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Localization and stability of active scalar flows

Abstract. Inthis paper we discuss the time evolution of a two-dimensional active
scalar flow. We extend to this dynamical system some rigorous results valid for a
two-dimensional incompressible nonviscous fluid. In particular we study some
characteristics of the dynamics when the initial field is concentrated in N small
disjoint regions and we discuss the generalization of the localization. We investigate
also the vanishing viscosity limit. Moreover we give some results of stability for the
active scalar flow.
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1 - Introduction

In the present paper we discuss some properties of the following dynamical
system: let 0(x, 1), x € R? be the solution of the equation

(1) 0 +u-V0o=0,
where

(2) U = (u13u2) == (82W7 781‘//)7
(3) 0=A"y, x€(,1),
and 4 =+ —4.

We denote this system as active scalar flow.
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We assume the boundary condition
4) u—0 as |x] — 0.

For o = 0 we have the Euler equation in two dimensions in which 6 has the
meaning of vorticity, for o = 1 the Surface Quasi-Geostrophic equation (SQG) in
which 0 has the meaning of temperature. This last system has relevance in geo-
physies (see for instance [22]). In this formulation the active scalar describes the
dynamics of a rotating fluid over the f-plane with constant potential vorticity (PV)
and stratification normalized to one (see the Appendix). This problem was firstly
studied by Pierrhaumbert et. al ([9], [23]) in relation to the spectrum of turbulence in
2-d, beginning the research on o — turbulence. On the other hand, from a mathe-
matical point of view, this dynamical system was deeply studied (see [6], [14]) in
relation to the problem of formation of singular fronts. The authors observed a
formal analogy with the 3D Euler equation and studied the singular behaviour of the
solutions in the more suitable framework of the 2D quasi-geostrophic equation. In
this field there are numerous papers devoted to the global regularity and existence of
solutions (see for example [7], [12], [13]). In [8] the alpha-patch model was studied,
for 0<a <1 in the relation between the stream-function and the active scalar.
Another recent generalization of the SQG equation is discussed in [4].

We study some mathematical properties of the problem for o € (0,1). The case
with o = 1 will be briefly discussed apart.

The aim of the present paper is to approach the SQG from a new different point of
view with respect to the present literature, by studying the evolution of initially
strong concentrated fields and extending some rigorous results of the classical point
vortex model. The main part of these results are not trivial due to the different Green
function for the SQG. We give a complete proof of the localization for strong con-
centrated active scalars, giving a connection between the SQG model and a system of
ODEs with finite degrees of freedom. We also state a useful result of stability re-
marking the analogy with the two-dimensional Euler equation. Moreover we show
that in the limit of point active scalars, we can introduce a dynamical system related
to the SQG. To conclude we develop a complete study of the properties of the SQG in
the limit of point fields, suggesting further work in this framework.

The plan of the paper is the following. In the next Section we study the locali-
zation: the proof of Theorem 2.1 is the main new result of the present paper. In
Section 3 we discuss the point active scalar system, in Section 4 we present a stability
result, which gives a property valid here and not in fluid mechanics (example at the
end of the Section). In Section 5 we treat the vanishing viscosity limit for con-
centrated fields. Finally we give in the Appendix a short discussion of the physical
root of the Surface Quasi-Geostrophic model with « = 1.
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2 - Localization

We denote by localization the following property: sharply concentrated initial
data evolve in a concentrated state. For o = 0 (two dimensional Euler equation) this
property is well known and it gives a rigorous justification of the so-called point
vortex system (see [15], [18], [20], [21]). In the present paper we discuss the case
O<a<l.

It is possible to introduce a weak form of eq.s (1)-(4):

d
(5) O = 0Tu- Vf 1+ 010, f1,
where f(x,t) is a bounded smooth function and

In (5) the velocity field u is given by

(7 ux,t) = | K@ — )0y, Hdy,

where K(x — y) = V*G(x — ), being V*+ = (05, —8;) and G(x) the Green function of
( — 4)""*? with vanishing boundary condition at infinity.

Moreover the divergence-free of the velocity field and the fact that 0 is trans-
ported by the flow show that the Lebesgue measure and the maximum of 6 are
conserved during the motion.

We consider an initial datum of the form:

N
®) 0., 0) = 0i(,0) ,

i=1
where 0,.;(x,0) is a function with a definite sign supported in a region 4,; such that

9) Ayi = supp 0,;(x,0) C 2(z;le) , Z(zile) N2 (zje) =0 if i #J

for ¢ small enough. Here X(z|r) denotes the circle of center z and radius 7.
We take the intensity

(10) Jdac 0.i(x,0)=a; € R,

independent of ¢ and we assume

(11) 105,00 < Me? , M>0 | y>0.
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We prove the following Theorem:

Theorem 2.1. Denote by 0.(x,t) the time evolution of 0.(x, 0) according to the
active scalar flow with boundary condition u — 0 as |x| — oo, then, for any fixed
time T, for any o € [0,1) and 0 <t < T, Vd > 0 F ey(d, T) such that, if e<ey, then
N

0.(x,t) =" 0, (x, t). Moreover, supp 0,.;(x,t) C Z(z;(®)|d), whered — 0ase — 0 and
i=1

z;(t) are the solutions of the ordinary differential equations

N
gt)= Y a; V'G(zi —z]) , V' = (6, —00),
J=Li#)
2i(0) = z;,

(12)

where G( - ) is the Green function of ( — A)X™® with vanishing boundary condition
at imfinity.

We remark that T > 0 must be such that V¢ < T there are no collapses; a complete
discussion of the existence of such 7 is given in Section 3.

We remember that the Green function of (— A)(l_"‘/ 2 in R? with vanishing
boundary conditions at infinity is (see for instance [11]):

. 1 I'(w/2
(13) G = l//(OC)T ’ l//((x) - 722—2) F(z _ OC) , = \/ 96% + 95% )
2

where I'( - ) denotes the Euler Gamma function and o € (0, 1).
From the previous Theorem we obtain immediately the following corollary:

Corollary 2.1. For any continuous bounded function f(x)
N
(14) 1111% de 0.(x,t) f(x) = ;aif(zi(t)) ,
where 0,(x,t) is the time evolution of 8,(x,0).

In the sequel we call “vortices” these concentrated solutions.

The proof will be given in the sequel. We spend now few words on the interesting
case o = 1. The proof does not work directly because it is not uniform for « — 1.
However the fact that the localization holds for any o« < 1 gives some suggestions also
on the limiting case.

Proof of Theorem 2.1. The proofis quite similar to that discussed in the fluid
mechanics case [18, 20, 21] . The main new and non trivial part is a sharp bound on the
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mass of the filaments of active scalar “far” from their center. We study the motion of
a single blob of unitary intensity, immersed in an external, divergence-free,
Lipschitz vector field F(x, t),

(15) [F(w,8) — F(y,t)] < Ljx —y.

This field F(x,t) simulates the effect of the other N — 1 concentrated vortices.
Indeed we will show that the vortices remain disjoint and concentrated, generating a
field with this property.

So the weak form of the active scalar equation is given by

d
(16) %H[f]29[(u+F)-Vf]+t9[8tf],
and defining the center of vorticity as
(a7 BxﬂzzjwﬁNnﬁd%

we prove the following auxiliary theorem to show that this single patch remains
localized. Then it is simple to come back to the main theorem.

Theorem 2.2. Suppose that

(18) supp |6.(x, 0)| C X(x*|e)

and

(19) |0:(x,0))| <Me™7 , M >0, y>0,
(20) (P%%MmZL

then, there exists C(f5,T) > 0, with f > 0, such that for 0 <t < T

(21) supp |6.(x,t)| C Z(B(@)|d)
where
(22) d=C(B, 1),

and B(t) is the solution of the ordinary differential equation

dB(t)
(23) o F(B®),1),

(24) B(0) = x*.
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Proof of Theorem 2.2. For semplicity we take B(0) = x* = 0.

First of all we have to show that the main part of the field remains concentrated
around the center of vorticity. We introduce the moment of inertia with respect to
the center of vorticity:

(25) I(t) = J (x — B,(0))%0,(x, t)dx.

We study its growth in time. It is simple to prove that if /' is null, i.e. having only one
patch, B,(t) and I.(t) would be conserved along the motion. So it’s clear that
dB.(t)

(26) = J F(x,0)0,(x, )dz.

Now we give an estimate of the time variation of I.(f) in the case F' # 0,

27) % - 2J @ — B,(&)F(x, )0,(x, .

Noting that

(28) J (i — B.(®) - FB,(), D0, tyde = 0,

we have

(29) @27 = ZJ (x — B.(1)) - (F(x,t) — F(B,(1),t)0,(x, t)dx,

and using the Lipschitz condition we have

(30) LA ZLJ dat, (e, D@ — B0 = 2LI(D),
and finally
(31) L@ < 10)e*,

which means that

(32) lir% I.(t) =0 at least as &°.

So the main part of the scalar field is concentrated near the center of vorticity. To
state the localization property, we have to prove that the mass of filaments is null.
First of all we study the growth of the distance of a fluid particle from the center of
vorticity B,(t).
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By using (26) and (7) we have that

ng(t)> © — B,(t)

dt ) Je—B.®)
xr — Be(t)
(33) < ‘(F(ac, - J .ty OF (g, Oy - - —p
X — Bs(t)

)

J@Km—w&Wﬁ

|t — B,(®)|
and using the assumption of unitary intensity the right hand side is

X — B;(t)
[ oo - raoa - E=5 G

(34)
X — Bz(t)

Bl

The first term is obviously estimated by using Lipschitz condition

x — B.(#)

’wamnﬁw—ﬂ%m@’w—&m|

< const R,
(35)

R = |x — B.(®)|.
Following [18] we estimate the second term dividing the cirele X'(B,(¢)|R) in different

annulii to control the contribution of fluid particles going away from the center of
vorticity:

.
(86) Z(B,®IR) = > [(Z(B®|ax) — Z(B,®|ar—1) U(EBD|R) — Z(B.(t)|aze)],
k=1

with ag = 0, a; = ¢, ay, = 2a;,_1. The cut-off k* is such that a;-,.; < R and a2 > R.
We give an estimate to the contribution of fluid particles in each ring:

% ' J dyK(x — y)0,(y,1)
€ b
(37) - % : J dyK(x — B.(1)0:(y,1)

i

where D; = 2(B:()|ai) — 2(B:{t)|ag_1).
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The first term is null because (x — B.(t)) - K(x — B.(t)) = 0. Recalling (7) we have

p
38 K@ —y) — K@)| < const ———,
% =)= RO < comt i~y
with |y|<p< % and s = a 4 1. Substituting this result in the second term of (37):
xr— Ba(t) J
————. | dy[K(x —y) — K(x — B.(t))]0:(y,t
@ — B, Yyl K@@ —y) ( (N10:(y, 1)
(39) o
< const % J 0.y, t)dy
= R(R . ak)s & ) b)

where
(40) j 0.0y, iy
D;

is the vorticity mass in the ring D;. Defining the vorticity mass outside Z(B,(t)|R),

(41) my(r) =1— J 0.y, )dy,
Z(B:®)|R)

we have the following bound
(42) I, > r*my(r).

Recalling that the moment of inertia is bounded by a term of order &2, we find

2
(43) m(r) < const i—2,

so we obtain a bound on the mass of vorticity contained in each ring

2
(44) J 0.(y,t)dy < const az—.

b, k-1
Coming back to (39) we finally have

2
0:(y, )dy < const £

(45) const 0%71 }m .

ayg J
R(R — i)
D;
Hence adding the contributions from each ring we obtain the bound on the radial
velocity produced by the fluid particles far from the boundary:

(46) const #, se[l,2).
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To complete the proof we have to estimate the contribution of vorticity mass near the
boundary of the support.
We introduce a non negative mollifier, the function Wx(r) € C>*(R?), defined as

(1) W) 1 if |r|<R
7)) =
f 0 if [r| > 2R,
such that
Ci
(48) VW< 5. C1>0,

49 W, Wr()] < &1 /
(49) [VWg(r) =V R(T)|<I?|r—7'|.
To control the vorticity mass near the boundary, we use the following regularized
measure
(50) wR)=1- J daeWg(x — B,(1))0,(x,t).

As a matter of fact the regularization by the convolution with the mollifier is such
that 1, (R) = 0 if supp |0(x,t)| C Z(B,()|R). So, giving an estimate on the time var-
iation of 1,(R), we have a measure of the localization of the active scalar near the
center of vorticity.

By explicit calculation we have

dﬂotl(R) = | devWit - Byt + Fe,ty - P yo, 1
¢ J d
(51) = — | daf.(x, ) VWr(x — Bs(t))J dyK(x — 0.y, 1)

_ dxef(g(;, t)VWR(,’)(; — Bp(t))J (F(.’)C, t) — F(?/, t))ef(ya t)a

and the first integral in the r.h.s. of (561), using the antisymmetry of K, becomes
1
(52) ~5 | do | dvo.e.00.0.00Wew) - YWGKE - ),

To give an estimate of this integral, we split the integration domain in these sets

o if h<n T} = {(x,y)|x & 2(B,@O)|R),y € Z(B,(®)|ay) — Z(B,®)|an-1)},
o ifh=nT,={@ylx¢2B.OIR),y ¢ ZB:®|an-1},
o if h<n S, = {(x, Y|y € ZB:D)|R),x € Z(B.®)|ay) — Z(B.B)|ayn_1)},
e ifh=nS, ={yly&ZBR),x & Z(B,(t)|an_1)}
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We notice that with this choice the integrand in (52) is null in the complementary
of the domain D = (J;_; (T}, U S)). Beginning from the set 7, where VWg(y) = 0,
we estimate the first term of the r.h.s. of (51) on D by

deﬁg(ac, 0.y, ) VWr(x — B.(£)K(x — B,())
L D

+ Jd?/Qs(x, 00:(y, OV Wr(x — B.O)NK(x — y) — K — B.(1))]
LD

where D = X(B.(t)|ay) — 2(B.({t)|ap_1). The first term is null because
VWg(x) - K(x) = 0. The estimate on the second term comes directly from (39),
(45) and (46) giving

myR) & L a, 2 m(R)e
< < .
(54) (62) < const R R + hZ:; RER—a) a_, = R

To give an estimate on T, recalling (49), we note that the integrand in (52)
satisfies the following inequality:

const

—_ — R —

(55) (VWr(@) = VWRGIKGE ~ )| < =
and substituting in (52) we obtain,

const
R2

(56) 62 < 5" | do | dyo.e,00.00.0G -y

We finally give an estimate on the last integral rearranging the vorticity mass as
close as possible to the singularity, where y — x. We take a circle of radius # around
the origin and use the hypothesis that |6,(x,0)] < M &7.

Being 0 conserved along the motion we obtain

(57) < M2,

J O.(r, O)|r| *rdrdg
D

where 7 is the radius of the cirele 2(0|y), such that m(ay) = M e
2
Recalling (43), i.e. m(r) < const j-_z’ n is given by:

(58) LA
= CONSt —— .
7 VMrn R
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Finally substituting in (57) we have that

£C—a=%)

R4

(59) (56) < const my (l;)

The same method can be applied to the subsets S;, and we finally obtain

- J da J A0, D00, T W) — VIWR)K G — 1)

()

Now we study the second term, in (51). We consider two cases:

203 e

< [const “Ria + Rt

o if|y — B,(t) > R

J del, (e, )V W@ — B.(D) - j dyO, (e, HF @, 1) — F(y, 1)
<

(61) t
wone deeg@c,t) de@(ac,t)m, b,
82
recalling that m;(R) < jok we have
2
(62) (6D < const P, "0

o If |y — B.(t)] < R, using the Lipschitz condition on F'(x,?) we find,

(63) J dacO,(x, ) VWr(x — B,(1)) - J dy0,(x, )(F(x,t) — F(y,1)) < const my(R).

185

Finally, recollecting all these results, we find the following estimate for the time

variation of 1,(R),

2 2—0—%)
(64) ‘d“ttR)lsl £ 4L

&
7 const + const i + i + Rz m(R).

Being [ deWg@)0.(x,t) < [ 0.(x,t), we can observe that
205 20O1R)

(65) my(R) < w(R/2).
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Using (65) and integrating (64) we have

(66) w(R) < uy(R) + A(R) J dipy (1;—3) ,
0

2 2%

where A(R) = const + const 1% tpra Tt 1%

Now we can use an iterative method,

R
w(R) < po(R) + A(R) Jdtﬂt <2>
0

t t t1
< uyR) + 1 (g)A(R) Jdt TARA (g) Jdtl Jdt,ut @) T
0 0 0

We iterate n times, where n — oo as ¢ — 0. We choose % such that A(R27%) is
bounded for all k¥ < n and 14,(R27") = 0. Under these constraints we choose

(67)

1
R~¢f <
(68) T
1-— 2
(69) n = Integer part of —% logs €|, with ¢ € (0,1).

Using (65) and iterating » times we find

(const)"
n!

(70) my(R) < — 0 as ¢ — 0 faster than any power in &.

This means that the vorticity mass becomes very small near the boundary. To con-
clude the proof we give an estimate on the velocity field generated by the vorticity
mass near the boundary,

(71) deK(x 0, )

D

<1/2n J dy0.(y, )y,
D

where D = X(B,(t)|R) — X(B.(t)|a;). We use again the arrangement of the vorticity
mass near the singularity,

(72) deﬁg(% By < const n e,
D
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being MmiPe™" = my(ay-), and using (70) for which m;(ay.) — 0 when e — 0, we obtain

(13) jdyK(x—yw,xw 0 as &—0,
D

i.e. the velocity generated by the fluid particles near the boundary is small as ¢ — 0.
Finally we can prove (21), giving a global estimate of the radial velocity of the fluid
particles going away from the center of vorticity. Recalling (46) and (70), we have
€
(74) dt R+l
+ terms smaller than any power in & when R > const &”.

< const R + const

We have proved that the evolution of a concentrated initial field evolves in a con-
centrated field, because the radial velocity of the fluid particles is very small. As a
matter of fact for R > const &” the last two terms of the right hand side are negligible
and, by using Gromwall Lemma, we obtain (22). O

Remark 2.1. We note that in general the number of steps in the previous
proof depends on the value of o, and it goes to infinity when o — 1.

Moreover we note that if the active scalar has always a definite positive sign, as in
the physical model where it represents a temperature field, we can obtain a con-
centration in average by stopping the iterative procedure at the fivst step as in [15].

We return to the proof of Theorem 2.1. We take the minimal distance between
active scalars R,, >> ¢. At the beginning we have N separated fields and simulate
the influence of other active scalars as an external field. From Theorem 2.2 we find
that these fields remain separated. Then it is easy to prove the localization and the
convergence (14) in the limit of strong concentration. O

In the next section we prove that it exists a minimum distance between active
scalars, in relation to the so called problem of e-collapses.

3 - Point active scalar system

We can study the point active scalar system (12), interesting by itself behind its
physical origin. First we note that it is an Hamiltonian system, with Hamiltonian
function H,

1 & i
(75) H=-5- 3 ajlei -l
1.J51A]
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and conjugate variables x;; and a;x;2, such that

dacil . oOH
(76) @i dt N 8%’

d%iz _ OH
(77 Yat T oy,

The independence of H on time implies the constancy of H. The translation
invariance implies the constancy of M, a quantity proportional to the center of
vorticity B,

N N
(78) M = Zaixi = (Z OL7j>B s
i=1 i=1

the rotation invariance implies the constancy of the moment of Inertia /
N

(79) 1= aaf.
i=1

Furthermore, given the Hamiltonian structure, we could do a qualitative study of the
system (76), as in the case of the point vortex system, studying the explicit solution
for N = 2, the integrability for N = 3, regions of integrability for N = 4 and regions
of chaotic motions.

Here we discuss the existence of the solution for any time for the system of N
ODEs (12). This is not trivial because the singularity of the interaction produces a
divergence when two point particles are in the same position (collapse). When all the
intensities a; have the same sign and o > 0, the conservation of energy forbids any
collapse. For « = 0 we add the conservation of moment of inertia to forbid any col-
lapse. Otherwise they can happen.

We define ¢-collapse as an event in which two vortices arrive at a distance less
than ¢. We want to give an estimate of the probability of occurence of ¢-collapse. We
will prove that the Lebesgue measure of initial conditions leading to a collapse in
finite time vanishes when ¢ — 0.

It is possible to extend to the case o > 0 the machinery discussed in [21] and to
prove that the point particles remain in a bounded region of the plane and the col-
lapses are exceptional. The proof is similar to that discussed in [21], with only a
different choice of the “Lyapunov” function. We sketch it, to remark the difference.
First of all we introduce a regularization of the dynamics defined by (12). The reg-
ularized Green function G.(x) € C>=(R?) is given by

(80) G@) = G(x) = |x|™™ if |x| > ¢,
(81) G.(x) < Gx) Va e R?
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and there exists a constant By, independent of ¢ such that

B
||

(82) Ve € R.

dGy(x)
dx

We obtain a regularized dynamics, defined by the following Cauchy problem for a
system of N ODEs

da(t ud
(83) 921:( ) Vi) aGait), wit)),
=Lt
(84) xit =0) = ;.

It is clear that the dynamics defined by (83) is again Hamiltonian and it coincides
with (12) up to the first e-collapse.

We want to prove that the measure of the initial condition leading to an e-collapse
in (83), is infinitesimal in &.

Following [21] an intermediate result on the boundedness property of the dy-
namics of N concentrated fields, is given by the following theorem

Theorem 3.1. Given a system of N concentrated fields of different signs such

that > a; # 0, where P(N) s the family of all subsets of the first N integers, there
i€P(N)
exists a constant C depending on N, T and a;, independent of ¢ and the initial

condition, such that:

(85) max — sup i@ —a;] < C,

i=1,..., 0<t<T

where xi(t) is the solution of the Cauchy problem given by (83).

We omit the complete proof, it is fundamentally the same proved in [21], using as
Lyapunov function the quantity

N

(86) Z .Gg\aci —.90]'|.

1, j=L,i#]

We have to notice that the main constraint to state this theorem is that

> @i #0,

1€P(N)

generally it is not true for all choices of signs of a;. Moreover, a corollary of this
theorem is
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Corollary 3.1. If > a; #0, forall R and T, there exists R*(T) for which N
i€PQV)
concentrated active scalars, initially contained in X(0|R*) cannot leave X(0|R*(T))

Sor all initial data and & € (0,1), where X(0|r) denotes the circle of radius r around
the origin.

Through this result of boundedness and the invariance of the Lebesgue measure
under the flow generated by (83), we can state the following theorem

Theorem 3.2. Being A(dX) = % the normalized Lebesgue measure
on XN, where X = {x1,...,2n} is the set of initial conditions. Then:
(87) 113(1) X |d7X)<e}) =0,
where
(88) X)) = Igijn oi?ng | (@) — (@)

Hence the collapses are exceptional.

4 - A stability result

We want to extend to the active scalar case the stability results stated in [19] for
the incompressible inviscid fluid in the plane, where the authors found sufficient
conditions for nonlinear stability in norm L; on the whole plane for a vast class of
initial conditions, including patches and non-smooth functions.

It is well known that the classical Arnol’d stability results [1] need the presence of
a boundary and so it can not be applied in the whole plane (for a review see [10], [21]).
Vice versa results of [19] remain valid in our case. They are related to the symmetries
of the problem, i.e. to the constancy of the moment of inertia 7

(89) I= J 220, tyda .

In general in an infinite dimensional space the definition of stability depends
on the norms we choose. In our case we adopt the L; norm and we state the
following

Theorem 4.1. Let be 0 € L., the stationary solution of the active scalar
equation such that it is a monotone non increasing function, with |0(r)| < const =7,



[17] LOCALIZATION AND STABILITY OF ACTIVE SCALAR FLOWS 191

where y > 4, r = |x|. Consider a perturbation in the familiy of isorotational per-
turbations

pP= { 0 € La, |0)| <const r—7, y > 4V,

(90) ’
1@l y) > D} = wl@.y)o,y >} }

where u( - ) 1s the Lebesgue measure.
Then 0 is stable in Ly with vespect to perturbations 0 € P, i.e. Ve > 036, > 0 such
that if

(91) bpc P and ||9 — 0oy <O,
then
(92) sup |0 — 04|, <e,

>0

where 0y is the time evolution of Oy according to the active scalar flow.

The proof is similar to that discussed in [19] and we do not write it explicitly. The
main idea of the proof is that any stationary monotone solution 6 of the active scalar
flow is an absolute minimum for the functional 7 in the class of all isorotational fields
0 € P. We remark that the result formally holds in the geophysical case o« = 1.

From a physical point of view this result is interesting. For o = 0 this is a clas-
sical, already applied, result of stability of oceanic vortices (see for example [3]). For
o =1 it states that a hot patch of active scalar field dipped in a cold background
remains stable in average.

4.1 - Example: stability of sharp fronts

Recent works by Rodrigo et al. (see for example [24]) are devoted to the analysis
of the evolution of sharp fronts for the Surface Quasi-Geostrophic equation. They
were interested in the evolution of a periodic front, given by a smooth periodic
function ¢(x). This means that the initial condition on the scalar function 6(x, y) is
given by

0 -1
(99) { (2, y) Y > ¢x)

0@, y) =0 y<px).

The physical meaning of this condition is the following: the temperature takes two
different values in complementary domains, modelling the evolution of a sharp front.
We can treat the stability problem of such model. The Green function in the periodic
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domain conserves the behavior in the origin and at infinity of the Green function in
the plane (as we can verify by a symmetric summation on the periodic strips of the
domain). We can prove again the nonlinear stability, in the L; sense, of such condition
by using the translational symmetry of the problem in the y direction. We observe
that the variation of the height of the center of mass is a constant of motion, which has
a minimum in the stationary state. Moreover the time evolution is well defined for
0<oa <1, s0the state is stable in average. Here we notice that this result is valid for
all o > 0, including the case o =1 of the Surface Quasi-Geostrophic Equation.
However this is not still true for the case o = 0 of the Euler equation, because in this
case the Green function decays too slowly at infinity.

5 - Limit of vanishing viscosity for concentrated scalar active fields

In recent works (see for example [5]), in relation to the Surface Quasi-
Geostrophic equation, it was studied the Dissipative Quasi-Geostrophic Equation, a
family of equation for an active scalar, where the dissipative term is given by a
fractional power of the Laplacian. These models are defined by

(94) 40+ - V)0 +v(—H0=0 Ae[0,1],v>0.

In ref. [25] was studied the inviscid limit for such models, with smooth initial con-
dition. In this paper we treat the inviscid limit for strong concentrated field in the
special case 4 = 1 of Dissipative Quasi-Geostrophic Equation.

So we study the problem when the initial data are localized and the viscosity
vanishes. We find the following

Theorem 5.1. Consider the wnitial condition 0.(x,0) = ZZV: 0,.i(x,0) where
0..:(x,0) s a function with a definite sign supported in a region Zz;i such that
(95) Ay = supp 0,(x,0) C X(z;]e) , 2(zi]e) N 2(zjle) = 0 of @ #J,
for ¢ small enough. Being 0.(x,t) the time evolution of 0.(x,0) according to

(96) B0+ (- V)0 = vA0, v>0,

given 6 and vy any real positive numbers such that v < voe’ then for all fixed T
smaller than the first collapse time and 0 <t < T,

N
(97) 0@, t) = > b fore— 0,
=1
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where the point centers z;(t) move as:

dzi _
(98) = D VG — ) V= @, -0,
J=Li#j

(99) z(0) = z;,

and G(z) is the Green function of ( — A)(l_“/ D with vanishing boundary condition at
mfinity. If we assume that all the active scalars have the same sign, then we find the
same result making the two limits (strong concentration and vanishing viscosity)
going to zero indipendently.

The last statement can be achieved in analogy to the result in [16]. We obtain the
same limiting dynamical system as in Section 2. However the result is not trivial
because the viscosity perturbation is singular, and a priori it could perturb the limit.

We do not give the explicit proof: it is a combination of the proof of Section 2 and
the technique explained in [17].

Appendix. Surface Quasi-geostrophic equation: a derivation

In this short appendix we recall the physical root of our dynamical system, re-
calling the hypothesis of derivation of the Surface Quasi-Geostrophic Equation
(SQG) firstly studied by Held et al. ([23]) for the 2D spectrum of turbulence and by
Majda et al. ([6]) for the formation of singular fronts. The large scale dynamics of air
mass in mid latitudes of terrestrial atmosphere, is often treated by using the quasi-
geostrophic approximation (see [22]). The constitutive equations of this model, in the
f-plane approximation, are the following:

(100) (0 + u10: + u20,)q = 0,
(101) (8t + U110, + ug&y)e = s(z2)us,
where

1
q = V%-]l// + 0, (8(2) 8zW)a v2 = Oy + 8?/?/7

is the potential vorticity (PV), y is the stream function, 0 the potential temperature,
u = (U1, ug, ug) the velocity field,

s(z) x N?(2),
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being N2(z) the Brunt-Vaisala frequency (see [22]). In the quasi-geostrophic approx-
imation, the stream function can be identified with the pressure field. Moreover, the
vertical derivative of the pressure field is proportional to the potential temperature, i.e.

Oy x 0.

The first equation is the conservation of potential vorticity (PV) and the second is the
conservation of energy. These are the constitutive equations of the Eady model, the
complete derivation from the equations of an inviscid rotating fluid is in [22].
Assuming that the potential vorticity is initially constant (for semplicity null), we
have from the conservation of PV

1
_ 2 A _
(102) q=Vyy+ 0, (S(Z) 8zl//> 0.
If s is a constant normalized to one, we obtain the classical Laplace equation
(103) My = 0.

Recalling for example [2], it is well known that the fractional Laplacian is the op-
erator that maps Dirichlet boundary condition to the Neumann condition. Consider
the following Dirichlet problem for the Laplace equation

(104) My(e,y) =0, xe€R"y>0,
(105) p(@,0) =f(®), xeR",

where f is a bounded smooth function. Then, 7' = ( — M2 maps Dirichlet condition
into Neumann condition:

(106) (— N)f @) = —0,p(@,0).
The proof is simple ([2]): applying T to the Dirichlet condition we obtain:
(107) T(f)@) = -, @, 0),

finding —9d,w(x,y) as the solution of (104)-(105). Applying twice T to the boundary
conditions we have:

(108) T(T(fN@) = T( = Oyy(x, 0)(x) = Oyyy(x,0) = =4, f (),

so, being 7% = —4, then T = v/— 4.

Coming back to our original problem, we recall that § = 9,y. Finally neglecting
vertical motions, i.e. taking ug = 01in (101), we obtain the Surface Quasi-Geostrophic
Equation (SQG) by a simple formal manipulation
(109) O+ w-V)0=0, u=(u,u) =Gy, —0y),

(110) 0=(— V2.
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Finally we notice that our model is a generalization of this equation, initially studied
by Held et al ([23]) in the framework of the 2D spectrum of turbulence (actually
named o — turbulence).
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