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HANI AL

A study of the NS-w model of turbulence

Abstract. Inthispaper,the NS-w model with periodic boundary conditionsisstudied.
This model is derived from the rotational Navier-Stokes equations by regularizing with
an explicit spatial filter of width o the second term of the nonlinearity. Itis first shown that
the regular solution for NS-w system verifies a sequence of energy inequalities called
“ladder inequalities”. These ladder inequalities give rise to series of time-averaged in-
verse square length-scales. These latter quantities are estimated in terms of the
Reynolds number. Moreover, it is shown that the NS-w model follows the usual x5
Kolmogorov power law spectrum for wavenumbers smaller than 1/« inthe inertial range.
However, this model has a steeper power law spectrum for wavenumbers greater than
1/o. Finally, the relation between the NS-w model and the Navier-Stokes equations is
discussed by proving a convergence theorem as the length scale o tends to zero.
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1 - Introduction

This paper is devoted to the mathematical and physical study of the NS-w model
of turbulence

g—l:—uxw-vzlu—i—VP:f in Rt x T3,
—’Mm+u=u inT;,
(1) V-u=V-u=0,
ﬁ;u = +E: 0,
Ty Ty
ut:(]:um.
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In equation (1), w = V x u denotes the filtered averaged vorticity. The boundary
conditions are periodic boundary conditions. Therefore, these equations are con-
sidered on the three dimensional torus T = (R°/7 ;) where T3 = Z*/L , x € T,
and ¢ € ]0, +oo[. The unknowns are the velocity vector field u and the scalar

1
Bernoulli or the dynamic pressure P = p + éuz. The viscosity v, the initial velocity

vector field u™, and the external force f with V - f = 0 are given. In this paper, the
force f does not depend on time.

Asin[3,4, 8,11, 12, 18, 24, 26], the Helmholtz operator is used in the definition of
the variable w. To obtain the NS-w model, the nonlinear term & x w in the Navier-
Stokes-alpha (NS-o) model [8, 7] is replaced by u x w. The NS-o. model has attracted
much interest since it conserves the helicity [26], the Kelvin circulation theorem [14]
and it is frame indifferent [16].

The model described by the system (1) has been introduced in [23] for numerical
simulation purposes. The author in [21] proves the existence of a global attractor A to
this model. In [25], the authors prove the global existence, uniqueness and the higher-
order regularity of the solution similarly to the other alpha models [3, 4, 8,12, 18, 24, 26].

By using the following identities [16],

2) Wxu=u-Vi— (Vi) u

(3) Vu-u)=Va)u+Vu)'a,
the model (1) can be written in the following equivalent form

0 .
6—lz+u~Vﬁ+(Vu)Tﬁvau+Vn:f in Rt x T,
—o?Au+u=u in Ts,

(4) Vu=V-u=0,

fu=fa-o

Ty Ty

Uy = uin’

where 7 = P — u - u. Thus the system (4) is a perturbation of the Modified Leray-
alpha model of turbulence which was introduced in [18]. This paper extends the work
of [1] where the Modified Leray-alpha is studied and a sequence of energy in-
equalities for the unique regular solution of the Modified Leray-alpha is established.
These energy inequalities are called “ladder inequalities”.

The ladder inequalities are studied first for the Navier-Stokes equations in [6]
where the authors showed that for any C* solution (u, p) to the (NSE), the velocity
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part u satisfies the following relation between its higher derivatives,

1d
5 %HN < —vHyi + CNHN||vu||oo+H11\{2¢N1/27
(5) N, 2 Ng2

where Hy = J‘V u| dx and by = J |V “dx.

Ty Ts

These differential inequalities are used in [6] to show the existence of a lower bound
on the smallest scale in the flow. Recently, the ladder inequalities have been used to
study the intermittency of solutions to the Navier-Stokes equations [13]. The ladder
inequalities are generalized to other alpha models in [14, 15]. The ladder inequalities
for the Navier-Stokes equations are based on the assumption that a solution exists
such that the higher order norms are finite. Note that, there is no such needed as-
sumption in the case of the alpha regularization (1) where existence and uniqueness
of a C* solution are showed in [25]. The purpose of this paper is to study ladder
inequalities for model (1) which is a continuation of Theorem 3.4 in [25].

1.1 - Notations

Let LP(T3) and W5P(Tg), s > —1,1 < p < oo be the usual Lebesgue and Sobolev
spaces over Ts5. Bochner spaces C(0,T;X),LP(0,T;X) are defined in the standard
way. To simplify notations, let L? = LP(T3)?, H® = W*2(T5)? and the subscript o
refers to divergence-free and zero-mean functions.

In the whole paper, o« > 0is given. The expression A S Bmeans A < c¢B where cis
a constant. Such a constant ¢ may depend on «, v and L; and may blow-up when «
tends to zero.

1.2 - Maan results

One of the main results of this paper is:

Theorem 1.1. Assumef € C(T35)° and u™ € C=(1s)? such that V - u™ = 0.
Let (u,p) := u*, p*) be the unique solution to problem (1). Then the velocity part u
satisfies the ladder inequalities,

1/d— d—— d——o .
5 (HN +20% —Hyi + 054HN+2> < *V(HNH +20°Hy .2 + 054HN+3)
6) 2\ dt dt dt

R S — 172
+ x|V (Hy +20°Hy g + 0 Hyyo )+ Hy "0y 2 +oPHy oy by a2,
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where

() Hy = JWNE|2dx,Co — 0 and Cy ~2¥ for all N > 1.

Ts

The gradient symbol V¥ here refers to all derivatives of every component of u of
order N in L2(Ts).

Remark 1. As o — 0, Hy — Hy, thus the inequality (5) is obtained.

Another task of this paper is to estimate quantities of physical relevance in terms
of the Reynolds number Re (see (16) below). Since it is important to compare these
estimates with other estimates for different alpha models from [1, 13, 14], these
results are organized in the following Table 1, that is organized as follows.

Table 1. Comparison of various upper bounds for the Navier-Stokes-o, Bardina,
Leray-o. and Modified Leray-o from [1, 14, 15] and NS-w with constant omitted.

NS-« / Bardina ML-o Leray-o / NS-w Eq.

ot Re*/® Re/® Re™/12 (74)
<E> R65/2 Re5/2 R67/3 (72)
(Hy) Ré? Ré ReS/3 (67)
(Hs) -/- Re7 Ré? (65)
£2<K12\/‘r > R€11/4 R65/2 R617/12 (77)
C{id ) Reln Re Reln Re Reln Re (63)
(@)% ReV/4 Re!l/4 REP/2 (75)
<IIWHOO > Re/16 ReO/2 Rel7/12 (76)
(1%,)  Ret®(nRef  ReéH(nRe  Re uv(nRe) (79)

The Estimates in terms of Reynolds number have been given for related models,
including the Navier-Stokes-o, Bardina, Leray-o [14, 15] and Modified Leray-« [1].
To be consistent with these related studies the same exposition is used in this paper.

For simplicity the eqs. (1) will be considered with forcing f(x) to be taken in L? of
narrow band type with a single length scale ¢, (see [13, 14]) where 0 << L, such that

(8) IVl = (]2

The Grashof number Gr, defined below in terms of the forcing, has been used to
express the most important estimates in Navier-Stokes theory. In order to compare
these estimates with the results of Kolmogorov scaling theories [10], it is important
to express these estimates in terms of Reynolds number Re,;s based on the Navier-
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Stokes velocity u. A good definition of this Reynolds number is

Upst -
(9) Reys ==, Uxs =L (|ul:).
where (-) is the long time average
¢
. 1
(10) (9(-)) = Limy_,, 7 Jg(s)ds.
0

Where Lim indicates a generalized limit that extends the usual limits [9].
With fy.s = L73/2||f]| 2, the standard definition of the Grashof number in three
dimensions is

14 3f ms
P2

(11) Gr =

Doering and Foias [5] have addressed the problem of how to relate Re s to Gr. They
have shown that in the limit G — oo, solutions of the Navier-Stokes equations must
satisfy

(12) GrSReéis + Reys.

Using the above relation (12), Doering and Gibbon [13] have reexpressed some
Navier-Stokes estimates in terms of Re,;s. In particular, they showed that the en-
ergy dissipation rate eys = v<||VuHiz>L*3 is bounded above by

(13) ens < et (Reifs + Reys),
and the inverse Kolmogorov length )L,;}\[S = (ens/ )14 is bounded above by
(14) Uihs < cRe.

The relation (12) is essentially a Navier-Stokes result. In [14, Appendix A.1], it has
been shown that this property holds for the Navier-Stokes-alpha model [7].

In this paper, the following relation between Gr and the Reynolds number Re is
established, where Re is based on the smoothed velocity u.

Proposition 1.2. Letf € C°°(T3)3 be of narrow-band type and u e COC(TS)3
such that V -u™ = 0. Let u := u”* be the velocity part of the solution to problem (1).
Then

(15) Gr<Ré* + Re,
where

Ut _ 3 /1= _ _
(16)  Re==—, {U*=L*(|ullj:) = L7( |3 + 2| Vally: + o | 4] 72 ).
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In order to estimate small length scales associated with higher order moments,
the force f is combined with the higher derivative of the velocity [6, 13, 14], such that

(17) Ly =Fy +2:2Fy_ 1 + o*Fy 2,
where
(18) Fy = Hy + 2oy,

the quantity Fy is different from zero and the quantity 7 is defined by
(19) t = v Y(Grin Gr) V2,

where 7 has the dimension of time and it is chosen in this way in order to ensure that
the additional forcing term in (18) becomes negligible with respect to Hy when
Gr — oo (compare [14, Appendix A.2]). The Ly is used to define a set of time-de-
pendent inverse length scales

1
Ly \ &5
(20) KNyr = (M) .
The following result is a consequence of Theorem 1.1 and (15).

Theorem 1.3. As Gr — oo, for N>1, 1<p <N the unique solution to
egs. (1) satisfies

1d y L
(21) sqalvs—3 —N_ 4 Cy,||Vt|| Ly + CveRe(ln Re) Ly
Ly,
and for N =0,
1d 72
(22) 5 730 < —vLn + Oyl *Re(n Re) Ly

The second main result of the paper is the following Theorem and its proof follows
closely to that of the Leray-alpha model in [15].

Theorem 1.4. Let f € C=(T5)® be of marrow-band type and u™ € C>=(T3)?
such that V -u™ = 0. Let u := u* be the velocity part of the solution to problem (1).
Then estimates in term of Reynolds number Re for the length scales associated with
higher order moments solution in o (N > 2), the inverse Kolmogorov length A, and
the energy dissipation rate ¢ are given by

23) (k) < Cla,v, 0, L)N"VNR 127522V (In Re)'/N 1 C Re In Re,
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(24) U SRV,
(25) eSRe3,

Where (-) is the long time average as defined above (10).

The paper is organized as follows: Section 2 is devoted to prove Theorem 1.1.
Section 3 establishes Proposition 1.2 that relates Gr to Re. This relation is used in
Section 4 in order to prove Theorem 1.3. Section 5 is devoted to prove Theorem 1.4.
Section 6 is devoted to study the kinetic energy spectrum E(x) for the NS-w model.
Section 7 relates the solutions of the NS-w equations to those of the Navier-Stokes as
o — 07. Finally, a summary and a discussion of the results are given.

2 - Ladder Inequalities: Proof of Theorem 1.1

The first step in the proof of Theorem 1.1 that has been expressed in Section 1, is
totakeu = u — o®4u as test function in (1). This gives after integrations by parts, the
following energy inequality that corresponds to the case when N =0 in the in-
equality (6)

1d

o) 2 i e+ 22V e ) v (V425 o 7 )

J— 2 S—
< @l lIFll e + o[ Va2 | VEI| 2,

or equivalently by using another integrations by parts combined with (8),

1d

—12 —112 —12 —112 —12 —112
on) 2 (L4294 ) (9 o 202 2 oV )

< (L2 all|if]],
where the following equality is used
ull7: = ||ull72 + 20 Ull72 + o ul|72.
(28) et |72 = |[@][72 + 20% | Va7 + o || ][

Since the NS-w model has a unique regular solution, one can take the N derivative of
(1). This leads, in the sense of distributions, to the following system for all N > 1,

N
avat 9V x @) — v Mu + VVVP = VVF,
(29) V-V =0,

VNut:O = VNui” ,
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where boundary conditions remain periodic and still with zero mean and the initial
condition with zero divergence and mean. Taking VVu as a test function in (29) and
using the higher order relation

(30) IVl = VNG + 202 VY a7 + ot VY a7,
give the following equality:

1d

5 2 IV + 202 VY1 e 4 o | 92,

= (VY G2 + 262 VY 27 + oVl )
+ J VVavy @ x w)dx — o J VVavY (4w x w)dx
(31) Ts Ty
—o? J VN Aavy @ x w)dx + o J VN 4@V (4w x w)dx
T T
+ J VNavNfdx — o? J VN AuVNfdx,
Ts Ts

where the pressure term vanishes as V - VNu = 0.
Thus

1/d-— d—— d——
B} (aHN +2O€2%HN+1 + 064EHN+2> < —V(HN+1 + 2062HN+2 + O€4HN+3)

+ +o?

J VVavy @ x w)dx

Ty

J AVARRS TAVARRT W T w)dx‘

Ty

+o? +at J VN2 VN (Au x w)dx|

Ts

J VNNt (@ x w)dx
Ts

12 e
+Hy / Oy2 - PHy oy / Dy 12,

where the definition of Hy in (7) is used combining with integrations by parts in the
Laplacien terms and in the last term.
The central terms are

(33) NL; =

)

J VVavN @ x w)dx

Ts
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(34) NL; = o J AR TAVARRY0T % w)dx',
e
(35) NL3 = o® J AARE TAVARRY (T W)dx‘
Ts
and
(36) NL, = o J VN 2N (A x w)dx‘.

Ty

These four terms NL;, NLg, NLg and NL4 can be bounded using the following
Gagliardo-Nirenberg interpolation inequality [6]:

Lemma 2.1. Let 1<q,vr<o0, j and m such that 0 <j<m then the
Gagliardo-Nirenberg interpolation inequality is:

where

(37) I¥90]|,< ClIv™w|4lo]}

1 g, (1 m\ 1-a
p d r d q
J J . . d
= < landa == —j——€N*
form_a< and a m@fm J Te

The first nonlinear term NL; is estimated with the Gagliardo-Nirenberg in-
equality [6] by

(38) NL; < en|| V|| Hy, where ¢y = 0 and cy < c2.

Indeed, the nonlinear first term NL; is found to satisfy

NL; =

J VVavy @ x w)dx

Ts

N
< 2NHN1/2 ZHVZEHM |‘VN+17ZEHLW
=1

where p and ¢ satisfy 1/p + 1/q = 1/2 according to the Holder inequality.
The following two Gagliardo-Nirenberg inequalities

9], < e[ v

1Y ]|, < o | YV Vil
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where a anb b must satisfy

1 -1 1 N-1
p 3 23 )
1

q

and a + b = 1 lead to (3R).
In the same way, the other non linear terms NLg, NL3 and NL,4 can be estimated
with Gagliardo-Nirenberg inequality in order to have

(39) NL; < CNOCZHVﬁHOOHNJrl,
(40) NL; < CNOCZHVEHOOHNJA ,
(41) NLy < ot || V| Hy 2,

where cy < ¢2V.
The result (6) then follows.
3 - Proof of Proposition 1.2

Given u = & — o2Au , the Poincaré inequality |ju||;» < L/2r||Vu||,. immediately
leads to

_ L? _
(42) Pl < ulye < g+ 2 ) el
thus
(43) e~

In particular,
(44) Re® = (|alf7e) ~ (lulf.)-

Let us take f as a test function in (1). This gives, by using f which is a divergence free
function that verifies (8) and that is time independent, the following inequality

_ d
(45) IFI72 = Natll g 1 g 1]+ [V | VF | + g @

The following equality (see [6]),

(@l = (2|2
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combined with an integration with respect to time of (45) gives

t

t
(46) S Jllullizllf\lmdt + J el 2 1Fll ot + [l e 0.0,22) 1]z
0 0

Thus, given that ||u|| Lo (0p12) < k< oo ([21]), equation (46) yields to

(47) 12 S (lael72) + (el ).
This implies

(48) Gr S Reé? + Re.

Remark 2. Inreference [17], it has been shown that this relation holds for a
generalized alpha model.

4 - Proof of Theorem 1.3.

Let
Fy=Hy +7dy

where the quantity 7 is defined by
7= v 1(Grin Gr)_l/z.

Theorem 1.1 gives

1/d-— d-—— d—
5 <%HN + 2&2%HN+1 + “4%HN+2> < —v(Hyi1 +20%Hy 2 + o' Hy3)

(49) + Cy |V (Hy + 262 Hy o1 + o' Hyrz)

—1/2 —1/2 —1/2
+Hy / oN'2 + 202 Hy / Oy 1Y%+ o Hy oo / Dy "2
By adding and substracting the following time independant quantity
(50) vi? (¢N+1 + 205245N+2 + 064<I)N+3),

inequality (49) turns into an inequality for the F'y which is given by

1/d— d d
(51) B (thN + 20CZ%FNH + 514thN+2> < _V(FN+1 + 20°Fy 2 + 054FN+3)

+Cn|| V| (Fy +20%F o1 + o' Fyi2) + Xy
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where

—1/2 —1/2 7 ——1/2
(52) Xy =Hy "oy'* + 20" Hy 11 / qjNHI/2 + o Hy 2 ‘15N+21/2
+ 22Dy + 2a2€’2v12¢N+1 + oc4€’2v12¢N+2.

Young inequality implies

Xy < E]H—N + (% + véz) 12¢N}

S 1
(53) + 207 [gHNH + <% + v€2> fzquH}

41|97 — 1 AR
+ o |:§HN+2+ (%—FVK )T ¢N+2]~
To make the coefficients of Hy and >@y equal, choose g to satisfy

1
(54) g——— 20072 =0,

that gives

_ / 1
(55) g =2v02 24 /1204 +5

Now let =1 GrinGr)™"? as Gr— co. Hence g~t1! as Gr— .
Consequently

(56) = 2(Grin Gr)'? < Cr2W(Reln Re) as Gr — 0,
and
1 _ -

(57) Xy < 2 (Fy + 20 F a1 + o' Fy o).
Thus

1d _ 9
(58) 5 gLy < —vLyit + Cxa|| V| Ly + Cve*Re(n Re) Ly,
where

Ly =Fy +20*Fy 1 + o' Fy .
The inequality (21) follows from the inequality

141
L 4
(59) Ly = 1oy

=3 1
Ly,

that can be showed in the same way as Lemma 1, p. 75 in [14].
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When N = 0 the only difference is that the nonlinear term vanishes and in the
same way the following inequality holds

(60) % %Lo < —vLy + Cv¢2Re(In Re) Ly

which is (22).

5 - Estimates in terms of Reynolds number: Proof of Theorem 1.4

To obtain length scales estimates let us define the quantities

(LN)W
KNy =\ 75— .
L,

In order to find an estimate for the length scales associated with higher order mo-
ments solution ry o (N > 2), upper bounds for (x5, ,.), (x5 ,) and (|| Va|,,) are first
established. Then the following identity is used

2(N-1)/N_2/N
(61) "?v,o = Knga / Kl,/O

in order to deduce the result.
The first two bounds are obtained by dividing by Ly in Theorem 1.3 and time
averaging to obtain

(62) (12, < Cx v Y| V]|, ) + C¢2Re(In Re)
and
(63) <K§O> < Cf2Re(ln Re).

Then time averaging (27) and using (15) in order to obtain

V(Hy +202H; + o0 Hz) < (1 + o202 (Hy "by112)
(64)

< (4202 (Hy P2
< C(L+ 20234 LRe.
Thus
(65) (H;) < Ré.

The same estimate holds true for H; and Hs, hence

(66) (Hi) S Ré,
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and
(67) <Fz> S Reé.

Thus (66) implies that the energy dissipation rate ¢ = V<||Vﬂ||iz )L =3 is bounded
above by

(68) eSRe,
and the inverse Kolmogorov length /1;1 = (¢/ )14 is bounded above by
(69) 0  SRe.

Inequality (67) combined with the following interpolation inequality

r s
s

(70) Hy <Hy_ " Hy. ",
that is

N 2 ___ 1

H{ < H,* H3*®
(1) e

H; <H,’ Hs",

are used to improve (66) and (67) in order to obtain

(72) (M) < (Ho)(H;) S RSP,
and |
(73) (H) < (H)(H;) s RS,

Inequality (72) improves the above result (69) for the inverse Kolmogorov length to
(74) O SRe™2,

This also implies that the energy dissipation rate ¢ = v(|| Vﬁ“iz )L =3 is also bounded
by Re™/ but all the improved estimates blow up when o tends to zero.

The following estimates for ( ||&|| ) and (|| V|| ) are obtained from (65), (72) and
(73). In fact, Agmon’s inequality [9]

el < el el e
says that
- (i) < (F)H(H:)
S ReéPZ,
and
6) (IVale) < (H)"(H)"

< R617/12.
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The estimate for (%) is obtained directly from the || V||, term in the ladder in-
equalities (6) as opposed to the v—! Hﬁ||§O term in [14]. Inequality (62) combined with
(76) gives that

(77) €2<K?VJ> < Cla,v,0,L)Re'"2 4 CRe(In Re).
By writing
) ()
(78) | (N-1)/N 1N
< (KR) (150) "

and then using the above estimates for (1, ) and (i), one gets for N > 2,
(19) (%, < Cl,v,t, L)Y VNReT12-512N(1n Re)'/N 1 C Re In Re.

Note that when N = 1 the following inequality holds ¢*(x3 y) < C Re In Re.

6 - Energy spectrum

The goal of this section is to study the energy spectrum for the NS-@ model. It is
shown in this section that the NS-w model follows the usual x5 Kolmogorov power
law spectrum for wavenumbers smaller than 1/o in the inertial range. This provides
physical fidelity to the model on the large scales.

Following [4], let

(80) u, = Z fjel™
K<|j|<2x
(81) o= Y el
K<|j|<2x
(82) wl=> u, ul=>y u,
Jj<wk J>2x
(83) or =) o, o] =) o,
j<w =
where
b, = (c)e V% dx
¢’ 2 L) ng
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denote the Fourier coefficients of the function ¢. The energy balance for the NS-@ is
given by

1d
(84) é% (um urc) + V<_Aumu;<) =T, — T,

where
Ty = (07 %05 ) — (a4 u7) x (@ + 7)),

Time-averaging equation (84) gives

(85) V(= Ay, u,e)) = (Tye) — (Ta).
Let
(86) B =) iyl

|l=r

Consequently, (85) implies

2K
(87) WCEL) ~ v [ RN ~ (1) ~ (Ta).
As long as
(88) i B () < (T}
and
(89) (Ty) ~ (Tac),

the wavenumber x belongs to the inertial range, see [4, 8] for more details. Since
there are two different velocities in the NS-w model, the average velocity on an eddy

1 .
of length size can be evaluated in three different ways:

(90) U;({) - <l}3 u - uK> ~ K%E:(K)%7
1,
Lpu (o)
(91) U;: ig u, -1, NL(K)Z”
L ) (1 + o2K2):
3
1 (. KEEE (1)
2 _ [ — . ~  a N
(92) U: = <L3, u, uK> Tt a2

I3

Then, for different definitions of U, the corresponding turnover time 7 for an
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eddy of the size % will be (cf. [4, 20])

A+t

ISR ()

(93) "

K

n=0,1,2.

Following [4], as u is the velocity of the model, by analogy with the definition of the
Navier-Stokes energy dissipation rate ¢y, the corresponding mean energy dis-
sipation rate of the variable u of the model (1) is given by,

e = v(||Vu|7.)L 3.

Therefore, the energy dissipation rate &* is
1 2K
(94) = o J EY(ndn ~

K

5 3
K:E (K
no

(1 + o2x2)2
which implies the following spectral scaling law for the NS-w inertial range,

8"§(1 + oc21c2)g

(95) B (1) ~ ;
K3
o E .
Thus, the kinetic energy spectrum £ () = “7(@2 of the variable @ is given by
(1 + o2x2)
_ Pk 1
(96) EY(k) ~—  foroa<-—,
K3 K
— PR 1
(97) Eg(K) ~ for « > —.
: K 3 K

Therefore, this energy spectra provides physical fidelity to the model on the large
scales and has a much faster decaying power law KZH%, (n = 0,1,2) than the usual
Kolmogorov x°/3 power law, in the subrange xo > 1. This signifies that the NS-w
model, like the other alpha models [3, 4, 8, 18], is a good candidate subgrid scale
model of turbulence.

Table 2. Energy spectra for the Navier-Stokes-o, Bardina, Leray-o and Modified
Leray-o from [3,4,8,18] and NS-w based on the eddy turnover time 2.

NS-« / Bardina / ML-a Leray-« / NS-w Eq.

ol

E¥(x) for o > % K3 K™ 97)
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In Table 2, we compare the energy spectra E*(x), for o. > % ,for the NS-w with the

energy spectra of Navier-Stokes-o, Bardina, Leray-o and Modified Leray-o models
[3, 4, 8, 18]. The energy spectra here is based on the eddy turnover time 72 which is
obtained by relation (93) for » = 2. The decay of the energy spectra for the NS-w is

K3 for o > %, which is equal to that of Leray-o« model [4]. Nevertheless, it has been
shown in [3, 8, 18] that for Navier-Stokes-o, Bardina, and Modified Leray-«, the

1
power laws for the energy spectra are x—2 for o > =

7 - Accuracy and limit consistency of the NS-w model

In the first part of this section, the accuracy of the NS-w model as o — 0% is
studied by computing the model’s consistency error. The following definition of
consistency error can be found in [26].

Definition 7.1. The consistency error of a Navier-Stokes regularization is
the residual of a Navier-Stokes solution in the model.

In order to obtain the consistency error of the NS-w model, the Navier-Stokes in
its rotational form is rewritten to make the NS-w model appear on the LHS as
follows

ou _ _
(98) E—uxw—vdu—i—VP—f:uxw—uxw.
Thus, the model’s consistency error is 73 = u x w —u x w. A simple calculation
implies that

(99) Ty = U X 02,

Thus, ||t5 2 = O(«?). Hence as the other alpha models [22, 24, 26], the NS-w model
has O(o) accuracy.

The next theorem shows that using energy estimates, one can extract sub-
sequences of the weak solutions of (1) which converge, as « — 0% in the appropriate
sense to a Leray-Hopf weak solution of the three-dimensional Navier-Stokes
equations. For the definition and existence of weak solutions of the Navier-Stokes
equations see, for instance, Refs. [22, 24, 27].

Theorem 7.2. LetT >0, uy € Li, and denote by (u,, P,) the weak solution of
(1). Then, there is a subsequence (u“j, P,) and a couple (w, P) such that, as o; — 0"
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(1) u, — u weakly in L*0,T;H}) NL¥0, T;L?),
.. . 1
(1) u,, — u strongly in LU0, T;L?) for all q< 30,

(ii)) P, — P weakly in Li(0,T; W (T3)).

Furthermore, the couple (u,P) is a Leray-Hopf weak solution of the rotational
Nawier-Stokes equations

100 8—u—uxw—vAquVP:f m RY x T,
ot

(101) V-u=0,
with itial data ui—g = ug, which satisfies the energy inequality
t

C
(102) w5 v [ulfpds < [ 171+ ol
0 0

Sfor almost every t € [0, T].

Proof. The proof of Theorem 7.2 follows the lines of the proof of the Theorem 4
in [24]. First, one needs to find estimates independent from «. The weak formulation
of (1) can be written as

T
J<%»(ﬂ> — (uy x Wy, 0) + v(Vu,, Vo) — (P,,V - p) dt
0

(103) .
_ J(f, pydt  forall p e CX(0,T] x (Ty)).
0

By taking u as a test function in (103) and using the fact that the curl of two vectors is
perpendicular to each of them, one finds that the solution of (1) satisfies the energy
equality

1d

(104) 5 %|

2 2
a7z + vllaally = (Frus)

which implies after using Cauchy Schwarz and Young inequality the following in-
equality

t t
C
(105) s+ [ s < [ 1015 ds + o
0 0

for almost every ¢ € [0, T].
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Notice that the above estimates are formal and can be made rigorous by using the
Galerkin approximating scheme and then passing to the limit by using an Aubin
compactness theorem (see, for example, [2, 7, 22]). The right hand side in (105) is
bounded by a constant C which is independent from «. Therefore u, belongs to the
energy space L>([0, T];L*) N L([0, T]; H}) and w, € LA([0, T; L*) uniformly with
respect to . Recall that ||@,||%, < ||w. | hence

(106) w, € L*([0,T];L?) uniformly w.r.t o.

Then a standard interpolation argument yields to

(107) u, € L$(0,T;L%) uniformly w.r.t o.

The above inequality (107) combined with (106) and Holder inequality implies that
(108) u, X W, € L0, T;L})  uniformly wr.t o.

This gives by using the Sobolev embedding Li— H ™ that

(109) w, X W, € L0, T;H ) uniformly w.r.t o.

Equations (1) implies that the pressure term P, verifies the following equation
(110) APy =V - (uy X Wy),

consequently the classical elliptic theory combined with (108) implies that
(111) P, € L¥0, T;W'"(Ty))  uniformly w.r.t o

Equations (1) combined with (109) implies that

8u%7.

(112) o € L0, T;H ™) uniformly w.r.t o.

Thanks to the Aubin-Lions compactness Lemma [28], a subsequence (o, o, Pyy)
and a triplet (u,w, P) can be found such that the following properties hold when
o — 07

(113) u, —*u  weakly" in L*(0, T;L?),
(114) u, —u weakly in L?(0, T;H},) N L%(O, T;Llif_o),
(115) w, —w  weakly in L*0,T;L?),
8u“, . 5 _9
(116) 815/ — ?9—12 weakly in L0, T; H 190)7

(117) P, —P  weakly in Li(0, T; Wi(Ty)),
(118) u, —u  strongly in L*0, T;L?).



[21] A STUDY OF THE NS-w MODEL OF TURBULENCE 171

Thus (107) combined with (118) yields to

(119) U, —u strongly in L9(0, T; LY) for all ¢ < 1§0
Moreover, it is not difficult to deduce that

(120) W, — w weakly in L?(0, T; L?),

and consequently

(121) Uy X Wy, — U X W weakly in L4(0,T;L?), for all g< g

The above established convergences are clearly sufficient to take the limit in the
weak formulation (103) and to conclude that (u, P) satisfies the weak formulation of
the rotational Navier-Stokes equations

T
J<%,cﬂ> — @ xw,p)+v(Vu, Vo) — (P, V- ) dt
0
(122) .
= J<f, o) dt for all p € C([0, T x (T3))%.
0

Notice also that every weak solution satisfies the energy equality (104) and hence the
energy inequality (102) follows by passing to the lim inf as « — 07, see in [24] for
more details. O

8 - Discussion

The NS-w model considered in this paper is derived from the rotational Navier-
Stokes equations by regularizing with the Helmholtz operator the second term of the
nonlinearity. This model is a modification of the Navier-Stokes-alpha model and can
also be seen as a perturbation of the modified Leray alpha. The ladder inequalities
for this model are established and length-scale estimates are given in terms of the
Reynolds number. All these estimates are listed in Table 1. These estimates coincide
with the estimates to the Leray-alpha model given in [15]. The estimate for <K?V_O> is
obtained directly from the ||V#|| term in the ladder inequalities (6) different from
the v~! ||ﬁ||§O term in [14]. Moreover, it has been shown here that the Energy spectra
of the NS-w model decays like the Leray-o and it decay faster than the Navier-
Stokes-alpha model for ax > 1. In order to overcome the fact that the inertial range
of the NS-w is shorter than the one of the Navier Stokes equations, one may consider
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the following regularization of the Navier Stokes equations based on the numerical
studies of Kim et al. [19] for the NS-of model (0 <f <o)

ou _ 2 — . +
_ — YV — = 7‘7
S ouXE 1(1 ﬂA)Au+VP f  inR* x T,
—?Mm+u=u inT;,
(123) V-u=V-u=0,
fi;u:fi;ﬁzo,
Ts Ts
ut:():um.

The above equations (123) contain a dispersive term, of energetic origin, with
coefficient o, and a dissipative term with coefficient f ([19]). Therefore, it is
normal to call the above equations the NS-wp. It is clear that the NS-wf model
verifies the same mathematical proprieties as the NS-w, in particular, the NS-wf
model admits a unique solution verifying the length scale estimates proved above
for the NS-w.

There are many different alpha models that have the same properties of ex-
istence, uniqueness, regularity and consistency. In order to continue the comparison
between these models and decide which model offers a better computational large
eddy simulation model of turbulence, it remains to establish sharp estimates for the
dimension of the attractor of NS-w model. Then determine the alpha model that
reduces more the number of freedom degrees in the turbulent flow.

References
[1] H. ALl Ladder theorem and length-scale estimates for a Leray alpha model of
turbulence, Commun. Math. Sci. 10 (2012), no. 2, 477-491.
[2] H. ALl Large eddy simulation for turbulent flows with critical regularization,
J. Math. Anal. Appl. 394 (2012), 291-304.
[3] Y. Cao, E. M. LuNasiN and E. S. TitI, Global well-posedness of the three-

dimensional viscous and inviscid simplified Bardina turbulence models,
Commun. Math. Sci. 4 (2006), 823-848.

[4] A. CHEeskipov, D. D. HoLMm, E. OLsoN and E. S. Tit1, On a Leray-o model of
turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), 629-
649.

[5] C. R. DoERrING and C. Foias, Energy dissipation in body-forced turbulence, J.

Fluid Mech. 467 (2002), 289-306.



(23]

(6]

(7]

(8]

(9]
[10]
[11]
[12]
[13]
(14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

Q

= G

=

A

A STUDY OF THE NS-w MODEL OF TURBULENCE 173

. R. DoerING and J. D. GIBBON, Applied analysis of the Navier-Stokes

equations, Cambridge University Press, Cambridge 1995.

Foias, D. D. HoLM and E. S. T1TI1, The three dimensional viscous Camassa-
Holm equations, and their relation to the Nawvier-Stokes equations and
turbulence theory, J. Dynam. Differential Equations 14 (2002), 1-35.

Foias, D. D. HoLm and E. S. Tit1, The Navier-Stokes-alpha model of fluid
turbulence, Phys. D 152/153 (2001), 505-519.

Foias, 0. MANLEY, R. RosA and R. TEMAM, Navier-Stokes equations and
turbulence, Cambridge University Press, Cambridge 2001.

FriscH, Turbulence. The legacy of A. N. Kolmogorov, Cambridge University
Press, Cambridge 1995.

. GERMANO, Differential filters for the large eddy numerical simulation of

turbulent flows, Phys. Fluids 29 (1986), 1755-1757.

J. GEURTS and D. D. HoLm, Leray and LANS-o modelling of turbulent
mixing, J. Turbul. 7 (2006), Paper 10, 33 pp. (electronic).

D. GiBBoN and C. R. DOERING, Intermittency and regularity issues in 3D
Navier-Stokes turbulence, Arch. Ration. Mech. Anal. 177 (2005), 115-150.

D. GiBBoN and D. D. HoLM, Length-scale estimates for the LANS-o. equations
m terms of the Reynolds number, Phys. D 220 (2006), no. 1, 69-78.

D. GiBBON and D. D. HoLMm, Estimates for the LANS-o, Leray-o and Bardina
models in terms of a Navier-Stokes Reynolds number, Indiana Univ. Math. J.
57 (2008), 2761-2773.

L. GUERMOND, J. T. ODEN and S. PRUDHOMME, An interpretation of the
Navier-Stokes-alpha model as a frame-indifferent Leray regularization,
Phys. D 177 (2003), no. 1-4, 23-30.

. Howst, E. LUNASIN and G.TSOGTGEREL, Analysis of a general family of

reqularized Navier-Stokes and MHD models, J. Nonlinear Sci. 20 (2010),
no. 5, 523-5617.

A. Tuyin, E. M. LuNasiN and E. S. Tit1, A modified-Leray-o. subgrid scale
model of turbulence, Nonlinearity 19 (2006), 879-897.

T.-Y. Kim, M. CasSIANI, J. D. ALBERTSON, J. E. DoLBow, E. FRIED and M. E.

GURTIN, Impact of the inherent separation of scales in the Navier-Stokes-ofs
equations, Phys. Rev. E (3) 79 (2009), no. 4, 045307, 4 pp.

H. KRAICHNAN, Inertial ranges in two-dimensional turbulence, Phys. Fluids
10 (1967), no. 7, 1417-1423.

. LAYTON, Existence of smooth attractors for the Navier-Stokes-omega model

of turbulence, J. Math. Anal. Appl. 366 (2010), no. 1, 81-89.

. LAYyTON and R. LEWANDOWSKI, A high accuracy Leray-deconvolution model

of turbulence and its limiting behavior, Anal. Appl. (Singap.) 6 (2008), no. 1,
23-49.

. Layron, C. C. ManicA, M. NEDA and L. G. REBHOLZ, Numerical analysis

and computational comparisons of the NS-alpha and NS-omega regulariza-
tions, Comput. Methods Appl. Mech. Engrg. 199 (2010), 916-931.

. LAayToN and R. LEWANDOWSKI, On a well-posed turbulence model, Discrete

Contin. Dyn. Syst. Ser. B 6 (2006), no. 1, 111-128 (electronic).

. LAyToN, I. STANCULESCU and C. TRENCHEA, Theory of the NS-w model: a



174 HANTI ALI [24]

complement to the NS-a model, Commun. Pure Appl. Anal. 10 (2011), no. 6,
1763-1777.

[26] L. G. REBHOLZ, A family of new, high order NS-o models arising from helicity
correction in Leray turbulence models, J. Math. Anal. Appl. 342 (2008), no. 1,
246-254.

[27] R. TeEMAM, Navier-Stokes equations. Theory and numerical analysis, North-
Holland, Amsterdam 1984; reedited by AMS Chelsea Publishing, Providence,
RI 2001.

[28] W. WALTER, Differential and integral inequalities, translated from the German
by L. Rosenblatt and L. Shampine, Ergebnisse der Mathematik und threr
Grenzgebiete, Band 55, Springer-Verlag, New York-Berlin 1970.

HaNT ALT

MAP5, CNRS UMR 8145
Université Paris Descartes

75006 Paris, France

e-mail: hani.ali@parisdescartes.fr



