25w |25 aw

(o]

where §; = (cos0;,sin6;) is a spin vector with constant modulus and direction
0; € [ — =, ). The local variable p; is the conjugated momentum of the angle ;. The

two coupling constants J and K are scaled differently: the first one by 1/N following
Kac’s prescription and the second one by 1/N3, in order to make the contribution of
the last term of the same size as the others in the N — oo limit. For K = 0 the model
reduces to the HMF model, which we will discuss in the next Section. We will here
sketch how to get microcanonical entropy using the large deviation approach. The
three steps procedure begins with the identification of the global variables. For this
model, it is natural to choose X = (cos 0, sin 0, p?) as the random local variable. We
then define magnetization along the X and the Y directions as

1 1
(90) My ZNZCOSOZ‘, m, ZNZSiI’IOi

and the corresponding magnetization vector m = (m,,m,), which is the order
parameter of the paramagnetic-ferromagnetic phase transition taking place in this
model. Using the two components of magnetization and the average kinetic energy
Ex =Y p?/N, we define the three dimensional vector of global variables as

1

In terms of the global variables, energy density can be written as
1 K
92) =3 (EK _m? — §m4> |

The SCGF is given at leading order by

(/%2 +7)

(93) y(3) ~1In Navr ,
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where I, is the modified Bessel function of order zero and 4., 4,, Ax are Lagrange
multipliers. The corresponding rate function, which depends on the global vari-
ables, is evaluated by using formula (73). From the rate function, which is nothing
but the opposite of entropy, function of the global variables, one can again obtain
microcanonical entropy solving a variational problem. Similarly, for canonical free
energy.

Let us summarize the main features of this model. Varying the value of the
ratio between the coupling constants K > 0 and J > 0 the system shows different
behaviours. We have already mentioned that for K = 0 the model reduces to the
HMF model. This latter has a second order phase transition at 7/J =1/2.
Ensembles are equivalent in this limit. The second order transition extends to
K > 0 for both the canonical and the microcanonical ensemble, see Fig. 23. The
canonical second order line remains at the temperature 7'/J = 0.5 along the
segment with K/J €[0,0.5). At K/J = 0.5, T/J = 0.5 there is a canonical tricri-
tical point. For larger values of K /J the predictions of the two ensembles differ. In
the canonical ensemble the transition become first order, see the upper dotted line
in Fig. 23. In the microcanonical ensemble the line remains of second order with
constant value of the temperature 7'/J = 0.5, up to the microcanonical tricritical
point at K /J = 5/2. Between the canonical first order line and the microcanonical

1.2 T/J
1 Mmic =0
Mean =0 e
0.8 Canonical tricritical point ~  ..+*" m ;d n#0 _ocondl 1
....... Mmic = 0 --"—’-‘
0.6} \ e et
0.4
m 0
mic # Microcanonical tricritical point
0.2 Mean # 0
K/J
1 2 3 4 5

Fig. 23. Phase diagram of the XY model (89) for both the canonical and microcanonical
ensemble.The canonical second order transition line (solid line at 7'/J = 1/2) becomes first
order (dotted line, determined numerically) at the canonical tricritical point. The micro-
canonical second order transition line coincides with the canonical one below K/J = 1/2 but
extends further to the right up to the microcanonical tricritical point at K /J = 5/2. At this
latter point, the transition line bifurcates in two first order microcanonical lines, correspond-
ing to a temperature jump. The region within these lines is forbidden in the microcanonical
ensemble. In the figure we also report the magnetization in the different parts of the
diagram.
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-1 -0.5 0 0.5 1

Fig. 24. Caloric curve for the XY model (89) with K/J =10. The solid line is the
theoretical prediction in the microcanonical ensemble. It shows a phase transition where
temperature has a jump. A negative specific heat region is present, where temperature has a
negative slope. The points correspond to the results of molecular dynamics simulations of a
system composed by N = 100 spins. The transition is smooth due to finite size effects. The
dashed line represents the first order phase transition in the canonical ensemble.

second order line the ensembles give different predictions for the order para-
meter, which is zero (paramagnetic phase) in the microcanonical ensemble and
non zero (ferromagnetic phase) in the canonical ensemble. Increasing the cou-
pling, K/J > 5/2, the difference between the predictions of the two ensembles
becomes even more peculiar. While in the canonical ensemble the transition re-
mains first order, in the microcanonical ensemble, temperature jumps appear.
The coexistence of two temperatures at the transition energy is shown by the two
dotted lines in Fig. 23. No stable microcanonical states exist between the two
lines. Fig. 24 shows the caloric curve for K/J = 10: both a region of negative
specific heat and a temperature jump are presents in the microcanonical en-
semble. We consider now the case J = —1 and K > 0. With these values of the
coupling constants there is a competition between a ferromagnetic and an anti-
ferromagnetic term in the Hamiltonian. Intuitively, we expect that for large va-
lues of |K/J| the system is ferromagnetic, while for small values of this ratio the
anti-ferromagnetic term dominates and the system becomes paramagnetic for all
energies. For some intermediate values of this ratio, the system shows a phase
transition between a paramagnetic and a ferromagnetic phase. In both these
phases, due to the competition, there are gaps in the accessible values of mag-
netization at a fixed energy. This produces a lack of ergodicity, as already dis-
cussed in Section 2 for the Kardar-Nagel model. A convenient parameter plane
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Fig. 25. Time evolution of the magnetization for the XY model (89) with J = — 1. Panel a)
corresponds to the case ¢ = 0.1, K = 8, panel b) to ¢ = 0.0177, K = 3. In panel a) magnetiza-
tion flips from a value close to zero to a non zero value, showing that phase space is connected.
The corresponding entropy vs. magnetization curve is shown in the inset: it has, as expected,
a double hump. In panel b) two different trajectories, started at initially different values of
the magnetization, are shown. No flip is observed over a very long time stretch, proving that
phase space is indeed disconnected. This is confirmed by the shape of the entropy in the inset,
which shows that no accessible macrostate is present in the interval [m_, m.].

where to discuss ergodicity breaking for this model is (¢, K). Depending on the
values of these two parameters, one may either find a connected phase space or a
disconnected one. This is shown in Fig. 25.

In Section 2 we have discussed the solution of the Blume-Capel (50) using stan-
dard counting arguments. We want to show here how to obtain that solution using
the large deviations procedure we have introduced. The local random variables are
the spins X; = (Slz, S;), where S; = 0, +1. The identification of the global variables is
direct, they are magnetization m and quadrupolar moment g. In terms of the global
variables, the Hamiltonian is

(94) hy) = A(q — Km?) .
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The SCGF is also easily computed

(95) w(2,p) = In (exp{AS? + pS}) = In (1 + 2¢" cosh(p)) — In3,
where A and p are Lagrange multipliers. The rate function then reads
(96) I(y) = sup{pm + 2q — y(4, p)}

AP

and the solution of this variational problem gives
(97)  p=tanh'(¢/m) , A= —InQ2cosh(p(g,m)))+In(m/(1 —m)).

The substitution of these values into (96) returns the rate function in terms of the
global variables. Finally, the computation of the supremum of the rate function with
fixed energy gives us microcanonical entropy, which turns out to be the same of
formula (53). Hence, the use of large deviation method is a valid alternative to the
direct counting method, which is not always viable.

The free electron laser model (43) introduced in Section 2 can also be solved using
the large deviation method. The global variables are y = (m,A, o), where m is
magnetization, A is the modulus of the field and

1 2
(98) a:N;pH—A

total momentum. Using the same three steps procedure described above, the mi-
crocanonical entropy is obtained by solving the following variational problem
o2
e

(99) S(E,G,é)SHp{;ln |:< 2>+4Am+2(50')A2A4:| +Sconf(m)}
Am

where the configurational entropy s..,(m) is given by

(100) Scowf(m) = - Sl}p{lm —In IO(})}

and [, is the modified Bessel function of order zero. The model display, a second
order phase transition at the critical energy ¢, = —1/(26) for d<0. The micro-
canonical and canonical ensembles are equivalent.

Ensemble inequivalence can also determine a negative magnetic susceptibility.
This quantity is positively defined in the canonical ensemble, but can be negative in
the microcanonical ensemble. Let us recall the first law of thermodynamics for
magnetic systems, 7dS = dE — hdM. This formula can be a guide for the inter-
pretation of the formula that allows to define the field # in terms of magnetization m
in the microcanonical ensemble

Js 0s 1 0s
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In the canonical ensemble

(102) f(p,h) = inf s—hm—%s(s,m)
which gives ds/0m = —hm, 0s/0¢ = f3, in agreement with the microcanonical ex-

pressions for & and . The formula for susceptibility is the same in both ensembles, as
for specific heat, see (49)

om See

(103) T h S2. — SuSpm
Inthe canonical ensemble s, > 0 and the denominator is positive as a consequence of
stationarity, hence y > 0. In the microcanonical ensemble s,,,, <0 and, at free en-
ergy saddles, s.. <0, hence susceptibility can be negative.

To illustrate the concept of negative susceptibility on a concrete example, let us
introduce the ¢* mean-field model, which is in the same universality class of the
Curie-Weiss model of magnetism

2
P 1, 1,\ 1
104 HY =3 (T -2 +54) -+ 0
(104) 6=2 (2 1%t 4Nziiq‘q’
where (g;, p;) are conjugate variables. The global variables are
1 1
(105) M=t A= g2 g w= )

The quantity m corresponds to the magnetization of the system and z is related to
the nature of the short-range potential. The SCGF reads

In 4,

(106) v =—-—

+1In qu ¢ i3 ~0) | eonst |

Microcanonical entropy in terms of global variables is

(107) s(u,z,m) = _inf {Au+ 4.2+ Lam —y(D)},

w25 hm

and in terms of energy and magnetization

2
(108) s(e,m) = sup| s(u,z,m)|e = w +z— m .

UR 2 4
Although this function cannot be obtained in explicit form, because as usual the full
analytical treatment implies the solution of an implicit equation, it can be obtained
numerically with any precision. Using then formula (103) one obtains an explicit
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Fig. 26. Susceptibility vs. magnetization for different energies for the ¢* model (104). The
full lines are theoretical results, while the points are the results of numerical simulations.

expression of susceptibility for the ¢* model. Fig. 26 shows a comparison of this
formula with the numerical results obtained directly from Hamiltonian (104). Below
a given energy value, corresponding to the ferromagnetic transition, a range of m
appears where susceptibility becomes negative.

When the method described above cannot be used, for instance it is not easy to
identify the global variables, one can rely on a procedure that we have called min-
max. The method begins with an assumption, that the canonical partition function
can be written in the following form

(109) Z(p,N) = de exp{~NG(f, )}

with G a differentiable function of § and x, a dummy variable. This is for instance
the form that Z takes as a result of a Hubbard-Stratonovich transformation
of the Hamiltonian. The free energy is defined as @(f) = (/) :ir;f G(B, x).
Let us introduce the Legendre-Fenchel transform of G by the relation
s(e, x) = ir/}f{ﬂe — G(p,x)}. Then one can prove that

(110) s(e) = sup{s(e,x)} = sup ir}f{ﬁg - G(B,x)}.

Inverting the inf with the sup one gets the concave envelope of s(¢)

(111) s*(e) = ir/}f sup{fe — G(f,®)} .

On the other hand the Legendre-Fenchel transform of both s(¢) and s*(¢) returns the
free energy ¢(f). Indeed supinf < inf sup and the equality holds when the function
G is differentiable in both the arguments.
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The XY model with both long and short-range interactions
H
(12)  HY =S B4 oS - cos O - 091~ K cos(0r1 — 0)
i ij i

can be solved using the min-max method.
The partition function, after an Hubbard-Stratonovich transformation, takes
the form

(113) 7~ szz H db; exp (— gzz + fpz Z cost; + K Z cos (041 — 07;)> .
The integral over the 6; can be performed using the transfer operator method
(114) Ty(®) = Jdoc exp (ﬁg (cosf + cosa) + fKcos (0 — oc)) (%)

and the partition function become

(115) Z = szz exp (— %zz + Nln A(Bz, /)’K)) 7

where A(fz, fK) is the largest eigenvalue of the transfer operator 7. Entropy is then
obtained using the min-max method

2
(116) s(s):supinf[ﬂu—/f1+z Az, BK) + Ln 2”}
: B 2 2
0.3— , , :
TP
m=0 27 MTP
0.2f ,’ .
~ et
0.1} // |
» m#0
;
;
0.0

—-0.24 -0.22 -0.20 —-0.18
K

Fig. 27. Phase diagram of the XY model with long and short-range interactions. The full
line is the second order line for both the canonical and microcanonical ensemble. The
triangular point corresponds to the canonical tricritical point. Below it, the dashed line is
the first order transition line in the canonical ensemble. The circular point is the micro-
canonical tricritical point and the two dotted lines correspond to temperature jumps.
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Fig. 27 shows the phase diagram of this model. It is extremely similar to the phase
diagram of the Kardar-Nagel model, Fig. 18, hence it can be discussed exactly in the
same way. Both the canonical and microcanonical ensemble predict a second order
transition line for large T and K, till the canonical tricritical point is reached. Below
it, the two ensembles are inequivalent. The canonical ensemble shows a first order
transition line, while the microcanonical ensemble predicts a second order line until
the microcanonical tricritical point is reached. Here, the latter ensemble shows
temperature jumps.

4 - Quasistationary states

Let us consider the Hamiltonian
N al pz_ 1 Y
— i - _ )
(117) HYyr = le 5 +2N§~::1 1 — cos(; — ).

It represents a system of particles moving on the circle, see Fig. 28. Particle ¢ has
position 0; and momentum p;. They are all coupled with the same strength through a
cosine potential. The coupling is scaled by 1/N, following Kac’s prescription, in order
to allow kinetic energy to compete with potential energy. In an alternative inter-
pretation, Hamiltonian (117) represents a system of fully coupled XY spins. This
model is the K = 0 limit of model (112) and of model (89). The model has a low energy
phase where potential energy dominates over kinetic energy and particles are
clustered. The clustering coefficient is the two component XY “magnetization”

Fig. 28. In the HMF model, particles move on a circle and have positions 6;.
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m = (M, m,) introduced in (90). The modulus of this vector, m, is non zero in the
clustered phase and reaches one at the ground state energy £ = 0 when all particles
collapse to a point on the circle. At high energy, the system is dominated by kinetic
energy and the particles homogeneously distribute on the circle: the modulus of
magnetization vanishes. The system undergoes a second order phase transition, i.e.
magnetization vanishes with continuity. The critical energy of the transition is
& = 3/4 and the critical temperature T, = 1/2. In Fig. 29 we plot in the lower panel
the caloric curve of the model, the temperature/energy relation, which is nonlinear
below the critical energy and linear above. The caloric curve has a kink at the tran-
sition energy. Magnetization vs. energy is plotted in the upper panel. Microcanonical
and canonical ensemble are equivalent for this model. A feature emerged in the si-
mulation of this model, which then led to the discovery of quasistationary states. It
was found that for some initial conditions the temperature was not in agreement with
the theoretical curve. This is shown in the inset of the lower panel of Fig. 29. Moreover,

T

—— Theory (c.e.)
O N=100
V' N=1000
[0 N=5000
A N=20000

0.0 0.4

14

12 -

10 -
Tos- ©®

06 -

0.4

0.2

0.0

er
L

0.0 0.4 0.8 1.2

Fig. 29. Lower panel: Caloric curve of the HMF model (117). Upper panel: magnetization
vs. energy. The points are the results of numerical simulations, the full lines are obtained
analytically.
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i

p

A©

Fig. 30. Waterbag distribution.

the agreement was getting worse as the number of particles was increased, here
N =20000. This was contrasting with what was expected for a bona fide thermo-
dynamic limit behavior. It took some time before the origin of this disagreement was
understood. It was crucial to start with a simple set of initial conditions, that had a
convenient parametrization. These are the “waterbags” in Fig. 30. The initial dis-
tribution of particles in the single-particle phase space (6, p) is homogeneous within a
rectangle of half sides 40,4p. Then, the initial energy and magnetization are directly
related to (40, 4p)

— sinA6
"7 40

_(py 11— ()
e=—¢ + 5 .

While energy is conserved, magnetization changes in time and reaches asympto-
tically its equilibrium value, predicted within the microcanonical ensemble. The
time evolution of magnetization is shown in Fig. 31 for increasing values of N. The
initial magnetization is zero because the initial state is homogeneous, 46 = 7. One
can observe an initial relaxation towards a state whose magnetization, as N in-
creases, gets closer and closer to zero. This is what we will call a quasistationary
state. At longer times, magnetization relaxes to the equilibrium value, which at this
energy is m = 0.3. The lifetime of the quasistationary state increases with N, and
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Fig. 31. Magnetization of the HMF model vs. time (in logarithmic scale) for 40 ==
and 4p =1.0677, which gives an energy &=0.69. From left to right
N =10%,10%,2 x 10%,5 x 10%,10%,2 x 10%.

one can conjecture that it becomes infinite in the N — oo limit. Therefore, in the
thermodynamic limit, the system remains trapped in this quasistationary state and
never reaches Boltzmann-Gibbs equilibrium. Indeed, we show in Fig. 32 that the
lifetime of the quasistationary state depends on the number of particles as N7.

b(N)
!

3
logN

Fig. 32. Power-law dependence of the lifetime of the quasistationary state with respect to
N. The best fit of the power is 1.7.
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Where does this behavior come from? The origin is in the kinetic theory of model
(117). Let us consider a slightly more general setting in which the potential is a
generic periodic function V. The Hamiltonian is

N 2 N
(118) H= 2 ?+ uoy , U@O,...,08)= ZV(Hi—Hj).

i<j

Let us introduce the discrete, one-particle, time dependent density function
N

(19)  fiOpD=Y 600,00 -pe) . | [dodpf =N
i1

Using the equations of motion and the property xd(x — y) = yo(x — y), one gets the
Klimontovich equation
a_f;l 8fd ov 8fd _

(120) ot P90 " anop "
where
(121) 00.0 = [a0apV O~ 011000,

The so-called empirical function (119) is highly singular. Let us then consider the
smooth distribution f(0, p,t) defined as

(122) Ja = (fa0,p,0)) + of (0, p, 1) = f(0,p, 1) + of (0, p, 1),

where the average (-) is taken over initial conditions. The mean-field potential is then
given by

(123) v(0,t) = (v)(0,1) + ov(0,1),
where
(124) (v)(0,t) = Jdﬁ'dp’V(H -NfE,p ).

After substituting eq. (122) into the Klimontovich equation (120) one gets the exact
evolution equation

af af o) of dov 0of
12 DL TN [T
(125) ot " Pa0 a0 ap \a6 ap
Simple scaling arguments allow us to prove that the r.h.s. of Eq. (125) is of order one,
compared with the L.h.s., which is of order N. Then, in the N — oo limit, Eq. (125)
reduces to the Vlasov equation
of o _dwof _,

(126) a“r]o%—wa—p
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Let us sketch this scaling argument. Let us impose that potential energy scales like
kinetic energy (virial condition)

(127) Np? ~ N2V,

where Vj is the typical value of the potential energy per pair. Hence, E ~ N2V,
T ~p?~NVy, tg~R/p~R/\/NV, , where R is the typical size of the system
and t; a dynamical time. Let us now consider the thermodynamie limit in which
e=E/(N*Vy), T' =T/(NVy) and 74 = ty\/NVy /R stay constant as N — oo. All
this works fine if N - oo, R~1, E~N, T ~1,t; ~1and Vy ~ 1/N, this latter
being the well known Kac trick. As for the reduced one-particle distribution
function: f/N ~ fg/N ~1, v~ 1, of ~ 1/\/N, oV ~ 1/\/]V, which implies

1 /9ov dof 1

1) v o ) x
while f/N remains of order one.

On the other hand, the perturbation Jf obeys the following equation

9 | 0 9ovaf o) 9o _ dov oof <8_5v @>

90 90 9p 90 op 90 ap \ 90 Ip

12 _
(129) ot Y0 o0 op 90 ap 90 op

The Lh.s. of this equation is O(v/N) while the r.h.s. is O(1), hence we can neglect the
r.h.s. in the large N limit (quasilinear theory). This corresponds to neglect higher
order correlations (higher than those created by two-body collisions). If, moreover,
we consider homogeneous states: df /00 = 0, d(v)/00 = 0, we obtain the coupled
equations

(150) g_<@@> 0 owdf

ot~ \ 90 op ot P70 " a0 ap

In the adiabatic Bogoliubov approximation, the time evolution of Jf (and, of course, of
ov) is considered to be much faster than the time evolution of f itself. Therefore, one
can neglect the time evolution of f when solving the equation for Jf. Once Jf and dv
are obtained, they are inserted in the first equation, which then becomes a kinetic
evolution equation for f, the so-called Lenard-Balescu equation. However, one can
prove that in one dimension, as for our model (each particle has one degree of
freedom), this procedure leads to the absence of evolution of f, i.e. the r.h.s. of the
first of equations in (130) vanishes. One concludes that in one dimension, for
homogeneous states, the time evolution of f is due to three-body and higher corre-
lations.

All these considerations lead us to conclude that what we observe in Fig. 31 is a
relaxation towards a Vlasov stable stationary state, called violent relaxation by the
british astronomer D. Lynden-Bell, followed by a relaxation towards Boltzmann-
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Gibbs, which is due to finite N “collisional” effects. The situation is well represented
by the following diagram

Initial Condition

Violent
T = O(1)

relaxation

Quasistationary state

Collisional 5
. Te = N
relaxation

Boltzmann-Gibbs Equilibrium

where 6 = 1.7 for our specific case.
Coming back to the HMF model, Vlasov equation reads
of  of dVof

(131) a*‘p%—@%— )

where
VOLf]1=1—my[fleos(0) — m,[f]sin(0),

My f] =Jf(9,p,t) cosfdfdp,
mylf1= Jf(@,p, t)sin 0dodp .

It can be proven that the time evolution of a waterbag distribution, Fig. 30, under
the Vlasov equation (131) is such that the area where the distribution is nonzero
remains constant. The shape of the waterbag however changes, it is stretched and
folded as shown in Fig. 33. This figure was drawn pictorially by Lynden-Bell, but it
corresponds quite well to what happens in a numerical simulation, see Fig. 34. The
lower right panel in Fig. 34 corresponds to the quasistationary state of the HMF
model. Indeed, one obtains the same state by integrating the equations of motion
deriving from Hamiltonian (117) on the same timescale. Let us consider a dis-
tribution that occupies uniformly a given area and divide the area into equal cells. In
a dynamics which is compatible with area conservation, one can move an “occupied”
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Fig. 34. Time evolution of a waterbag with my = 0.5 and ¢ = 0.69. Time evolves from the
upper left to the lower right panel.
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Fig. 35. Left panel: forbidden move of an occupied cell; Right panel: allowed move of an

occupied cell.

cell into an “empty” cell, as shown in the upper panel of Fig. 35. On the contrary,

one cannot move an occupied cell onto another occupied cell, because the total area
would be reduced. This means that cells behave like fermions: a cell state can be
either empty or occupied. This remark is at the basis of the construction of the
Lynden-Bell entropy functional. One considers a set of macrocell made of smaller

microcells, Fig. 36. Let us divide each macrocell into v microcells of volume w and
consider a microscopic configuration in which the ¢-th macrocell is occupied by n;
microcells with level f, and v — n; with level zero. The total number of occupied
microcells is NV, such that the total “mass” is M = Nwfy. This latter is also equal to

/

1
/

Macrocell

\ Microcell

Fig. 36. Occupied microcells in a given macrocell for the construction of Lynden-Bell’s

entropy.
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the normalization of the fine grained distribution M = fd()dpf (0, p) (a convenient
choice is M = 1). The A occupied microcells are first placed into macrocells. There
are N/ ][ n;! ways to do this. Within the ¢-th macrocell, one can distribute the first

of the n; (Z)ccupied microcells in v ways, the second in v — 1 and so on. The number of
ways of assigning the n; occupied microcells is thus v!/(v — n;)!. Then, the total
number of microstates compatible with the macrostate where n; microcells are
occupied in macrocell 7 is given by the product of these two factors

N! vl
(182) W({nip) = [In:! 8 H v—m)!’

The first factor is calculated exactly as for Boltzmann gas, because the occupied mi-
crocells are distinguishable, while the second factor reminds Fermi-Dirac statistics
and derives from an exclusion principle, which is a consequence of fluid in-
compressibility: one microcell cannot be occupied more than once by an element of
level fy. Apart from this latter constraint, microcells are let to distribute freely among
the different macrocells: this corresponds to making an assumption of ergodicity. This
doesn’t happen for the true Vlasov dynamics and is sometimes referred to as the
hypothesis of efficient mixing. Using Stirling’s approximation and expressing #; in
terms of the average probability to find level f; in cell 4, p;(fo) = n;/v, one obtains,
neglecting an additive constant,

(133) MW =v> pnp +(1-p)n(d—p),

which can also be rewritten in terms of the coarse grained distribution function,
p; = f/fo. Taking the continuum limit >~ — [d@dp/(wv), one finally gets the ex-

pression of Lynden-Bell’s entropy for a {WO level distribution.
2 1 i f f f
134 s ]:—J—d&d [—ln—+(1——)ln<1—— .
Maximizing Lynden-Bell's entropy at constant energy e[f]= [(p?/2)fd0dp
+1/2 — (mu[f P +m,[f1?)/2 and momentum P[f]= [pfdfdp and taking into
account “mass” M conservation, one gets the fermionic distribution

fo

(135) Jass(0,p) = BV 12—, s sin0—m,[fSSTcosO) + ip+u 4 |

where fy = 1/(4464p) and p, 1, 1 are Lagrange multipliers associated with energy,
momentum and “mass” conservation. The magnetization (mm[]?@ss], My [)_”QSS]) in the
quasistationary state and the values of the multipliers are obtained by solving the self-
consistent equations which follow by imposing the conservation laws mentioned
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Fig. 37. Momentum distributions in the quasistationary state for ¢ = 0.69 and my = 0.3
(panel a), my = 0.5 (panel b),my = 0.7 (panel c¢). The analytical results are plotted with a
dashed red line, while the points are the results of numerical simulations. In panel d) the same
distribution as in panel a) is plotted in a linear scale to make more visible the disagreement
near the top: the double hump structure observed in the numerics is not reproduced by
Lynden-Bell’s theoretical approach.

0,01

above. The magnetization in the quasistationary state and the Lagrange multipliers
are fully determined by the initial distribution.

In Fig. 37 we plot the momentum distribution in the quasistationary state ob-
tained analytically (red dashed line) compared with those computed numerically. For
all distributions in this figure, the magnetization in the quasistationary state is zero.
The agreement is quite good, considering that the theoretical prediction is blind, no
fitting parameter is used. However, as shown in panel d), this theoretical approach is
unable to reproduce the double hump profile observed in numerics. This is a weakness
of Lynden-Bell approach: the quality of the approximation cannot be determined a-
priori. Another prediction of the theory is the existence of a phase transition in the
(myg, &) plane. By varying these parameters of the initial distribution one either con-
verges to a homogeneous, m = 0, or to an inhomogeneous, m # 0, quasistationary
state. This situation is represented in Fig. 38 where the phase transition line (full
black line), predicted theoretically, divides regions with non zero magnetization in the
quasistationary state from regions with zero magnetization. The prediction is
checked numerically by running the Vlasov equation for a mesh of values of (my, ¢)
and registering magnetization in the quasistationary state. Again, the prediction
represents quite well the transition from homogeneous to inhomogeneous states.
Analytically, one can show that the homogeneous state (m, = 0) destabilizes at
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0.56
0.48
0.40
0.32
0.24
0.16
0.08

Fig. 38. Phase transition in the plane (my, ¢).

& ="T/12, in good agreement with numerics. The theory predicts a transition whose
order changes at a tricritical point, while numerics and other theoretical approaches
by Yan Levin and coworkers, seem to favor a first order transition everywhere.
Quasistationary states have been observed in a variety of systems, ranging from
self-gravitating systems to plasmas. We here give a further illustration, showing their
presence in the model of free electron laser introduced above, (43). In Fig. 39 we plot
the laser intensity A vs. time. Initially, this quantity grows exponentially, but then it
convergence (with damped oscillations) to the quasistationary state. However, for the
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Fig. 39. Laser intensity vs. time for the free electron laser model (43). In the main plot, we
show the short time exponential growth and the successive convergence to the quasista-
tionary state for N = 5000. In the inset, we plot the intensity for three different values of N at
later times: N = 5000 (full line), N = 400 (dashed line), N = 100 (dash-dotted line).
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smaller values of N shown in the inset, the convergence to the quasistationary state is
followed by a successive “collisional” evolution towards Boltzmann-Gibbs equilibrium.
The Vlasov equation for the free electron laser model reads

of _ af l
% 89+2(A cos ) — A, sin0) o
0A,

o = —0Ay + chos@d@dp,

8; =04, ——stin@d@dp,

with A = A, +i4, = VIexp(—ip).
Lynden-Bell entropy (134) maximization

(136) spp(e,0) :ﬁrqula)f(1 [sLe(HIH(f, A, Ay) = Ne; Jd@dpf =1;P(f,A;, Ay = 0l
gives the stationary coarse-grained distribution
o BW* [2+2A5in 0)—ip—p

1+ o~ B@*/2+2Asin0)—Ip—u

(137) f=rh

with quasistationary laser intensity

(138) A= dpdf sin0f(0,p) .
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Fig. 40. Laser intensity A and bunching parameter »_ cos;/N vs. detuning ¢ in the

(3
quasistationary state for a model of free electron laser. The lines are the predictions of
Lynden-Bell theory and the points the results of numerical simulations.
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Again, 1, u, f and fj are obtained by solving a set of implicit equations similar to those
obtained for the HMF model. The comparison of the quasistationary values of laser
intensity and electron bunching parameter with numerical results is shown in
Fig. 40. This theoretical result is ready for an experimental test either in free
electron lasers or in cold atoms in a cavity.
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