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Duality- and entropy methods

in coagulation-fragmentation models

Abstract. This article presents a selected overview of the existence theory and
qualitative analysis of coagulation-fragmentation models describing the formation
and break-up of clusters/particles/polymers in various applications in physics,
chemistry, astronomy and biology.

In particular, we shall discuss recent results on spatially inhomogeneous coa-
gulation-fragmentation models, which are obtained by duality methods and/or en-
tropy methods.

We shall show how a duality argument provides e.g. global-in-time L?-bounds,
while the entropy method implies entropy related a priori estimates and explicit
convergence to equilibrium.
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1 - Introduction

Starting from the pivotal works of Smoluchowski [54, 55], coagulation-fragmen-
tation models have been widely used to describe the formation and the break-up of a
wide range of clusters/polymers in as many areas as physies (aerosols, rainsdrops,
smoke, sprays), chemistry (polymerisation processes), astronomy (formation of
galaxies) and biology (hematology, animal grouping).

A detailed description of both processes, coagulation and fragmentation, will
often reveal highly complex mechanisms, which will make realistic model very
complicated. Speaking of fragmentation and thinking of the break-up of dro-
plets in particular, a detailed description would need to consider internal os-
cillations, viscosity- and surface-tension effects etc. in order to determine the
number of subdroplets a single droplet is going to break up into (cf. [38] for
instance).

Avoiding such a detailed description, the present review focuses on mathematical
methods for coagulation-fragmentation models, which are based on the assumption
that the particles/clusters/polymers are entirely described by their mass/size.

There are mainly three levels of description of coagulation-fragmentation pro-
cesses:

First, there is the microscopic description of a finite ensemble of particles
undergoing stochastic interaction events (e.g. the Marcus-Lushnikov process, see
e.g. [33]) as originally proposed by Smoluchowski [54].

Secondly, and in the focus of this article, the mesoscopic description models
coagulation and fragmentation in terms of a nonnegative density f (¢, ¥, ¥) depending
on time ¢, possibly position « and the cluster size/mass y. The time evolution of this
density is then given by a deterministic mean-field equation, [55].
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A third level of description uses the macroscopic scales, which are directly linked
to observations.

Linking limits between microscopic and mesoscopic descriptions involve the
convergence of stochastic processes (like the Marcus-Lushnikov process converging
to the Smoluchowski equation, [49]) or mean-field limits. An example for a limit from
a mesoscopic mean-field equation to a macroscopic evolution equation are fast-re-
action limits, see e.g. [29] and the last Section of this paper.

The article is organised as follows:

In the following Section 2, the Smoluchowski coagulation equation is presented
along with formal properties, a discussion of the phenomenon of gelation and an
example of the existence theory for the discrete Smoluchowski equation by using a
limit of finite-dimensional approximating systems.

In Section 3, discrete coagulation-fragmentation models are presented, most
importantly the Becker-Déring model. Moreover, the phenomenon of saturation is
presented.

The final and main Section 4 focuses on spatial inhomogeneous coagulation-
fragmentation models with diffusion: First, we revise the L!-existence theory as
developed in [39, 40]. We then present a duality method for diffusive equations (see
e.g.[36, 52, 21]), which allows to prove uniform-in-time L?-estimates. This global L?-
bound can be used to show existence of generalised coagulation-fragmentation
models as well as absence of gelation. Further, we present an entropy method, which
allows to prove convergence to equilibrium with explicit rates. Finally, we shall de-
monstrate a fast-reaction-limit based on entropy-estimates and a duality argument.

2 - The Smoluchowski equation: a model for coagulation

The Smoluchowski coagulation equation (see [54, 55, 46]) models the evolution of
anonnegative mesoscopic density of clusters/polymers 0 < f(¢, %) depending on time
t >0 and the size variable y € Y. The case Y =N is called the discrete
Smoluchowski equation while the continuous Smoluchowski equation considers
Y =[0,00). The governing evolution of both the discrete and the continuous
Smoluchowski equation share the same structure:

(1) 8tf(t; y) = Qcoag(fvf)(y) = Ql(faf) - Qz(fvf)

On the right hand side of eq. (1), the quadratic terms Q:(f, f) and Qz=(f, f) describe
the gain and the loss of clusters of size y due to binary coagulation events.
Coagulation events involving more than two particles are considered negligible in
the Smoluchowski models.
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The gain term Q:(f, f) accounts for the particles of size y being formed by the
coagulation of two smaller particles

a( /‘ _ /)
Wy +{y—vr 5 gy, forall y<y.

Here, a(y’,y — y') denotes a nonnegative and symmetric coagulation rate/kernel:
(2) 0 <aly,y)=ay,y).

In case of the continuous Smoluchowski model with size variable i € [0, co), the gain
term @) is an integral term

Y

ja(y', Y~ — F )Y,
0

DO| =

where the stoichiometric coefficient % reflects the fact that two clusters merge into
one.

The lost term Qa(f, f) comprises the loss of particles of size i due to the formation
of larger clusters:

W+ W2 fy+ g}, forall y €Y.

In the continuous Smoluchowski equation this leads to the following integral
) Q) =@ [ a.u s ) dy
0

The physics/chemistry/biology of the considered coagulation process is ex-
pressed in the coagulation coefficients a(y’, y) as given in (2), see e.g. the survey of
Drake [26].

The original works of Smoluchowski, for example, considered the coagulation of
colloidal particles according to

a(y, ) = W+ @Y7+ @), 4, By>0, af <1,

where Smoluchowski studied in particular o = y = 1/3, f = 1, see [54]. Another class
of coagulation rates are the ballistic kernels

ay.y) =@+l - @Y, wfr=0, ofty<l,
or kernels of the type

ay.y) =y + @YW, o pelo1].
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Amongst the latter, the Golovin kernel («, 5) = (0, 1) [35] has been used to describe
cloud droplets while the Stockmeyer kernel « = f = 1 [58] models branched-chain
polymers.

2.1 - Formal properties of the continuous Smoluchowski equation

This Section summarises formal properties of the continuous Smoluchowski
equation. Analog results for discrete coagulation (and coagulation-fragmentation)
models will be stated below as needed.

At first, we derive a weak formulation of eq. (1): By multiplication with a
suitable test-function ¢(y) and integration over y € [0, co), we obtain with Fubini’s
theorem

Qeoag (S, 1) 0(y) dy

&|g‘

jf(t Wody —
0

o3

ay, DY) @" — o — o) dydy’,

l\')l —
O —_— 3
O —_— R

where we have used the shorthand notation ¢ = ¢(y), ¢ = ¢(¥') and ¢" = p(y + ¥').
In particular, with the choice ¢(y) = %" and sign(¢” — ¢ — ¢') = sign(k — 1), it
follows formally that

00 . k<1,
— J o ft,y)dy = { constant k=1,
0 / k>1.

The testfunction ¢ = 1 shows that the number of particles f f(t,y)dy is decreasing
due to the coagulation process.
More importantly, testing with ¢(y) = y implies the formal conservation of mass

&.‘g‘

Jyf(t ydy = Jmeg<f,f> dy = 0.
0 0

However, without further assumptions on the coagulation kernel, it is in general only
possible to prove that the mass is non-increasing: Considering a cut off R > 0 and a
sequence of test-functions ¢p(y) = min{y, R}, which satisfies ¢" — ¢ — ¢’ < 0, we find

that themapt— | min{y, R} f(t,y) dy is non-increasing. Thus, by Fatou’s lemma we
0
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conclude that

- J it dy
0

is non-increasing.

It is indeed a well known phenomenon of mesoscopic coagulation models that the
formal conservation of mass is violated for sufficiently growing coagulation coeffi-
cients. This phenomenon is called gelation and shall be discussed further in the
following Section 2.2.

We conclude this Section by noting that for all kernels a(y, %’) satisfying

ay.y) <aly,y+y)+aoy y+y), yy ey,

it follows formally from testing with ¢(y) = pf(t, )" " that the L”-Norm is non-in-
creasing:

t—| f )|l» non-increasing for p > 1.

2.2 - Gelation, gelation time and gelation profiles

We shall consider in particular the product coagulation kernel a(y,y’) =y y'. At
first, we restate the weak formulation (5), i.e.

(6) yy’f WY@ — o — ) dy'dy.

L
2

Q‘|g‘

Jf(t W o(y)dy =
0

S ——
S —

Introducing the moments
M) = [ repdy, Mo = |ustpdy,
0 0

we test (6) with ¢(y) = 1 and obtain

G0 =5 | |wrwra)dyy = - 30,
00

Thus, integration over a time interval [0, T] for any T' > 0 yields

T
My(T) += JMZ dt = My (0).
0
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Since 0 < M(T) < My(0) is bounded for all 7' > 0 it follows that

JM%dt<oo — M € LX(0,0)),
0

which implies that
Mq(t)<M1(0) after some finite time ¢ > 0.

The phenomenon that the formal conservation of mass is violated within finite time is
called gelation and

Ty =inf{t > 0: M1(t)<M;(0)}
is called gelation time. At gelation a phase transition occurs, which marks the for-

mation of clusters of infinite/macroscopic size.
A more general result holds for coagulation kernel of the form

ay,y) =y + @YW, wpelo1l
For these kernels, gelation occurs provided that A =« + f € (1,2]. In fact, it has
been shown in [31] that

T, , A1+

Mi= |y ftpdy e L5000 for ke (5. 57),

0

which implies, in particular, that M; € L*(0, o) for 1 > 1.
An interesting question addresses the characterisation of the gelation time 7.

While constituting an open problem for many general coagulation coefficients, the

product kernel a(y,y’) = y 3 allows to answer it explicitly.
First, we calculate explicitly the blow-up time of second moment

M, = Jyzf(t, W dy,
0

which evolves according to

1 o0 o0 ,
—Mz(t) =5 J J W)y +yY —y* — @F)dy' dy = M5@),
0 0
1
and therefore blows-up at time 75 = recall the explicit solution =
P 2= Mx0) ( P Ms(0)

1
M5(0) t)'
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With gelation time marking the appearance of infinite size clusters, one can
conjecture that gelation should correspond to the blow-up of higher order moments.
In the case of the product kernel a(y,y’) = y ¥/, this conjecture can be proven. In
particular, we find that Ty = T: Defining the formal Laplace-type-transform

Ett,p) = j e yftpdy,  0,EEp) = Jeﬂ Pt y)dy,
0 0

we observe that E(,0) = M;(¢) and 0,E(,0) = —M»(t). Next, by testing (6) with
o(y) = e PYy for p € [0, o), we calculate
OE,p) = J e PUyPf(y) dy J e Py f(y)dy — J e MiPf(y) dy J Y@ dy
0 0 0 0

and obtain the following Burgers-type equation
OE(t, p) + (E(p) — E(0) 0,EE, p) = 0.

Since by construction 0,E(t,p) > 0,E(t,0) = —M5(t) it follows that the above
Burgers equation develops shocks at first at p = 0 at the same time as the second
order moment blows up. As aresults of the shock at p = 0, the value of E(¢,0) = M;(t)
has to decrease, i.e.

E(&,0) = M1 (t) <M:(0), t> Ty,
and we conclude that gelation occurs at the same time as the second order moment
blows up, i.e. Ty = To. For general coagulation coefficients, the characterisation of
the gelation time is often an open problem.

No gelation occurs for at most linearly growing kernels. Examples for which
conservation of mass is proven rigorously (see e.g. [2] and Section 2.3 below) are

a(y,y) <CA+y+vy),
and

ay, y) =y + @)@, d=a+p<1

In the particular case of the linear kernel a(y,y’) =y + %', one can again
explicitly calculate that no gelation occurs by using a Laplace transform: For p > 0,
we define

F(t,p) = J eIt ) dy,
0
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and observe that
Ft,0) = Jf(t, Wy =Mot),  9,F(t,0)= J yf &y dy = —My).
0 0

First, we calculate for a(y,y’) = y + %’ that as long as the mass is conserved, i.e.
M:(t) = My(t), we have

%Mo(t) = — My(t) M1(0), Mo(t) = My(0) e MOt

Then, we compute
17 , ,
aFt.p) = | [ we)ler v — e e sy dydy
00
= —F(t,p) 0pF(t,p) — M1(0)F(t, p) + Mo(®) O, F (X, p).

Thus, we have
FE,p)+ (Ft,p) — Mo(0)e 0% 9, F(t, p) = — M1(0) F(t, p),

which implies
1_ MOt

F<t,po T TIhO) [M(0) — F(O,Po)]> = ¢ MO F(©0, py),

and the function
1 _ e—M1(0)t

Por—Po — W [M(0) — F(0, po)l

is one-to-one because its derivative is

1— e—Ml(O)t

por—1-+ M0 0, F(0,po)

and

T ey £,y dy
_ apF(Ova) _ J

My 0) =L

J yf0,y) dy

The Smoluchowski coagulation process continuously decreases the number of
particles. In [9], Carr and da Costa showed for the discrete Smoluchowski equation
with 0<a; ; < C(j + K) with a constant C > 0 and for (7,j) € N x N that provided
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M1(0) =" jci(0) < oc:
j=1
i) =0, VeN as {— oc.
Thus, even if the mass M;(t) = M(0) is conserved for all ¢ > 0, there occurs a loss of
mass in infinite time in the sense that particles of any fixed size j will have coalesced
and

[o.¢]

Mit)=>_ ¢ —0 as t—oo,  kel0,1).

J=1

An analog results holds for the continuous Smoluchowski equation for a(y, y") > 0 for
y#y on (y,y) €Y x Y, see [42]. Assuming in addition that a(y,y’) > (yy')* for
2 €[0,1)andf"(y) = 0a.e.ony € (0,0)ford > 0, then M (t) < C)t " forallk € (0,1)
(see [42)).

Another interesting (and in general open) question concerns the profiles of the
solution at gelation. For the kernel

(7) a(y,y) =@ + @Y @', o« pelo1]
with 2 = o + f € (1, 2], there is the conjecture that at gelation time (see [31, 42])
f(Ty,y) ~ y*% as Yy — oo.

The dynamical scaling hypothesis proposes (see e.g. [25]) that as a mean
particle size s(t) — oo as t — T, (possible choices are e.g. s(t) = M(t)/ M),
s(t) = Ma(t)/M;1(t) or s(t) = M3(t)/Ma(t), see [25]) the particle density approaches a
self-similar profile:

1 Y
f&,y Nw¢<@) as t—T,.

In the case of the kernel (7) which satisfies a(¢y, &y') = &*aly, ), it is conjectured
that

. (1), 7 <s?(/t)> is a self-similar solution with t = 2 for 7', = ccif A € [0, 1) and with
t=U+3)/2for T. =T, if 1 € (1,2]. The case 4 = 1 with « > 0 requires a modified
ansatz, see [25].

Recently, Niethammer and Velazquez showed in [48] for continuous kernels with
homogeneity 7 € [0,1), i.e. a(Cy, &y') = E*aly,y'), which satisfy the growth condition
a(y,y’) < C(y’ + (y'))) that solutions tend towards self-similar solutions of the form

1
ftp) ~ 7 (o(%) with o« =1+ 1+ )p,

where the self-similar profile features so called fat tails, i.e. for any p € (y, 1), there
exists a continuous, self-similar profile

wit,y) ~ A= py~ 7.
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2.3 - Existence of weak solutions of the discrete Smoluchowski equation

The alternative to continuous-in-size models are discrete-in-size models with a
size variable 1 € N = Y. By denoting the cluster density c;(t) > 0 with ¢ = (¢;), we
consider

d 1 i—1 0
®) 760 = Quongle,0) =35 > i i i) =) aij i ®),
=1 =1
9) ¢i(0) = cf",
for the coagulation coefficients a; ; = a;; > 0.

The system (8) can be approximated by finite-dimensional systems of ODEs for
(c;),v=1,...,N with a cutoff index N:

d 1 i—1 N
(10) @D =3 Zl aijjcy B el ®) — e @) Zl aijcy (®),
)= J=

(11) N (0) = ¢l

The weak formulation of the approximating cutoff models reads as:
d& 1N
(12) %Z picy = 5 @ij P Ljen-1 Lisnj — 0; — o)) el ).
i1 i=1 j=1
The existence of solutions to the cutoff models (12) follows from the standard
(Cauchy-Lipschitz) theory for autonomous systems of ODEs: Suppose a = a(cV) €
CHRYN , RYYand ¢V (0) € RY , then, there exists a unique solution of the ODE system

i Ny — N N __ in
¢ &) = alc™ @), ¢ (0) =c",

on a maximal interval of existence [0, T') for T > 0. Moreover, if T < oo, then

lim ([ ¥ @) = oc.
t—T-

While global-in-time solutions cannot be expected in general for superlinear
ODEs, the system (10) satisfies the natural a priori estimate of non-increasing mass:

g X | NN
7 > e = 5 @i j [+ ljen1 lisyj—i—g] & ¢ <0,
i1

.
Il

—
~
Il

-

so that

(13) i) <Y i
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Therefore, given nonnegative initial data ¢/, i € N and thus considering non-
negative solutions 0 < cf-v @) for all N > 0, the a priori estimate (13) allows to extend
solutions to global solutions (defined on [0, c0)). Note that the global solutions of the
coagulation system (10), (11) for any cutoff size N exist without any further re-
striction on the nonnegative coefficients a; ;.

The uniform boundedness of the mass (13) and the nonnegativity of the solution
c?’ imply also the weak-+ compactness of the sequence cfv : Assuming finite initial
mass

My, = i <oo,

i=1

it follows from (13) that for all cutoff N > 0
N N
Zlciv(t) < ZZCEW < Min~
i=1 i=1

Therefore, for all ¢ € IN, the approximating sequence (cfv (#)yen is bounded in
L*>([0, +00)) and converges in a diagonal argument, up to subsequences, towards a
function ¢;(t) weakly-* in L*°([0, +00)):

(14) N —¢ in L0, +00)) weak-x.

Strong compactness of the sequence cf] can be shown under the assumption of
sublinear coagulation coefficients:

(15) 0< a;; < K@G+7).

Then, for any ¢ =1,..., N, and using cN(t) <M,

i—1
M) < .% N REOr J(t)’ el
J=1

N
2 i (t)'

—_

M Qji—j +MmKZ(2 +.7)CN(t)

J=1

IN

1
2

— =

J=
i—

IN
—

MZZ Wji—j +MmK(l+1)Mm

2 j=1

.

so that (thanks to Ascoli’s Theorem)

N—oo

cf»v(t) — ¢;(t) fora.e. t>0.

The assumption of sublinear coagulation rates (15) allows also to prove the pro-
pagation of superlinear moments like in the following estimate of a logarithmic
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moment: Assume that the initial first logarithmic moment is finite, i.e
0 .
=Y (ilni—i+1)¢)" <o,
-1

and denote the approximating first logarithmic moment by

N
LN@®) = (@Ini—i+1)c) ).

1=1

Then, by the weak formulation (12) with the test-sequence ¢(i) = ¢Ilni — i + 1, we
estimate with

ot + ) Lien-1 Lien—j — (@) — 9(j) < iln(1 +j/9) +7In +i/j)

and with the assumption of sublinear moments (15) that

N
Z i ({n(L-+5/) +71nG/j+ D) 0 Y0
i=1 j=

—

—LN(t ) <=

Mz

N
ZK i+ )iln@d +j/D) e @ ¢ @),
J=

—

i=

where we have used a symmetry argument. Continuing by using In(1 + &) < « and
xIn(1+x) < (xlnx —x + 1) + x, we estimate

LN(t) < ZZK PIn(l +4/1) +ijln1 + j/9)] N(t)cN(t)
N N
<> > Klij +ijin(+7)] ¥ O e’ ®)
=1 =1

< f:zN:Kz[Zj +(jInj—j+ D] ¥ @B @)
< KM, @M, + LN (t)).
Using Gronwall’s lemma, for any ¢ € [0, 7], N € N, we obtain
(16) LN(t) < @My, + Lyy,) XM T

This implies in a first limit ¢¥ () — ¢;(¢) that

N
sup > (ilni—i+1)¢(t) < CK, T, L),
tel0,7]1 5
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and, in a second limit N — oo that

8}

sup > (ilni —i+ D) < CK, T, Ly,).
tel0,T1 7=

Proposition 2.1 (Existence of mass conserving solutions). Assume nonne-
gative at most linearly growing coagulation coefficients

0<a;; <K@E+.

Consider nonnegative initial data 0 < ¢ with finite first-logarithmic moment

Ly =Y (ilni—i+1)¢}" <oo.
i-1
Then, there exists a weak solution c; € Ly ([0,+00)) to the Smoluchowsk:
equation with initial data ¢

1 X .
q(t) 5 ; tijjCij M) —ai® > aije®), i€,

=1
c;(0) = ci , 1 e N.

In particular, the term - a; jcj lies in L},
JeN

Moreover, the total mass > ic¢;(t) is conserved for all t € [0, +00), i.e. no gelation
occurs. iex

([0, +00)) for all i € .

Proof. We pass to the limit N — oo in the approximating cutoff system.

N

Remembering the uniform bound Zicﬁv t) < M;, for all £ >0 and the strong
i=1

convergence cév ) — c;(t) for a.e. t > 0, it is clear that (for any given ¢ € )

d d .
dtiv prAE D'((0, 4 00)),

and
i-1 -1
Z @jij N(t)c _j(t) Zafﬁ*f ¢;(0) ¢;—;(®), for a.e. t>0.
J=1 =1

The crucial point is to prove that (for all ¢ € I\)

N 00
i) = > aije®, L0, T,
j=1 j=1
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for all T > 0 in order to be able to pass to the limit in the cutoff system (10) in the
sense of distributions. We therefore estimate for any ¢ € N and Ny <N:

N 00 00
> ® =Y o] < Y Ki+ie
= =

Jj=N+1

N
+Y K@+ ® — ¢
=1

K@+N+1) <
SOWADWON DN+ D11 j:;l (JInj—j+ D)

KG@+Ny+1)
WNo+1DInWNog+1)—(No+1)+1

No
+ K@ +No) Y |eN®) —cit)] +
j=1

N
x> (nj—j+ DO - )|

J=No+1
No .
. K@+No+1)
< Ny — ¢
KGN0 2160 =60l Ve + D~ No 7 D+ 1
x> Gnj—j+ D (O Ly +¢0)
j=No+1

2KC(T,K,L;;,)(t + Ny +1)
WNo+DInNo+1D) - No+ 1)+ 1°

No
<K(@+No) Y |ef®) —cit)] +
j=1

which proves the strong L!-convergence as Ny can be taken arbitrarily large in the
limit N — oc. O

3 - Discrete coagulation-fragmentation models

In the previous Section, we have considered pure coagulation models and seen
that superlinear coagulation coefficients lead to gelation. In this Section, we shall
also take into account the opposing process of the break-up of clusters.

We shall first focus on discrete-in-size coagulation-fragmentation models, i.e.
1€ N=Y,c) >0, c=(c), and we consider the evolutionary problem

%Ci(t) = Qcoag(ca c)+ Qfmg(c)
= Q1(c, ) — Qz(c, ¢) + Q3(c) — Qu(0).

Here, Qfqy(c) = Q3(c) — Q4(c) denotes a linear fragmentation term consisting of a
gain term Q3(c), which describes the creation of cluster of size ¢ due to break-up of
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larger clusters (ﬁm,i is related to the number of clusters obtained after breakup):

BiiBisji

{i+7} {ip+{jy,  J>1
and a loss term Q4(c), accounting for the fragmentation of clusters of size i:
Gy 2L allpairs {i—j}+{j} with j<i.
Altogether, we consider the following discrete-in-size coagulation-fragmentation

model:

%Ci(t) = Qcoag(@ c)+ Qfmg(c)
(17 -1

1 o0 00
T3 UigjCiniCj =) 0ijCi¢j + ) Bisifisjicivj — Bici
1 =1 =1

with the coagulation-fragmentation coefficients

aij=a; >0,  p;; >0  (1jeN),
B1=0 B; >0, (t e N),
i1
(mass conservation) = Z JBij  GeN,i>2).
J=1

(18)

The last assumption on the fragmentation coefficients in (18) ensures the formal
conservation of mass. This can be best seen in the weak formulation of the discrete
coagulation-fragmentation problem: Given a test-sequence ¢;, we have

Z Z Qi ; Ci G ((pzﬂ @i — (Pj)v

=1 j=1

[\DIF—‘

Z »; QCOal(Cy c)=
(19) o

o0

00 i—1
Z 9 Qfrag(€) = — ZBiCi <%’ - Zﬂi,j(”j) .
i=1 i—2 =1

Thus, testing the weak formulation with the sequence ¢, = 1, it follows analog to the
Smoluchowski equation that the mass in non-increasing in time:

(20) pt) = chl(t @) d < chm(x) da =

=1 =1
If gelation occurs in (20), then p(t) < p™ for a finite time ¢ > 0. We remark that al-
though fragmentation can prevent gelation to occur in some situations this will not be
possible in general, see e.g. [2, 17, 30, 31, 41]. Depending on the coefficients of coa-
gulation and fragmentation, three cases are distinguished: i) weak coagulation
(entailing the existence of a mass-conserving solution independently of the presence
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of fragmentation), ii) strong fragmentation (entailing the existence of a mass-con-
serving solution due to the presence of fragmentation), and iii) strong coagulation,
where gelation occurs depending on the initial mass and the growth behaviour of the
coefficients of coagulation and fragmentation.

3.1 - The Becker-Diring model

The Becker-Doring model is a classical discrete coagulation-fragmentation
model, which considers only interactions between monomers (i.e. clusters of size one)
and polymers: First, the binary coagulation between monomers and polymers leads
to the formation of particles of size ¢

Qilc,0):  {i—1}+ {1} 2 {3}, 1<,
and the consumption of particles of size ¢
Qc,0): {iy+{1} 5 {i+1}, 1<

Secondly, fragmentation of monomers from polymers leads to the gain of particles of
size ¢

Q©: {i+1} 2+ {1}, 1<4,

as well as the loss of particles of size 7
o ob . .
Qs0) . {i} — {1 -1} +{1}, 1<i.

The Becker-Doring model, in which all coagulation and fragmentation events
involve monomers, can be rewritten as a coupled system of a monomer-equation and
a hierarchy of polymer-equations:

d o0

76 ="Wio - ;Wiw),

d .
7= Wi_i(c) — Wi(o), 1> 2,

where

Wile) = a;e1 ¢ — biga Ciga,

@s , bu

and we redefine (compared to (18)) a; = 5 b2 =355

1> 2.
The theory of coagulation-fragmentation models is in general much better de-

anda; = a;1, b; +1= bm for

veloped when assuming a so called detailed balance condition, i.e. when assuming the
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existence of a nonnegative equilibrium E(y) € L%(Y) = LYY, (1 + y)dy) such that
aly, ) EEWY) =bly,y ) Ey+y),  (y,y)eY xY.
The detailed balance condition is then also satisfied by all functions
E.(y)=Ey)2Y, yeY, forz>0,
yet E, is not necessarily in L}(Y). One therefore defines
zs =sup{z > 0: E, € Li(Y)}, 2s € [1,00],
ps = My(E;,(y)) € [0, oc], ps € [0,00],

and p, is called the saturation mass and denotes the largest mass to be represented by
a detailed balance equilibrium.

A most important consequence of assuming a detailed balance condition is the
existence of a monotone entropy functional:

H(f|B) = if (m @ - 1) ay,

satisfying the following H-Theorem:
d 1
%H(f‘E) = _éD(f)v

D(p) = J J(aﬁ”’ — b n(aff) — In(f") dydy,
YY

where we have used the shorthand notation f = f(y) f' =f(y) and f" = f(y + o).
Note, that the entropy dissipation D(f) vanishes only for detail-balance equilibria.

3.2 - Saturation phenomena and large-time asymptotics

Detailed balance equilibria of the Becker-Déring can only represent mass up the
saturation mass p,. It is thus conjectured that in the large-time behaviour

t—00 (2 Ml(Ez)) = Ml(ﬁn) if Ml(fm) <z,
t.y) — K, ith
&y (y) wi { . it M) > 2

This conjecture has been proven for the Becker-Doring model as well as certain
generalisations, and under certain assumptions of strong fragmentation, see
e.g.[3, 56, 8, 9, 16].

In the following we shall illustrate the saturation phenomenon in the Becker-
Déring model by assuming an initial mass p” = M;(c™) larger than the saturation
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mass p, = M1(E,,) <oo:
P> py = My(E,).

According to the conjecture, we expect that ¢;(t) — Elz?s as t — oo, while the re-
maining mass p™ — p, should go to larger and larger clusters as t — oco.

The following method of proving rigorously the large time behaviour of the
Becker-Doring model was first developed by Penrose [51] and later extended by
Niethammer [47] to coefficients of the type

a; = a11”, b; = a;(zs +qi77), 1> 2,

with o € (0,1],y € [0,1), a; > 0, z; > 0, ¢ > 0. A first step applies the time rescaling
7 = ¢17**7¢ and introduces a cutoff index i, such that i, — co and ¢, — 0 as ¢ — 0.
In [3], it was shown that the solution of the above Becker-Doring model conserves
mass M;(t) = M1(0) for all ¢ > 0. i

The goal is thus to capture the saturation mass in >_ ic;(r) ~ p, while the excess
mass p" — p, is contained in even larger clusters. =1
Using mass conservation and the above rescaling, the Becker-Déring model can

be written in the following alternative formulation:

> ici(n) =p,
i=1

d 1

2. (Wi_i(e) — Wi(e)), 1> 2,

T oglady

where

b;
Wile) = a; <61 - E) ¢i — (biy1¢iv1 —bici)
1

= ali“(cl — 25 — q’L'iA") — (bi+1 Cit1— b; Ci).

Next, one introduces the following continuum approximation in the study of the
excess mass: For (7,x) € (0,00) x (1 — 1/2)¢, (7 + 1/2)¢), we consider

o) = g, W) = W)

and obtain

O f = — 0, W(f), W(f)(z,x) ~ ar(xu(r) — qx*7),

E;

where u(t) = £ 7(¢1(7) — z5). Then, using that ¢;(7) — E; 25 and T % for large
i+1 1

1, Niethammer [47] showed for a suitable choice of i, (e.g. i, = —In(¢)) and by

applying the continuum approximation for i > i,, i.e. for @ € ((i, — 1/2)¢,00) that
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in the limit ¢ — 0 with ¢, — oo and 7,6 — 0:
i o0
> ici(x) ~ py., fo(f,x)dﬂc=p—ps~
=1
0
For many general coagulation-fragmentation models, the characterisation of
saturation remains an open problem.

4 - Spatially inhomogeneous coagulation-fragmentation models with diffusion

This Section is devoted to spatially inhomogeneous coagulation-fragmentation
models with diffusion, i.e. we study the evolution of a polymer/cluster density
f(t,2,)>0 depending on time ¢ > 0, size y € ¥ = [0, 00) and position x € @ ¢ R?
and subject to

Of —dyDaf = Qcoag(f,f) + Qfmg(f)
= (f, 1) — Qf, 1) + Qs(f) — Qu(f),

with a size-dependent diffusion coefficients d(y) and diffusion is taking place within a
bounded domain Q with sufficiently smooth boundary 02 (e.g. 9Q € C?). W.l.o.g. we
can assume a normalised volume |Q| = 1 after rescaling « accordingly. Together with
(21), we assume non-flux homogeneous Neumann boundary conditions

(22) Vuf(t, 2, y) - v@) =0 on 0L,

(21)

and nonnegative initial data
(23) 0 < finla, ).

The existence theory of spatially inhomogeneous (or also homogeneous) coagula-
tion-fragmentation models like eqs. (21)-(23) has applied two basic functional settings:
The first is based on fixed-point and compactness methods in spaces of continuous
functions (see e.g. [44, 45, 27, 34, 63]) while the second uses weak and strong com-
pactness methods in L'(Y) (see, e.g. [3, 57, 14, 15, 30, 39, 40]). The latter approach has
the advantage of only relying on a physically natural setting of nonnegative initial data
with integrable number and mass densities, i.e. 0 < f;,,(y) € L{(Y) =LY, +ydy)
and shall be presented in the following Section.

4.1 - Existence theory in L' via weak compactness

Following [39], we shall show in this Section the existence of (global) weak so-
lutions of continuous coagulation-fragmentation models with diffusion based on
weak compactness methods in L'(Y).
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Definition 4.1 (Weak solutions of continuous coagulation-fragmentation
models with diffusion). Let T € (0,00]. Assume nonnegative tnitial data with
fimite mass, i.e. 0 < f;, € LY(Q x Ry ; (1 + y)dxdy).

Then, a weak solution of the coagulation-fragmentation model (21)-(23) on [0, T)
18 a non-negative function

[ € C0,T); LNQ x R))N L0, T; LNQ x Ry; ydydw))

satisfying f(0) = f;, and f € LY((0,T) x (1/R,R); WH\(Q)) for all R € R .
Moreover, the four gain- and loss terms of coagulation and fragmentation are
integrable in the sense that

Q1234 € L'(0,T) x 2 x (0, R)).

Finally, f satisfies the following weak formulation

”(woﬁ)f() O dyde + | [ | (~fow + d@)vrvp)dydads
0

[SY SR
0%8

—

Q(f)wdydrds, — Vte(0,T),

|

for all compactly supported (in y) test functions y € CH([0,T] x Q x R,).

I
el

0%8

The crucial step of the proof is the following weak stability principle:

Proposition 4.1 (Stability principle for weak solutions in L!, [39]). For
T € (0,00) let (f,) be a sequence of weak solutions of the coagulation-fragmenta-
tion model (21)-(23) with sequences of coefficients a, — a, b, — b and d, — d and
a common initial data f;,. For all ne€ N let K, C LY(Q x R ) be a weakly compact

set with
Ju®) € Ky, for each t € [0,7T),

and suppose moreover for all R > 0 and © € {1,2,3,4} that

o]

sup J an(t)(l + ) dydx < Cr,

t<[0,71 20
Qin(fn) weakly compact in L*(0,T) x 2 x (0,R)).
Then, there exists a subsequence (f,,) and a limiting function f such that

fu —F 0 CQ0,T);w — LY(Q x R,)),
Qi (fn) = Qi(f)  weakly in L'(0,T) x  x (0, R)),
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for Re Ry, 1€{1,2,3,4}. Thus, f is a weak solution of the coagulation-frag-
mentation problem (21)-(23) on [0, T). Moreover,

Jw(y)fm dy — Jw(y)fdy in LNO,T) x Q)
0 0

fory € D(R,). Finally, the total mass satisfies [ Mi(t)dx < [ M;(0) da
2 2

The above weak stability principle Lemma 4.1 can be proven, for instance, in a
framework of coagulation-fragmentation models satisfying a detailed balance con-
dition. In the following, we shall discuss how the associated entropy and entropy-
dissipation functionals entail natural a prior: estimates, which are sufficient to prove
the weak compactness required by the weak stability principle Lemma 4.1 for so-
lutions of eq. (21).

We consider a given detailed balance equilibrium £(y) and the associated relative
entropy functional

_ f
(24) H(f|E(y) = J J f(ln (E) . 1)dy,
QY
which dissipates according to the following H-Theorem:

2
@) GHUE) + | [aw L dyas
QY

+3 J J J (aff’ — bf")(In(aff’) — In(bf")) dydy'dc = 0

QYY

where we denote f = f(y), [ =fW), [ =f(y +y).
Note that the entropy dissipation functional consists of two nonnegative integral
terms, which express the entropy dissipation due to diffusion, the so called Fisher

mformation, and the entropy dissipation due to coagulation and fragmentation.
Supposing initial data with finite entropy H(f,|E) < C < oo, the H-Theorem (25)
implies formally a uniform-in-time bound of the relative entropy

(26) sup H(f®)|E) < H(f|E) < C<co.

te[0,00)

In return, this implies also that the time-integral of the entropy dissipation func-
tional is uniformly bounded for any time interval [0, T']. More precisely, we have that
the time-integTated Fisher information

(27) J J Jd(y)l fl dydxds < C, forall T >0,
0QY
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and the time-integrated coagulation-fragmentation part of the entropy dissipation

T
(28) J J J J(aﬁ”’ —bf"n(aff") — In(bf")) dydy'dxeds < C, for all T >0,
00Y Y

constitute a natural set of a priori estimates related to the entropy dissipation for
various constants C = C(Q, E(y), H(f™"|E)) depending only on the domain Q, the
detailed balance equilibrium E(y) and the initial relative entropy H(f™|E).
As a second natural a priori estimate, we shall use that the total mass is bounded
uniformly in time if the initial mass [ [ yf;,(x, y) dydxis finite:
Qv

(29) Co= swp | [urtaydyde < | [ufine.pdyda<cc.

te[0,00)
QY QY

In the following, we shall always consider solutions subject to nonnegative initial
data f;,, (23) with finite mass and entropy.

The below two Lemmas establish additional a priori estimates, which allow to
prove the weak compactness required by Proposition 4.1:

Lemma 4.1 (see [39] for the proof). Let &: R, x Q x Y+—{0,1} be measur-
able and o. > 2. Then, fort >0

—_—

SOF @) dyde < 206+ ¢ ) j J £(t) B dyda + ﬁH(ﬂmE)
QY

QY
Lemma 4.2. Fort e R, holds with f(t) lnég) < f(t)ln%%—zf,
f@®
(30) | Jro (1 +|m (W/)) Ddydac <c
ey
Proof. It follows from Lemma 4.1 with &(t) = 1oy that
J Jf(t) dydx < C|Q||E|, +C < C,
QY
for a constant C = C(Q, E(y), H(f"|E), Cp). O

Before proving the weak compactness Lemma 4.4 required for the weak stability
principle in Proposition 4.1, we recall the Dunford-Pettis theorem on weak com-
pactness in L!:
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Lemma 4.3 (Dunford-Pettis theorem). A sequence (f,,) s contained in a weakly
compact subset K, C LN(Q x R.) if (f,) s bounded in LN(Q x R..) and satisfies:

lim sup J [, y) dedy = 0,

R—oo n>1

{fu=R}

and if for all € > 0, there exists a measurable S C Q x Ry with |S| < oo such that

sup j fil<e

n>1
(@xRO\S

Lemma 4.4 (Weak compactness lemma, [39]). Let T € R, and let (f,) >0 be

a sequence such that for all n > 1
fn(t)> D
1 dydx < Crp,
n(E’(y) yar =t

(31) sup. J an(t) (1 +y+

te[0,T
QY

T
@ ||| | @hisi-bsm@s -, ddydeds<cr
0 YY

Q

with constants Cr = C(T, Q, E(y), H(f™|E), Cy) not depending on n.

Then, the sequence (f,) is weakly compact in L'((0,T) x Q x R,) and the
sequences (Q;(f,)) are weakly compact in LY(0,T) x Q x (0,R)) for i €1,2,3,4
and R € R,.

Moreover, there exists a weakly compact subset K, C LN (Q x Ry) such that
(f,() € Ky forallt € [0,T] and n > 1.

Proof (Sketch of the proof). At first, for S C Q x R, measurable, |S| < oo and
o > €2, it follows from (31) and Lemma 4.1 that

(33) an(t) dydx < 4o JE(Z/) dydax + % < Cr(E, 2], »).
S S

Eqg. (31) implies moreover that

(34) |
Q

Thus, f,,(t) € K, € LY(Q x R.) for all n > 1 with K, defined in the way that g € IC,,
satisfies the above equations (33) and (34) for all measurable S C 2 x R, with
IS| < oo and o > €2. Moreover, since E(y) € L'(0, c0) and |Q| = 1, the Dunford-Pettis
theorem shows that K, is weakly compact.

fu®) dydx < %

R e @
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In the following, we sketch how to show the integrability of the coagulation and
fragmentation integral Q1 ,, Q2., Qs and Qu,, (see [39] for the details).
First, forall R € R,

Y
_ Ju(t,2,y)

Quath) =" [0,y = ) dy < Rlbul o
0
Therefore, the sequence (Q4,,(f»)) (Where Q4, may be an approximation of Q4 with
coefficients a,, — a, b, — b and d,, — d) is weakly compact in L*((0,7) x 2x (0, R))
since (f,,) is weakly compact and ||b, ]|, is assumed bounded.
Secondly, we observe that for all o > e?, the elementary inequality » < ol +

M for (n, &) € Ri yields for measurable SC (0, T)x2x (0, R)

In ()
J ay'y = Yy uly — ) dydaedt < “Surfj Qula) dycedt + ln%c)
) >

Letting then «— oo shows that the sequence (Q1,(f,)) is weakly compact in
LY (0, T)xQ2x(0,R)) forall R € R,.
In a third step, we have for all « > 2R € R,

JQS,n(fn) dydadt < ” bu(y, y — Y )y dy' dydacdt
S S0

4 ||bn|\m,R,m)j an(y’) dy dydadt
S o

< CJ an(y’) dy dwdt + [[bul| oo CT ),
S0

and the sequence (Q3,(f,)) is weakly compact in L((0,7) x Q2 x (0, R)) since (f,) is
weakly compact.
Finally, because of

1
J J J (&nfnfn,/b — by :) In (%) dydy’dacds < CT7
Yy

nJdn
Q

S

it follows also that (Q2,,(f,,)) is weakly compact in LY((0, T)x 2x (0, R)) from the weak
compactness of (Qs,(f,)) in a similar argument as above showing the weak com-
pactness of (Q1.,(fn))-
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The existence of weak solutions in L! to discrete inhomogeneous coagulation-
fragmentation models with diffusion can be shown in a similar way to above, see [40].
More precisely, we consider for ¢ = (¢;), 1 € N the system

d

(35) pr

¢ — diNye; = Qcoag(C» )+ Qfmg(c)

1 i—1 00 00
=5 > aijeije— > aijcici+ Y Bifiijicivi — Bici,
=1 =1 =1
together with homogeneous Neumann boundary conditions
(36) Vicit,x) - v(®) =0 on 0Q, 1€ N,
and nonnegative initial data
(37) c"w,y) >0, ieN.
In eq. (35), the (d;) denote a sequence of size-dependent diffusion coefficients and
diffusion is taking place within a smoothly bounded (e.g. 9Q € C?) domain Q with
normalised volume |2| = 1.

Weak (global) solutions of the discrete coagulation-fragmentation model with
diffusion (35)-(37) are defined as follows:

Definition 4.2 (Weak solutions of discrete inhomogeneous coagulation-frag-
mentation model with diffusion). Let T € (0,00] and suppose imitial data

0 < ¢i" € LN(Q) with finite total mass 3 i||c¢||; <oo.
i1

Then, a weak solution of (35)-(37) on [0, T) is a non-negative function

¢; € C(0,T); LNQ)), sup Y illeill, <Cef),  ieN,
te[0,7) i—1

with Q1234(c) € LY((0,T) x Q). Moreover, ¢; are mild solutions of

t
ci(t) = e el + JediA““"")(Qcoag + Qpag)c(s)ds,  i€N,
0

ditat is the Co-semigroup of d;/\. in LY (Q) with homogeneous Newmann

boundary conditions.

and e

Remark 4.1. We remark that weak L'-solutions require in particular the
quadratic, infinite sum of the loss term of coagulation to be integrable, i.e.

Q2(c) = io: a; iCiCj € LY((0,T) x Q).
=
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Proposition 4.2 (Global weak solutions, [40]). Assume that the coefficients of
(35) satisfy

(38) tim %4 — fim 2 P

—— =), (for fixed v > 1).
Jj—oo ) Jjooo 1+ f f

Then, there exists a global weak solutions c¢; € C([0,T]; LY (RQ)), i € N for all
T > 0 satisfying in particular that the total mass is non-increasing

SupJ [ e 1c(t, gc)] dx < J [iic?(%)} dx,
i—1 o b=l

>0 =
o =

and that the loss term of the coagulation Qz(c) is integrable

5]

> aijeic; € L0, T x Q).

J=1

4.2 - Duality method and global L?-estimate

At the price of less general initial data with p™ € L2(Q), a theory of existence and
absence of gelation for discrete inhomogeneous coagulation-fragmentation models
with diffusion was presented in [5] and extended to degenerate diffusion coefficients
in [6].

The key lemma applies a duality method (see e.g. [36, 52, 21] and also [7] for a
recent improvement) to establish a global-in-time L?(Q)-estimate, which can also be
generalised to degenerate diffusion coefficients, see [5, 6, 21]:

Lemma 4.5 (Global L?(Q)-estimates via duality, see [5, 6]). Assume coagula-
tion—fmgg@entation coefficients satisfying (38) and suppose initial data with
pr) = Y ici(x) € LA(Q).

i=1
Then, forall T > 0
sup{d;}
; .
(39) 19l 120p < (1 +m> T lp"™ (I 2>

or for degenerate diffusion (i.e. inf{d;} = 0)

i=1 i=1

T
(40) J J [Zidi ci(t,x)} {Zici(t, .oc)] <47 sup{d;}| .
) N
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Proof (Proof of duality bounds). By denoting A(¢,x) = 1 i 1d; ¢;, it follows
that ||A||., < sup;en{d;} and that P =1
Op — 4:(Ap) =0
Then, multiplication with the nonnegative solution w(t, x) of the dual problem:
—(Ow + A dyw) = HVA,

(41) Vaw - v(@)]yp = 0
w(T,") =0

for any smooth function H = H(t,«) > 0 leads to

T
(42) J JH(t, x) AL, x) pt, x) dedt = Jw(O, x) p(0, ) de.

0Q Q
Next, testing the dual problem (41) with —A,w (this can be made rigorous by a

standard approximation procedure of solutions of parabolic problems, see [21]), we
estimate

T T T
J Jatqvmz /2) dudt +J JA Uy dadt < J JH\/Z( — Apw)dadt
0 Q 0 Q 0 Q
1 T T
EJ JHZ dadt + gJ JA(Aww)zdacdt
0 Q 0 Q

and obtain with Vw(T) = 0 and ¢ = 5 that

S—

JA (Aw)? daedt <
Q

O e N3

JHZ duxdt.
Q

Therefore, in a second step, one can show that

T 5 T
”‘ ol g dt<4” 2 duedt,
0Q 0Q

. 2 |Oyw] ?
and hence, with [w(0,z)|* < f VA A dt) that

T
J|w(0,oc)\2 de < AT Al <o) J JHZ daedt.
Q 0 Q
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Returning to eq. (42) above, we continue to estimate

jHﬁpdxdt < 11900, ) 1900, )l 20
Q

O —— 3

< 2\ /T|Al e ()1 H || 20,77 2) 120, )| 22

for all nonnegative smooth functions H. Thus, by duality, we conclude that

”\/ZIDHLZ(Q) <24/ T 1Al o) 1P, )| 120y

which shows (40) and concludes the proof in case of degenerate diffusion coefficients.
Finally, for bounded diffusion coefficients with mf {d;} > 0,the L2-bound (40) follows
directly from (39). O

4.3 - Global weak L?-solutions via duality method

The above duality Lemma 4.5 provides a uniform-in-time L?(2)-bound without
assumptions on the coagulation-fragmentation coefficients, in particular without any
restriction on the growth of the coagulation coefficients a; ; which are responsible for
gelation.

However, the construction of solutions of (35)-(37) requires a limit of suitable
approximating solutions and in order to pass to the limit (similar to Section 2.3), we
shall need the assumptions (38) as in the L! theory, i.e. as in Proposition 4.2 above.
More precisely, for solutions ¢V of approximating truncated systems, we need to
pass to the limit in the lost term of coagulation

N

Indeed, since c;' converges to ¢; weak-+ in L>((0, T) x ), we require that

Zal iV — Zaz j¢ stronglyin  L'((0,7) x Q),

j=1
which can be shown under the assumption hm J = 0 by the following estimate
Jj—00
T
J J —¢j)|dadt < 2 sup — ¢l
00 J>Jo

It is thus interesting to remark that the existence theory of the discrete coagu-
lation-fragmentation model with diffusion (35)-(37) does not really benefit from
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having a global L2-bound via the duality Lemma 4.5 in comparison to the L! theory
developed in [39].

However, the L? approach succeeds in proving solutions for generalised coagu-
lation-fragmentation models with quadratic fragmentation, for which the L! com-
pactness theory can no longer be applied to, see [5]:

Theorem 4.1 (Existence theory for generalised quadratic models, [5]). Consider
the generalised quadratic coagulation-fragmentation model

1 o0
Oc; — dj Ay = 5 E @k Ck €L — E Qi J; Ci Cig
=i =1

1 00
+ 2 Z Z bii i €1 Bigy —Z i ci k-
k=1

kl=1 i< max{k,}

Then, global weak L*-solutions exist in 1D provided that

lim 254 — ﬁmb“:o,lmmm{%;mw}zo ki€ .

l—oo 1 l—o0 l—oo |

4.4 - Absence of gelation

The following Theorem shows how the duality estimate 4.5 allows to prove ab-
sence of gelation. Provided bounded diffusion coefficients, this is done under almost
as general assumptions on the coagulation coefficients as for space homogeneous
models, see e.g. [2].

Theorem 4.2 (Absence of gelation, [5, 6]). Assume an initial mass p™(x) €
L2(Q). Moreover, in the case of bounded diffusion coefficients

0< inf{d;} < d; < sup{d;} <oo,
€0 J

€N

assume that there exists a bounded function 0 :[0,+o00) — (0,+00) satisfying
0(x) — 0 as x — oo such that

(43) a;j < (147 0(max{j/i,i/j}) forall i,j > 1.
On the other hand, in the case of the degenerate diffusion coefficients

0=inf{d;}, Ci7’<d;<oo,
1eN
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for an exponent y € [0,1] and a constant C, assume that
(44) ai; < CAP + %) for all 7,j > 1,

with o+ +y<1 o €[0,1) and a constant C.

Then, the weak solutions to the system (35)-(37) with coefficients (38) given by
Proposition 4.2 and satisfying the global bounds of Lemma 4.5 have a bounded
superlinear moment on bounded time intervals [0, T] for all T > 0, i.e. there exists
an increasing function C = C(T) >0 and an increasing sequence of positive
numbers {y;} ;. with 2hm w; — oo such that for all T > 0,

(45) Ji tyc; < C(T) forall te[0,T]
o =1

As a consequence, the total mass is conserved

Jp(t, x)de = me(ac) da for all t>0.
Q Q

Proof (Idea of the proof in a simplified case). We sketch the proof considering
the special case of the sublinear kernel a; ; = \/E and by neglecting fragmentation
B; = 0 (w.Lo.g. since fragmentation counteracts gelation) and by assuming bounded
diffusion coefficients. Moreover, to further simplify the argument, we shall assume
initial data with a bounded first-logarithmic moment,

JZilnicﬁ"(m) dx < oo.

0 1=0

For general initial data with bounded initial mass, one can construct a suitable su-
perlinear initial moment using the De la Vallée-Poussin’s lemma, see [10].

At first, we test the weak formulation with ¢; = In? and use In(1 + ) < C v/« to
estimate

iJZ'lnicidx:JZ \/i'jciq;<iln(1+%)+jln(1+J£))dw
—1 j=1

dtQ =1 szl i
< 2]22@'%0@0 < 2Jp(t,x)2dx.
o =1 =1 P

As a consequence, we have for all 7' > 0

o0 o0 T
J > ilnic(T,x)dw < J > ilnic;(0, ) da + 2J Jp(t, x)? dxedt.
i=0 =0 0 o

Q Q



246 LAURENT DESVILLETTES and KLEMENS FELLNER [32]

Then, the global L2-bounds of Lemma 4.5 ensure the propagation of the logarithmic

moment f > ilnic;(-, x)dx and, thus, the mass conservation. O
i=0

4.5 - Entropy method and convergence to equilibrium

In this Section, we prove explicit convergence to equilibrium for a continuous,
spatially inhomogeneous coagulation-fragmentation model with diffusion and nor-
malised coefficients.

The key lemma establishes a so called entropy entropy-dissipation estimate, an
explicit bound of the relative entropy with respect to the global equilibrium in terms
of the ongoing entropy dissipation.

This so called entropy method applies to evolutionary problems, which feature a
monotone (e.g. nonincreasing) entropy functional £ with an extremal (e.g. mini-
mising) entropy £, for which the entropy dissipates according to an entropy dis-
sipation functional D, i.e.

d

d

E:%(E—E‘w): -D <0.
Moreover, the entropy dissipation functional is supposed to be non-degenerate in the
sense that the global equilibrium can be uniquely identified for the set of states with
zero entropy dissipation D = 0 by taking into account all the conservation laws of the
system.

An entropy entropy-dissipation estimate is then a functional inequality of the
form

(47) D>®E-E.), ®0)=0, &>0,

and a Gronwall lemma implies directly from the eqs. (46) and (47) the convergence to
equilibrium in relative entropy. If @'(0) > 0, then the obtained convergence is ex-
ponential.

The entropy method quantifies the large-time behaviour in terms of functional
wmequalities, which as such are not connected to the evolutionary problem. Thus, one
advantage of the entropy method is a robustness in the sense that these functional
entropy entropy-dissipation estimates may be reapplied in modified models. In fact,
we shall give an example in the proof of Lemma 4.6 below.

Moreover, the entropy method avoids linearisation and/or compactness argu-
ments and therefore yields global convergence with constants and rates, which can
(in principle) be calculated explicitly.

Going back to ideas of Boltzmann and Grad, the entropy method has been suc-
cessfully used in many situations ranging from (non)linear diffusion equations (see
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e.g. [13]), integral equations (such as the spatially homogeneous Boltzmann equation
[59, 60, 61]), over reaction-diffusion systems (see e.g. [18, 19, 20, 21]) to kinetic
equations (see e.g. [23, 24], [32], [4]). The entropy method has also been applied to
spatially homogeneous coagulation-fragmentation problem in [1] and [37].

Note, that convergence to equilibrium in the relative logarithmic Boltzmann
entropy implies convergence in L' due to Cziszar-Kullback-Pinsker type inequalities.

In the following, we prove (faster-than-polynomial/exponential) convergence to
equilibrium via the entropy method for a continuous, spatial inhomogeneous coa-
gulation-fragmentation with diffusion and normalised coagulation-fragmentation
coefficients. Generalising the homogeneous model discussed in [1], we consider a
continuous-in-size cluster density f(¢, x, y) depending on time ¢ > 0, position x € Q
and size y € [0, co) satisfying the following coagulation-fragmentation model with
normalised coefficients (e.g. a(y,y’) = 2)

y 0

of —dyLef =Q(f. )= Jf (y =y — 2 () Jf () dy'
(48) 0 R 0

+2 Jf W) dy' —yf(y),
y
together with homogeneous Neumann boundary condition
Vaof - v=0, x € 09,

and nonnegative initial data 0 < f™(x, ).

The size-dependent diffusion coefficient d(y) is assumed bounded on intervals
[0,07] for all § > 0, but may degenerate at most linearly for large sizes:

49)  d@) <d'©), Vyelo,ol,  0< l‘i—y <dy), 'y el0,00).

The weak formulation of the coagulation-fragmentation operator @ for a smooth
test-function ¢ = ¢(y) and a function f = f(y) (such that the integrals exist) reads
(withy” =y +¥') as
| e nw oty -

0

lo(y") — o(y) — oW ff (Y dy dy’

o9
S —_ R

(50) N N
Lo j O f () dy J Y o) @) dy,
0 0

where the function @ denotes the primitive of ¢ (0,® = @) with ®(0) = 0.
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Then, by denoting the first and the zero moments

- jy'f(y') ay, Fahdy,
0

I
o3

the mass density N (¢, x) and the number density M(t, x), the evolutionary problem
eq. (48) conserves formally the total mass

N — L, (J Ay f(y) dy’) =
0
while the number density satisfies
OM — Ly ( J dy)f(y) d?/) =N-M
0

Next, by testing the weak formulation with In(f), the entropy (free energy)
functional

H ) = j(f Inf —f)dy,
0

dissipates according to

d

< JH(f) d = —Du(f) <0,

Q

Dy(f) = JJOZ fo' dy dax
0

l

where f = f(y), f =f(y) and f" = f(y + ¥).
For the spatially homogeneous model (48), Aizenman and Bak [1] found the fol-
lowing remarkable inequality

fl/
ff !

S S

J(f” —ﬁ")ln( )dydydw >0,
0

(61)

o y
l(f ( )d?/d?/>MH(f|fN)+2(M VN ),

where H(f|fy) = H(f) — H(fy) denotes the relative entropy with respect to a local/
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intermediate detailed-balance equilibria of the coagulation-fragmentation process:
Y
2 vt o) =e VNED"

which depends on space and time only through the macroscopic moment N (¢, x) and
satisfies the relation M = v/N.
The inequality (51) implies the following lower bound of the entropy dissipation

oo

2
(53)  Du(f) > Dy(f) = J J d(y) 'V“}f C dyde + MH(F|fi) + 204 — VN,

Q0

Eq. (63) shows that the entropy dissipation sums the two effects of diffusion and
coagulation-fragmentation. The process of coagulation and fragmentation is only
able to push the particle density f (¢, x, ¥) towards the class of intermediate equilibria
(52) and it is a consequence of spatial diffusion and the homogeneous Neumann
boundary conditions on the bounded domain Q to select from the class of inter-
mediate equilibria fy the unique global equilibrium parametrised by the conserved
total initial mass:

- i
fo=¢ T NS JN(@ do = | s . dyd
Q

O —_— 3

The existence of global weak mass-conserving solutions to eq. (48) with a diffusion
constant d(y) € L*([1/R, R]) for all R > 0 has been established in [39]. These solu-
tions satisfy the entropy dissipation inequality

t

JH(f(t)) da + JDH<f<s>> ds < JH(fo) de.

Q 0 Q

Using the entropy method, the following convergence to equilibrium was ob-
tained in [22] in the one-dimensional case Q = [0, 1] by generalising a first result of
exponential convergence assuming (not very physically) bounded diffusion coeffi-
cients [10]:

Theorem 4.3 (Faster-than-polynomial convergence to equilibrium). Suppose
nonnegative initial data (1 +y +Infy)fy € LY((0,1) x (0, 00)) with positive initial

1

mass jNO(ac) dx =Ny >0 on Q=1(0,1). Assume at most linearly degenerating
0

diffusion coefficients (49).
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Then, for a constant f<2 andt > 0
(54) 1f ) = Fllp, < Cpe ™",

and for all t > t, > 0, and q > 0,

[o.¢]

J @+ Nf ) — folx dy < Cpge ™",
0

The proof is based on the following entropy entropy-dissipation estimate:

Lemma 4.6 (Entropy entropy-dissipation estimate). Assume that 0 < f =
f(x,y) is measurable and satisfies the following moment estimates:

oo

(55) 0<M, < M) = jf@c,y) dy < | M|

(56) 0<Na

{0%

Jyf (2, y) dyd,
0

Y f (e, y) daedy < Map.

S —

(57) |

Then, for allA > 1 and p > 1 the following entropy entropy-dissipation estimate
holds:

C

(58) Di(f) > i

A M|

M
JH(flfoo)dm— C

with a constant C = C(M,, N, d., P(Q)) depending only on M,, N, d., and the
Poincaré constant P(Q) of the domain Q.

Proof (Sketch of the proof of Lemma 4.6). We remark that with the definition
of the relative entropy H(f|g) = H(f) — H(g), the following additivity property be-
tween global and local equilibria holds

(69) H(f|fo) = H(f|fn) + H(fv /),

where the space integral of the relative entropy between fy and f, is non-negative:

iH(fmfm)dx =2 iNdx—l\/Ndx >0,

despite fy and f,, not necessarily having the same L?ll—norm.
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Thus, in a first step we begin with the additivity properties (59) of the relative
entropy:

1 1
(60) JH(fIfoo)dx _ jmf\fm do+2(VN - VN).
0

0

where we have introduced the shorthand notation N = J" Ndxand M = fM de.

Secondly, we estimate the second term of the above equality by applymg a
functional inequality, which was derived in [19] as part of an entropy entropy-dis-
sipation estimate for a reaction-diffusion system of two reacting species M « N
with degenerate diffusion. This functional inequality quantifies that diffusive effects
are passed from one species onto another species via the ongoing reversible reaction
between these two species. In the present context, it reads as the functional in-
equality

= = 2 M
VN - VR < 2 (1M - VR, + - )

and formulates a control of a nonnegative measure for the spatial inhomogeneity of
the moment N in terms of an L2-measure for the reaction of M « /N and an L2?-
measure for the spatial inhomogeneity of the moment M.

Assuming moreover a lower bound of the moment M(Z, x) > M, > 0, we continue
to estimate (60) as follows

4|M - M]3

1
H(f|fso)da < C[
| =

S S,

MH(f| fy)dx + 2||M — \/ﬁllig} +
(61)

<C
VN,

(= L

00 00 " Vi 22
J J (f" =1 ln<f )dydy dw +47HM Mz
00

where we have applied the Aizenman-Bak inequality (51).

In a third step, we estimate the L2-measure for the spatial inhomogeneity of the
moment M, i.e. |[M — MH% in terms of the Fisher information term of (53). This can
be done by assuming highér order moments of f(-,%) and a cutoff A > 0 in the size-
variable y to bypass the degenerate diffusion coefficients d(y) for large clusters. By
denoting

A 00
Matt,2) = jf(t,oc,.w dy, M) = Jf(t, z,y)dy,
0 A
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we estimate for any p > 1

M = W13 = [(Ma ~ T+ 5, — )
Q

o0

2
< 2|Ma — Myl +A2pJ(Jypf(y)dy) da

1M1 Mzp,

< CP,d)A M|, ” dey) eI “”f P dyae 4 Azp
0

Q
where we have assumed an L>-bound [|M||; and that the total number density is

uniformly bound in time, i.e. || M| L2y <00 d

Remark 4.2. We remark that the entropy entropy-dissipation estimate of
Lemma 4.6 holds in any space dimensions provided the necessary a-priori moment
bounds hold. These moment bounds however, can so far be only proven in the one-
dimensional case.

The following lemma proves in the one-dimensional case a priori estimates,
which are required for applying the entropy entropy-dissipation estimate:

Lemma 4.7 (A priori estimates). Assume Q =1[0,1].
Then, the number density M(t,x) satisfies a (L' N L?) 4+ L™ bound, i.e.

with a constant m., and a L' N L0, co)-function me(t). Moreover, we have

1
JM(t,ac)dx > Mo, > 0.
0

€Xr
Proof. Considering f(t,x,y) —f(t,&,9) =2 [ Ft,&,9) 0e\/Ft,E ) dE, we
integrate first in & and then in y and estimate @

dy

1
Fit,ay) - jf(t, #,y)da
0

1 1

d(y)la%\/f(tw,y)Izdxdy] ,

Y S
g
Q=
—
s
&
=]
I
<
| IS
| —— |
o3
Y S
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which implies

1
Mtz < JM(t, B)dit + dV2 (M + Noo) 2 D(F) 2.
0

and thus the first statement of Lemma 4.7.
Next, we estimate for ms(t) € L' N L2(0, 00)

1 1 1 1
%J M, x)de = J (N — M?) dx > J Ny (@) de — (me + mz(t))J M(t, x)dzx,
0 0 0 0
and thus
t
h B ~ [ nsctmee)) do
JM(t, x)dx > JMm(%) dxe ©
0 0
r Lo [ noctmao) do
+ JNm(oc) dux J e s ds
0 0
—ng(a)da 1— e—moct
2ot [ My T Nl

The next Lemma establishes higher order moments of the solution of (48):

Lemma 4.8 (Higher moment estimates). We denote

My(H®) = | |y fdyde.

O ———
O — ¥

Then, the solutions of (48) satisfy for p > 1 and for a.a. t > t. >0
My()®) < @ CF = M,

with a constant C = C(t.,f;,) depending only on the initial data f;, and t. > 0.

Proof (Sketch of the proof of Lemma 4.8, [22]). The proof exploits that the
fragmentation process of (48) produces moments. Testing the weak formulation with
yP with p > 1, we obtain

d -1
G Mr(N® < @7 = 2) Mp()Dmeo +me@)] — %Mpﬂ(f)(t)-
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Thus, the interpolation

1 P _
My () < N~ L ),

for ¢ > 0 and Duhamel’s formula with the estimate f mg ds < uy/t — t. (exploiting
me € L?(0, 00)) allows to show that the moment Mpfi is bounded for positive times
t > t, > 0if the moment M), is bounded for positive times ¢ > ¢, > 0. For initial data
with bounded first order moment (1 + ¥)f;, € L', we apply then the de la Vallée-
Poussin Lemma: for any f € L! exists ¢ / oo such that ¢f € L', see [22] for the
details.

Then, for a regularised version of ¢(y), we calculate the evolution of the y p(y)-
moment and estimate y ¢(y) Qg < —C1y'*°, which leads to a bound of a moment M,
with p > 1 for positive times ¢ > ¢, > 0. O

Lemma 4.9 (Positive lower bound on number density M(t,x)). Let t. > 0 be
given.
Then, there is a strictly positive constant M, (depending on t.,d. and d*(5))
such that
M, x) > M, > 0.

Proof (Sketch of the proof). By introducing a linear lower bound for the lost
terms, we consider the equality

Of —dY) Ouaf = g1 —yf — M, )| f

where g;(t, x) is nonnegative. Therefore,

ty+ [ [Ms.)| oo ds
@ +d@d)(fe 0 ) =9

where g; is nonnegative.
Next, we apply Fourier series and Poisson’s formula to the solution of
Oth — d Oyeh = G € L' with homogeneous Neumann boundaries on (0, 1) and obtain

1
ht, @) = ijﬁ(o,z) S Lo

T k=—o0 Vdt
1 [ 1
~ _ @ktx—2)* 22
S G(s E e dzd.
"3 J J Z)k__oo\/d(t—s s
0 -1

where % and G are mirrored evenly around x = 0.
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Then, for ¢; > 0 and ¢ € [t,, 2t.] for some ¢, > 0, we estimate

1
fltr+ta,y) = C Jf(tl,z,we*@t**ﬁ)ydz,
0

and further
1/6

Jf t1,2,y) dydz
b

1

M(t +t,x) > Ce Chran)s

[SY S

1

[H(p e

1

> Ce ®tan)s (MO* — K- Tk )

lnf

where we have used that jf(y) dy < 6N and ff(y) dy < K&—i—ff K
Choosing 6 and K, we get that Mt +t,x) > M, and the statement follows
since M, = M. (d.,d*, M, 1, H(f;y),t.) does not depend on ;. O

Proof (Proof of Theorem 4.3). We first prove the convergence to equilibrium
(57) assuming that the entropy entropy-dissipation Lemma 4.6 can be applied. In
fact, provided Lemma 4.6, we estimate that for any A > 1

1 1

C
JH<f|foo>dac P & JH(flfm)doch
0 0

C, 2%

(62 ki

&|g‘

where ||M(t, -)HL;@ < My + me(t) by Lemma 4.7.
Next, we chose A = A(f) > 2 by balancing the two r.h.s. terms (e.g. positive term

= 1/2 negative term) and obtain )
1 %
) C[H(f|f)dx
Lo 0 ‘
A~ M| 289° ’

which in return inserted into (62) yields via a Gronwall Lemma algebraic con-
1

vergence of the relative entropy [ H(f|f) da with rate 2p for all p > 1.
0

Then, in a second step we obtain faster-than-polynominal convergence by sum-
ming over 2p € N and calculate that

1
JH(f(t)Ifoo)dx <Lit-0),
0
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where (for all 1 <o <2)

t2p 2 2(2—1)
L*l(t) — - t219 678]0 In2-2pIn2pC) > C(OC) Gln (t)’
> e

for all ¢ large enough and any 1 <a<2.
Secondly, in order to prove the regularity estimate

[ @yt~ el dy < co
0

we observe that the moment control of Lemma 4.8 implies
T
0

We then use the regularising effect of 1D heat equation: i.e. that solutions to

1 1 1
Of — d(y)0yf = g satisfy for all ¢ € [1,3) with o +1= 2—9 + a that

[SY S

J 1+ 9! Q*(f, ) dydudt < Cr.
0

(63) ||f||Lr([O’T]XQ) < CT d(@/)z;vq HﬁVLHLﬁ + CT d(y)z;qq ||gHL€’T7

where d(y)lz;qq <1+ y)l/ 3 for y large and C7 denotes various constants which depend
polynomially on 7. Thus,

I fC, 'vy)HLS*”([t*,T]xQ) <Cr (||f(0a '7?/)||Lﬁk + ||Q+(f,f)(’a '7?/)||L1([0,T]><Q))’

which implies that the quadratic term Q(f, f) of (48)isin L3/?>~¢([t,, T] x Q). Then, by
a bootstrap argument, one chooses in a next iteration step any p <3/2 in (63), which
implies (-, -,y) € L"([t., T] x Q) for all » < co. Therefore, after a further iteration, we
obtain (-, -, ) € L>®([t., T] x Q). Finally, a similar estimate like (63) (see [22]) shows
that the parabolic H'-regularity of the solutions of 9;f — d(y)0y: f = g € L™ depends
also at most polynomially on 7', i.e.

J A+ 9" [T, dy < Cr.
0

The statement follows then by interpolating the polynomially-in-time growing
H'-norm with the faster-than-polynomially converging L'-norm, which follows from
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(54) after applying a Cziszar-Kullback-Pinsker inequality

e e}

j(l YN, ) — o) o dy
0

3/4 1/4
< [(W+ 9 1A ) £ AT ~ Feli)
0
S Ci‘/‘le—ocT.
O
4.6 - Fast-reaction limit towards a macroscopic diffusion equation

In this Section, we consider a family of inhomogeneous coagulation-fragmenta-
tion models with rescaled coagulation and fragmentation rates compared to (48), i.e.

(64) O — AL = (Quuag ) + Qg ).

We shall investigate the fast-reaction limit ¢ — 0. Formally, we expect in the
limit that

Y

fe ﬂ)) ei \/f\lo(t.;r)7

where the limiting mass density N°(¢, x) satisfies the nonlinear diffusion equation
(65) AN (t,2) — AN (t,2) =0,  n(N)= J d(y)ye ~dy.
0

In fact, assuming bounded diffusion coefficients d(y), the nonlinear diffusion equa-
tion (65) is also nondegenerate due to

0< [%nf){d(y)}N < m(N) < sup{d(y)}N.
00 [0,00)

The fast-reaction-limit of (64) without a rate of convergence was proven rigor-
ously in [12] via a compactness argument. Here, we shall present an interesting
approach based on a duality method, which allows to obtain also a rate of con-
vergence. This duality-based argument was laid out in [11]. However, it assumes a
uniform-in-¢ lower bound on M*(t, x), which, despite expected to hold, remains an
open technical problem to prove rigorously.

First, we recall the lower bound of the entropy dissipation (53), which reads in the
rescaled version as

_g%JH(fs)dx > JMEH(f8|fN’)dx+2J((M£) o \/ﬁ)zdﬂ(},
Q 0 o
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where we have neglected the nonnegative diffusion term entirely. As a consequence,
we have

o——9

JMSI-I(fﬂfNa)dacdt <eC.
Q

Assuming a uniform lower bound on the number density M*(t,x) > M, >0, it
follows from a Cziszar-Kullback-Pinsker inequality that

S
Ife—e Wllim,y) < eCM.).

Next, by using an interpolation with bounds of higher order moments, one can
show (see [11] for the details) that for an interpolation exponent 0 < 6 <1, there exists
a remainder f7 € sz(L;((l + y) dy)) with

ff= P +80ff, with V. ff-v(®) =0on 0Q.

As a consequence, we have

AN* — A(N®) = &', J dyyfi dy =& Dug’,
0

where ¢° € L2, with V,¢° - v(x) = 0 on 0.

We apply then a duality method similar to Lemma 4.5 in order to show that
provided initial data N;, € ngc, then the solutions of the nonlinear diffusion
equation

(66) IN? — Ayn(N?) = & A\, o, ViN* - v(@)] 50 = 0,
converge in L?x as ¢ — 0 to the solution N(t, x) of
(67) AN — Nn(N) =0, ViN - v(@)] 50 = 0.

In fact, one can prove analog to Lemma 4.5 that the nonnegative solution w > 0 of
the dual problem

_ N 0@

—(915?/0 Ne— N

w=H>0, Vew - v(@)| 50 =0, w(T) =0,

satisfies

| 2cwll 20120y < CIlH | 20 T1x0)-
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Thus, by testing the difference of eqs. (66) and (67), we estimate

O C——— 3

| v = prdwat) < 216 1500200y
Q

which implies by duality

IN* = Nz < C& gz < Ce,

since H > 0 € C*([0, T] x Q) is arbitrary.
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