EDOARDO BALLICO # Finite defective subsets of projective spaces **Abstract.** We study finite sets $S \subset \mathbb{P}^r$ such that $h^1(\mathcal{I}_S(m)) > 0$ and either $\sharp(S) \leq 4m + 2r - 15$ or $\sharp(S) \leq mr + 1$ and a large subset of S is in linearly general position. Keywords. Postulation of finite sets, Hilbert function, linearly general position. Mathematics Subject Classification (2010): 14N05. #### 1 - Introduction In [3] A. Couvreur proved how to compute the minimal distance of the dual of the code obtained by evaluating all the homogeneous polynomials of degree m in r+1 variables at a finite subset S of \mathbb{P}^r . In [1] we considered the following classical question. Question 1. Fix positive integers r, m, z such that $r \geq 2$. Describe all subsets $S \subset \mathbb{P}^r$ such that $\sharp(S) \leq z$ and $h^1(\mathcal{I}_S(m)) > 0$. For arbitrary r, m, z, Question 1 is hopeless. As in [1] we take z not too large with respect to m, r (in [1] with z = 4m + r - 5 and a few other assumptions). In this paper we prove the following results. Theorem 1. Fix integers $m \geq 2$, $r \geq 9$ and $8m \geq r + 22$. Let $S \subset \mathbb{P}^r$ be a finite subset such that $\sharp(S) \leq 4m + 2r - 15$ and $\sharp(S \cap M) \leq 4m - 5$ for each plane Received: July 12, 2012; accepted in revised form: April 10, 2013. The author was partially supported by MIUR and GNSAGA of INdAM (Italy). M. We have $h^1(\mathcal{I}_S(m)) > 0$ if and only if there is a hyperplane $H \subset \mathbb{P}^r$ such that $h^1(\mathcal{I}_{S \cap H}(m)) > 0$. We recall that a zero-dimensional scheme $Z \subset \mathbb{P}^r$ is said to be in linearly general position if for each $t \in \{1, \ldots, r-1\}$ we have $\deg(Z \cap M) \leq t+1$ for every t-dimensional linear subspace $M \subset \mathbb{P}^r$. Theorem 2. Fix integers $m \geq 6$ and $r \geq 10$. Let $A, B \subset \mathbb{P}^r$, $r \geq 3$, be finite subsets such that $A \cap B = \emptyset$ and A is in linearly general position. Set $S := A \cup B$. Assume $\sharp(B) \leq 8m - 19$, $\sharp(B) < 1 + (m+1)(r+1-\lfloor (r+2)/2 \rfloor)/2$, $\sharp(S) \leq mr+1$, $\sharp(S \cap H) \leq 4m + r - 6$ for each hyperplane $H \subset \mathbb{P}^r$ and $\sharp(S \cap M) \leq 4m - 5$ for each plane $M \subset \mathbb{P}^r$. We have $h^1(\mathcal{I}_S(m)) > 0$ if and only if there is $W \subseteq S$ as in one of the following cases: - (a) $\sharp(W) = m + 2$ and W is contained in a line; - (b) $\sharp(W) = 2m + 2$ and W is contained in a plane conic; - (c) $\sharp(W) = 3m$ and W is the complete intersection of a degree 3 plane curve and a degree m surface; - (d) $\sharp(W) \geq 3m+1$ and W is contained in a degree 3 plane curve; - (e) $\sharp(W) = 3m + 2$ and W is contained in a reduced and connected degree 3 curve spanning \mathbb{P}^3 . Obviously $\sharp(A\cap W)\leq 2$ in case (a), $\sharp(A\cap W)\leq 3$ in cases (b), (c), (d) and $\sharp(A\cap W)\leq 4$ in case (e). If $A\subset S$ and $h^1(\mathcal{I}_A(m))>0$, then $h^1(\mathcal{I}_S(m))>0$. Hence the "if"part of Theorems 1 and 2 is obvious. If $\sharp(S)\leq 4m+r-5$, then Theorem 1 is true by [1], Theorem 1. We will use in an essential way the *statement* of [1], Theorem 1. Any improvement of [1], Theorem 1, would hopefully give a corresponding improvement of Theorem 1 and of Theorem 2. Proposition 1. Fix integers $r \ge 10$ and $m \ge 6$. Let $S \subset \mathbb{P}^r$ be a finite subset such that $\sharp(S) \le 4m + 3r - 10$, $\sharp(S) < (m-2)(r+1)/2 + m/2 + 3$, $\sharp(S \cap M) \le 4m - 5$ for each plane $M \subset \mathbb{P}^r$ and either $\sharp(S) \le 12m + 2r - 47$ or $\sharp(S) < r(m-1) - \lfloor (r+2)/2 \rfloor (m-4) + 2m - 4$. Then there is a hyperplane H such that $h^1(H, \mathcal{I}_{S \cap H}(m-1)) > 0$. Proposition 1 is the first possibility: we could fix $t \in \{1, ..., m-2\}$ and ask $h^1(H, \mathcal{I}_{S \cap H, H}(t)) = 0$ for every hyperplane H (the case t = 1 is equivalent to the definition of linearly general position ([4])). Remark 1. Results like Theorems 1 and 2 or Proposition 1 are interesting for arbitrary zero-dimensional schemes, not just for finite sets. In the applications on Goppa codes often zero-dimensional schemes must be used. When r=2 everything is fine for arbitrary zero-dimensional schemes ([5]). The cases r=3 and r=4 of our proof of [1], Theorem 1, heavily use that S is reduced. Below, the proofs of Theorems 1 and 2 and of Proposition 1 do not use that S is reduced, except that we heavily use the statement of [1], Theorem 1. ## 2 - The proofs Lemma 1. Fix integers r, e, m such that $r \ge 6$ and $3 \le e \le m/2$. Then (1) $$e + e(4(m-e) + r - 6) > 4m + 3r - 18.$$ Proof. Set $\psi(t) := t(4(m-t)+r-5)$. The function ψ is increasing in the interval $0 \le t \le m/2$. Hence it is sufficient to prove the lemma when e=3. We have 12m+3r-36-15>4m+3r-18, because m>6. Proof of Theorem 1. Since $8m \ge r + 22$, we may assume $m \ge 4$. If r=9, then Theorem 1 is true by [1], Theorem 1. Hence we may assume $r\geq 10$. We cannot use induction on m and we do not use induction on r, but only use [1], Theorem 1, in \mathbb{P}^k , $2\leq k\leq r-1$. If $A\subset S$ and $h^1(\mathcal{I}_A(m))>0$, then $h^1(\mathcal{I}_S(m))>0$. Now assume $h^1(\mathcal{I}_S(m))>0$ and that $h^1(\mathcal{I}_{S\cap H}(m))=0$ for every hyperplane $H\subset \mathbb{P}^r$ (i.e. $h^1(H,\mathcal{I}_{S\cap H,H}(m))=0$ for every hyperplane $H\subset \mathbb{P}^r$). Taking a subset of S if necessary we may assume $h^1(\mathcal{I}_A(m))=0$ for every $A\varsubsetneq S$. With this assumption we need to find a contradiction. We may also assume $\sharp(S)\ge 4m+r-4$ ([1], Theorem 1). Set $S_0 := S$. Let $H_1 \subset \mathbb{P}^r$ be a hyperplane such that $a_1 := \sharp (S_0 \cap H_1)$ is maximal. Set $S_1 := S_0 \setminus S_0 \cap H_1$. For each integer $i \geq 2$ define recursively the non-negative integer a_i , the hyperplane H_i and the set $S_i \subseteq S_{i-1}$ in the following way. Let H_i be any hyperplane such that $a_i := \sharp (H_i \cap S_{i-1})$ is maximal. Set $S_i := S_{i-1} \setminus S_{i-1} \cap H_i$. The sequence $\{a_i\}_{i\geq 1}$ is non-increasing. Since any r points of \mathbb{P}^r are contained in a hyperplane, if $a_i \leq r-1$, then $a_{i+1} = 0$. For each integer $i \geq 1$ we have an exact sequence $$(2) \hspace{1cm} 0 \rightarrow \mathcal{I}_{S_i}(m-i) \rightarrow \mathcal{I}_{S_{i-1}}(m+1-i) \rightarrow \mathcal{I}_{S_{i-1} \cap H_i, H_i}(m+1-i) \rightarrow 0$$ (often called the Castelnuovo's sequence or the Horace's lemma). By [1], Remark 1, there is an integer $i \geq 1$ such that $h^1(H_i, \mathcal{I}_{S_{i-1} \cap H_i, H_i}(m+1-i)) > 0$. Let e be the minimal such an integer. Notice that if $i \geq m+2$, then $h^1(H_i, \mathcal{I}_{S_{i-1} \cap H_i, H_i}(m+1-i)) > 0$ if and only if $S_{i-1} \cap H_i \neq \emptyset$. Hence $e \leq m+2$. First assume e=m+2, then $\sharp(S)\geq (m+1)r+1$. Since $r\geq 5$ and $m\geq 4$, we have (m+1)r+1>4m+2r-15, a contradiction. Now assume e=m+1. Since $h^1(H_{m+1},\mathcal{I}_{S_m\cap H_{m+1},H_{m+1}})>0$, we have $a_{m+1}\geq 2$. Hence $\sharp(S)\geq rm+2$. Since $m\geq 4$ and $r\geq 6$, by induction on r we check that rm+2>4m+2r-15, a contradiction. Hence we may assume $e\leq m$. Since $h^1(H_1, \mathcal{I}_{H_1 \cap S, H_1}(m)) = 0$ by assumption, we have $e \geq 2$. - (a) Since $e \leq m$, it is easy to check that $a_e \geq m+3-e$ and that equality holds if and only if there is a line $D \subset H_e$ such that $S_{e-1} \cap H_e \subset D$ ([2], Lemma 34). Let $U \subseteq H_e$ denote the linear subspace of H_e spanned by the set $S_{e-1} \cap H_e$. Set $\alpha := \dim(U)$. Since $e \leq m$ and $h^1(H_1, \mathcal{I}_{H_1 \cap S, H_1}(m+1-e)) = 0$, we have $a_e \geq \alpha + 2$. Assume for the moment $\alpha \leq r-2$. Since $S_{e-1} \neq \emptyset$, the set S_{e-2} spans \mathbb{P}^r . Hence there is a hyperplane H of \mathbb{P}^r containing U and at least $r-1-\alpha$ points of S_{e-2} . Hence $a_{e-1} \geq a_e + r 1 \alpha$. Hence $a_i \geq a_e + r 1 \alpha \geq r + 1$ for all i < e. Now assume $\alpha = r-1$. In this case we get $a_i \geq r+1$ for all $i \leq e$, because $a_e \geq r+1$. - (b) In this step we assume $e \ge m/2$. Recall that $a_i \ge r+1$ for all i < e and that $a_e \ge m+3-e$ (step (a)). First assume $e \ge m/2 + 1$. We get $\sharp(S) \ge m(r+1)/2 + 3$. Hence $$8m + 4r - 30 > mr + m + 6.$$ Obviously (3) is false if r = 9. Since $m \ge 4$, we get that (3) is false for r > 9 by induction on r. Now assume e=(m+1)/2. We get $\sharp(S)\geq (r+1)(m-1)/2+(m-1)/2+3$ and hence $$(4) 8m + 4r - 30 > (m-1)(r+2) + 6.$$ Since $m \ge 4$ and m is odd, we have $m \ge 5$. Hence (4) fails if r = 9. Induction on r gives that (4) is false for all $r \ge 10$. Now assume e = m/2. We get $\sharp(S) \geq (m/2-1)(r+1) + (m/2+3)$. Hence (5) $$8m + 4r - 30 \ge (m - 2)(r + 1) + m + 6.$$ If m=8, then (5) fails. Since $r\geq 9$, we see by induction on m that (5) fails for all $m\geq 8$. Hence we only need to check the cases with $m\leq 7$. Since e=m/2, we only need to do the cases (m,e)=(6,3) and (m,e)=(4,2). Assume m=4. Since $8m\geq r+22$, we get $r\in \{9,10\}$. We have $\sharp(S)\leq 4m+2r-15=2r+1$. Since $r\leq 10$, we have $2r+1\leq r+11=4m+r-5$. In this case we may apply [1], Theorem 1. Now assume m=6 and e=3. Since $4m+2r-15=2r+9\geq \sharp(S)\geq (r+1)+(r+1)+a_3$, we get $a_3\leq 7$. Recall that $h^1(H_3,\mathcal{I}_{H_3\cap S_2,H_3}(4))>0$. Since $a_3\leq 2\cdot 4+1$, there is a line $J\subset H_3$ such that $\sharp(J\cap S_2)\geq 6$ ([2], Lemma 34). Hence $a_3\geq 6$. Since S_1 spans \mathbb{P}^r and 6 of its points are contained in a line, the maximality property of a_2 implies $a_2 \ge r+4$. Since $a_1 \ge a_2$, we get $\sharp(S) \ge 2r+14 > 2r+9$, a contradiction. From now on we assume e < m/2. In particular we assume $m \ge 5$ and $m - e \ge 3$. Hence $4(m - e + 1) - 4 \ge 2(m - e + 1) + 2$. (c) Assume $a_e \geq 4(m-e+1) + \alpha - 4$. Since $a_e > 0$, the set S_{e-2} spans \mathbb{P}^r . Hence there is a hyperplane $M \subset \mathbb{P}^r$ containing U and any $r-1-\alpha$ points of S_{e-2} . The maximality property of a_{e-1} gives $a_{e-1} \ge 4(m-e+1)+r-5$. Hence $\sharp(S) \ge$ $e(4(m-e+1)+r-5)+\alpha-r+1 \ge e(4(m-e+1)+r-5)-r+2$. Lemma 1 gives a contradiction if $e \geq 3$. Now assume e = 2. Let $M_1 \supset U$ be a hyperplane such that the integer $m_1 := M_1 \cap S_0$ is maximal among all the hyperplanes containing U. We just saw that $m_1 \geq 4m - 9 + r$. Set $S'_1 := S \setminus S \cap M_1$. For all integers $i \geq 2$ define recursively the integer m_i , the hyperplane M_i and the set $S'_i \subseteq S'_{i-1}$ in the following way. Let M_i be any hyperplane such that $m_i := \sharp (M_i \cap S'_{i-1})$ is maximal and set $S_i' := S_{i-1}' \setminus S_{i-1}' \cap M_i$. If $S_{i+1}' \neq \emptyset$, then $m_i \geq r$. Since $\sharp(S) < m_1 + r$, we get $S_2' = \emptyset$, i.e. $S \subset M_1 \cup M_2$. Let V be the linear span of $S_1' \cap M_2$. Set $\beta := \dim(V)$. Since $m_2 < r$, we have $\beta \le r - 2$. Since $h^1(M_1, \mathcal{I}_{S \cap M_1, M_1}(m)) = h^1(\mathcal{I}_{S \cap M_1}(m)) = 0$, [1], Remark 1, gives $h^1(V, \mathcal{I}_{V \cap S'_1, V}(m-1)) = h^1(M_2, \mathcal{I}_{M_2 \cap S'_1, M_2}(m-1)) > 0$. Since $a_1 \ge m_1 \ge 4m - 9 + r$, $a_2 \ge 4m + \alpha - 8$ and $a_1 + a_2 \le 4m - 15 + 2r$, we get $4m + \alpha \le r + 2$. Since $8m \ge r + 22$, we get $2\alpha \le r - 18$ and hence $r \ge 20$. We have $m_1 + m_2 \ge a_1 + a_2$. Since $a_1 \ge m_1$, we get $m_2 \ge a_2$. Since S spans \mathbb{P}^r , we get $m_1 \ge m_2 + (r-1-\beta)$. First assume $m_2 \ge 4m-8+\beta$. As above we get $2\beta \le r-18$. Since $\alpha + \beta \le r - 2$, there is a hyperplane containing $U \cup V$. Hence $a_1 \ge$ $4m-8+\alpha+4m-8+\beta+(r-2-\alpha-\beta)$. Hence $12m-26+\alpha+r \le 4m-15+2r$, contradicting the inequality $8m \ge r + 22$. Now assume $m_2 \le 4m - 9 + \beta$. By [1], Theorem 1, applied to the integer m-1 and the projective space V we get the existence of an integer $j \in \{1,2,3\}, j \leq \beta$, and a j-dimensional linear subspace N of V such that $\sharp(S_1'\cap N)\geq j(m-1)+2$. Since $\alpha+j+1\leq r-1$, there is a hyperplane of \mathbb{P}^r containing $U \cup V$. We take one such hyperplane, W_1 , such that $n_1 := \sharp(W_1 \cap S)$ is maximal. Since S spans \mathbb{P}^r , we get $n_1 \geq 4m - 8 + \alpha + j(m-1) + 2 + r - 2 - j - \alpha$. Define the hyperplanes W_i , $i \geq 2$, in the following way. Fix $i \geq 2$ and assume defined the hyperplanes W_i , $1 \le j \le i-1$. Let W_i be a hyperplane containing the maximal number of points of $S \setminus (S \cap (\bigcup_{i=1}^{i-1} W_i))$. Notice that if $S \not\subseteq \bigcup_{i=1}^{i-1} W_i$, then $\sharp(S \cap W_{i-1}) - \sharp(S \cap (\bigcup_{i=1}^{i-2} W_i)) \ge r$. Hence $n_i = 0$ for all $i \ge 3$. Using (2) we get $h^1(W_2, \mathcal{I}_{S \setminus S \cap W_1, W_2}(m-1)) > 0$. First assume $\sharp (S \setminus S \cap W_1) \ge 4m - 8 + \beta$. As above we get $2\beta \le r - 18$. Hence there is a hyperplane containing $U \cup V$. Hence $4m - 15 + 2r \ge 4m - 8 + \alpha + 4m - 8 + \beta + (r - 2 - \alpha - \beta)$, a contradiction. Now assume $\sharp(S \setminus S \cap W_1) \leq 4m - 9 + \beta$. By [1], Theorem 1, there are $j' \in \{1, 2, 3\}, j' \leq \beta'$ and a j'-dimensional linear subspace N' such that $\sharp (N' \cap (S \setminus S \cap W_1)) \ge j'(m-1) + 2$. Since $j+j' \leq 6$, $\alpha \leq r/2-9$ and $r \geq 20$, there is a hyperplane E_1 of \mathbb{P}^r containing $4+(r-3-\alpha-j-j')+4m-8+\alpha$, a contradiction. Now assume $j+j'\leq 3$. As above there is a hyperplane E_2 containing $S \setminus S \cap E_1$. Call β' the dimension of the linear span of $S \setminus S \cap E_1$. If $\sharp(S) - \sharp(S \cap E_1) \ge 4m - 8 + \beta'$, then as above we get a contradiction. Now assume $\sharp(S) - \sharp(S \cap E_1) \leq 4m - 9 + \beta'$. By [1], Theorem 1, there are an integer $j'' \in \{1, 2, 3\}, j'' \leq \beta'$, and a j''-dimensional linear subspace N'' of E_2 such that $\sharp (N'' \cap (S \setminus S \cap W_1)) \ge j'(m-1) + 2$. Since $j+j'+j'' \le 3+j'' \le 6$, $\alpha \leq r/2 - 9$ and $r \geq 20$, there is a hyperplane \mathbb{P}^r containing $U \cup N \cup N' \cup N''$. Call F_1 any such hyperplane with $\sharp(S \cap F_1)$ maximal. If $j+j'+j'' \geq 4$, then we get $a_1 \ge 4m - 8 + \alpha + (j + j' + j'')(m - 1) + 6 + (r - 1 - \alpha - j - j' - j'' - 3)$ and hence we get a contradiction. Now assume $j + j' + j'' \le 3$, i.e. j = j' = j'' = 1. As above we get the existence of a hyperplane F_2 containing $S \setminus S \cap F_1$. Call β'' the dimension of the linear span of $S \setminus S \cap F_1$. If $\sharp(S) - \sharp(S \cap F_1) \ge 4m - 8 + \beta''$, then as above we get a contradiction. Now assume $\sharp(S)-\sharp(S\cap F_1)\leq 4m-9+\beta''$. By [1], Theorem 1, there are an integer $j_1 \in \{1,2,3\}, j_1 \leq \beta''$, and a j_1 -dimensional linear subspace N_+ of E_2 such that $\sharp (N_+ \cap (S \setminus S \cap F_1)) \ge j_1(m-1) + 2$. Since $\alpha + j + j' + j'' + 3 + 3 \le r - 1$, there is a hyperplane containing $U \cup N \cup N' \cup N'' \cup N_+$. We get $a_1 \geq 4m - 8 + \alpha +$ $(j+j'+j''+j_1)(m-1)+6+(r-1-\alpha-j-j'-j''-j_1-4)$, a contradiction. (d) From now we assume $a_e \le 4(m-e+1) + \alpha - 5$. By [1], Theorem 1, applied to U we get either the existence of an integer $j \in \{1,2,3\}$ and a j-dimensional linear subspace $N_1 \subseteq U \subseteq H_e$ such that $\sharp (N_1 \cap S_{e-1}) \ge j(m-e+1) + 2$ or the existence of a plane containing at least 4(m-e+1)-4 points of S_{e-1} (we may take $N_1:=U$ if $\alpha \leq 2$ by [2], Lemma 34). In the latter case we may take j=2 and take this plane as N_1 . Set $r_1 := \dim(N_1)$. Let $H_{1,1}$ be a hyperplane containing N_1 and such that $a_{1,1} := \sharp (S_{1,0} \cap H_{1,1})$ is maximal. Set $S_{1,1} = S_{1,0} \setminus S_{1,0} \cap H_{1,1}$. For each integer $i \geq 2$ define recursively the non-negative integer $a_{1,i}$, the hyperplane $H_{1,i}$ and the set $S_{1,i} \subseteq S_{1,i-1}$ in the following way. Let $H_{1,i}$ be any hyperplane such that $a_{1,i} := \sharp (H_{1,i} \cap S_{1,i-1})$ is maximal. Set $S_{1,i} := S_{1,i-1} \setminus S_{1,i-1} \cap H_{1,i}$. The sequence $\{a_{1,i}\}_{i\geq 2}$ is non-increasing. As for the integer a_i we see that $a_{1,i+1}=0$ if $a_{1,i}\leq r-1$. We have an exact sequence similar to (2) with $H_{1,i}$, $S_{1,i}$ and $S_{1,i-1}$ instead of H_i , S_i and S_{i-1} . From this exact sequence we get the existence of an integer $e(1) \geq 1$ such that $h^1(H_{1,e(1)},\mathcal{I}_{S_{1,e(1)-1}\cap H_{1,e(1)},H_{1,e(1)}}(m+1-e(1))>0.$ Since $h^1(H_{1,1},\mathcal{I}_{S\cap H_{1,1},H_{1,1}}(m))=0,$ we have $e(1) \ge 2$. As for e we first see that $e(1) \le m$ and then use steps (a) and (b) to exclude the case $e(1) \ge m/2$. Now assume e(1) < m/2. Let α_1 denote the dimension of the linear span U_1 of $S_{1,e(1)-1} \cap H_{1,e(1)}$. As in step (c) we exclude the case $a_{e(1)} \ge 4(m - e(1) + 1) - 4 + \alpha_1$. Hence we may assume $a_{e(1)} \le 4(m - e(1) + 1) - \alpha_1$ $5 + \alpha_1$. Hence there are an integer $j \in \{1, 2, 3\}$ and a j-dimensional linear subspace $N_2 \subseteq H_{1,e(1)}$ such that $\sharp (N_2 \cap S_{1,e(1)-1}) \ge j(m-e(1)+1)+2$ ([1], Theorem 1). Set $r_2 := \dim(N_2)$. Notice that $S_{1,e(1)-1} \cap N_2 \cap N_1 = \emptyset$, because $N_1 \subset H_{1,1}$ and $e(1) \geq 2$. Hence $N_2 \cap S_{1,e(1)-1}$ and $N_1 \cap S_{e-1}$ are disjoint subsets of S. Since $r \geq 10$, we have $\dim(N_1) + \dim(N_2) \le r - 2$. Hence there is a hyperplane of \mathbb{P}^r containing $N_1 \cup N_2$. Set $S_{2,0} := S$. Let $H_{2,1}$ be a hyperplane containing $N_1 \cup N_2$ and such that $a_{2,1} := \sharp (S_{1,1} \cap H_{2,1})$ is maximal among all hyperplanes containing $N_1 \cup N_2$. Set $S_{2,1} = S_{2,0} \setminus S_{2,0} \cap H_{2,1}$. For each integer $i \geq 2$ define recursively the non-negative integer $a_{2,i}$, the hyperplane $H_{2,i}$ and the set $S_{2,i} \subseteq S_{2,i-1}$ in the following way. Let $H_{2,i}$ be any hyperplane such that $a_{2,i} := \sharp (H_{2,i} \cap S_{2,i-1})$ is maximal. Set $S_{2,i} := S_{2,i-1} \setminus S_{2,i-1} \cap H_{2,i}$. The sequence $\{a_{2,i}\}_{i\geq 2}$ is non-increasing. We have an exact sequence similar to (2) with $H_{2,i}$, $S_{2,i}$ and $S_{2,i-1}$ instead of H_i , S_i and S_{i-1} . From this exact sequence we get the existence of an integer $e(2) \geq 2$ such that $h^{\scriptscriptstyle 1}(H_{2,e(2)},{\mathcal I}_{S_{2,e(2)-1}\cap H_{2,e(2)},H_{2,e(2)}}(m+1-e(2))>0.$ As for e we first see that $e(2)\leq m$ and that $a_{2,e(2)-1} \ge r+1$, and then (step (b)) exclude the case $e(2) \ge m/2$. Now assume e(2) < m/2. Let α_2 denote the dimension of the linear span U_2 of $S_{2,e(2)-1} \cap H_{2,e(2)}$. As in step (c) we see that $a_{2,e(2)} \leq 4(m-e(2)+1)-5+\alpha_2$. Hence there are an integer $j \in \{1,2,3\}$ and a j-dimensional linear subspace $N_3 \subseteq H_{1,e(2)}$ such that $\sharp (N_3 \cap S_{1,e(2)-1}) \ge j(m-e(2)+1)+2$. Set $r_3 := \dim(N_3)$. If $r_1+r_2+r_3+2 \ge r$, then we set s := 3. Assume for the moment $r_1 + r_2 + r_3 + 2 \le r - 1$. Take a hyperplane containing $N_1 \cup N_2 \cup N_3$. And so on. We continue in the same way until we get a linear subspace N_s of dimension $r_s \in \{1,2,3\}$ with $\sharp (N_i \cap (S \setminus S \cap (N_1 \cup \cdots \cup N_{i-1}))) \ge (m - e(i) + 1)r_i + 2 \text{ for all } i \in \{2, \ldots, s\} \text{ and } i \in \{1, \ldots, s\}$ $s-1+r_1+\cdots+r_s\geq r$. Fix an integer $i\in\{1,\ldots,s\}$ such that $e(i)\geq 4$. Since $a_{i,e(i)} > 0$, the set $S_{i,e(i)-2}$ spans \mathbb{P}^r . Hence there is a hyperplane containing N_i and at least $r-1-r_i$ further points of $S_{i,e(i)-2}$. Hence $a_{i,e(i)-1} \ge 2+$ $r_i(m - e(i) + 1) + r - 1 - r_i = r + 3 + r_i(m - e(i))$. Since $a_{i,h} \ge a_{i,x}$ if $2 \le h < x$, we get (6) $$\sharp(S) \ge (e(i) - 2)(r + 3 + r_i(m - e(i))) + r_i(m - e(i) + 1) + 2 + a_{i,1}.$$ Obviously $a_{i,1} \geq r$. Assume for the moment $e(i) \geq 4$ (and hence $m > 2e(i) \geq 8$). Since $r_i \leq 3 < r$, the right hand side of (6) is an increasing function of e(i) in the interval [2, m/2). Hence $\sharp(S) \geq 2(r+1+r_i(m-4)+2)+2(m-4)+r \geq 3r+4m-9$, a contradiction. Now assume the existence of $i \in \{1, \ldots, s\}$ such that $r_i \geq 2$ and e(i) = 3 (and hence $m \geq 7$). If $r_i = 2$ from (6) we get $\sharp(S) \geq (r+2m-3)+2m-4+r$, a contradiction. If $r_i = 3$ from (6) we get $\sharp(S) \geq (r+3m-6)+3m-7+r$, a contradiction. Now assume the existence of an integer $i \in \{2, \ldots, s-1\}$ such that $r_i = 1$ and e(i) = 3. Hence $m \geq 7$. We have $a_{i,3} \geq m$ and $a_{i,2} \geq r-3+m$. Since $H_{i,1}$ contains $N_1 \cup N_2$, we have $a_{i,1} \geq r-5+2m$. Hence $\sharp(S) \geq 2r-8+4m$, a contradiction. Hence from now on we may assume $e(i) \leq 3$ for all i, e(i) = 2, if $2 \leq i \leq s-1$ and $$e(1) = 2 \text{ if } r_1 \neq 1. \text{ Set } \rho := \sum_{i=1}^{s-1} r_i. \text{ We have }$$ (7) $$r - 1 - r_s \le \rho + s - 2 \le r - 1.$$ Since there is a hyperplane containing $N_1\cup\cdots\cup N_{s-1}$, we have $a_{s,1}\geq\sum\limits_{i=1}^{s-1}\left(r_i(m-e(i)+1)+2\right)\geq 2(s-1)+\rho(m-1)-1$ (we use that e(1)=2 if $r_1\neq 1$). Since $s\leq \lfloor (r+2)/2\rfloor$ and $r\geq 10$, we have $r\geq s+4$. - (d1) First assume e(s)=2 and $r_s=1$. From (7) we get $\rho \geq r-s$. We have $a_{s,2}\geq m+1$. We have $\sharp(S)\geq a_{s,1}+m+1\geq \rho(m-1)-1+2(s-1)+m+1\geq r(m-1)-s(m-3)+m-2=4m+2r-15+[(r-s)(m-3)-3m+13]>4m+2r-15$ (since $r\geq s+3$), a contradiction. - (d2) Now assume e(s)=2 and $r_s>1$. We have $a_{s,2}\geq 2m$ (case $r_s=2$) and $a_{s,2}\geq 3m-1$ (case $r_s=3$). Since $H_{s,1}$ contains $N_1\cup N_2$ and S spans \mathbb{P}^r , we have $a_{s,1}\geq r-1-r_1-r_2-1+r_1(m-e(1)+1)+r_2(m-e(2)+1)+4$, contradicting the assumption $\sharp(S)\leq 4m+2r-15$. - (d3) Now assume e(s) = 3. We have $a_{s,3} \ge r_s(m-2) + 2$ and hence $a_{s,2} \ge r 1 r_s + r_s(m-2) + 2 = r + 1 + r_s(m-3)$. If $r_s > 1$, we only use that $a_{s,1} \ge r$. Now assume $r_s = 1$. In this case we use that $a_{s,1} \ge r 1 r_1 r_2 2 + r_1(m-e(1)+1) + r_2(m-e(2)+1) + 4$ (step (d2)). Proof of Proposition 1. The proof is absolutely similar to the one of Theorem 1. It only requires few obvious numerical adjustments, due to the new assumptions. \Box Proof of Theorem 2. We observed that it is sufficient to do the "only if" part. Assume $h^1(\mathcal{I}_{A\cup B}(m))>0$. Set $A_0:=A$ and $B_0:=B$. Let $H_1\subset \mathbb{P}^r$ be a hyperplane such that $b_1:=\sharp(H_1\cap B)$ is maximal and, among the hyperplanes H with $\sharp(B\cap H)=b_1$, with $b_1:=A\cap H_1$ maximal. Set $A_1:=A_0\setminus A_0\cap H_1$, $a_i:=\sharp(A_0\cap H_1)$ and $B_1:=B_0\setminus B_0\cap H_1$. Since A is in linearly general position, we have $0\le a_i\le r$ for all i. The maximality property of the integer b_i implies that if $b_i\le r-1$, then $B_i=\emptyset$ and that if $b_i\le r$ and $B_i\ne\emptyset$, then B_{i-1} is in linearly general position in \mathbb{P}^r . Set $S_i:=A_i\cup B_i$. The exact sequences (2) imply the existence of an integer $t\ge 1$ such that $h^1(H_t,\mathcal{I}_{S_{t-1}\cap H_t,H_t}(m+1-t))>0$ and we call e the minimal such an integer. As in the proof of Theorem 1 we get $e\le m+1$. Since $h^1(\mathcal{I}_{\{P\}})=0$ for each $P\in \mathbb{P}^r$, $\sharp(A\cup B)\le mr+1$ and $a_i+b_i\ge r$ if $S_i\ne\emptyset$, we get $e\le m$. Let U denote the linear span of $S_{e-1}\cap H_e$. Set $\alpha:=\dim(U)$. Since A is in linearly general position, we have $a_e\le \alpha+1$. First assume e=1. Apply [1], Theorem 1, to $S \cap H_1$. We get that we are in one of the cases (a), ..., (e). Hence we may assume $e \geq 2$. Since A is in linearly general position, we have $h^1(H, \mathcal{I}_{A \cap H}(1)) = 0$ for every hyperplane H. Since $e \leq m$, we get $b_e > 0$. Hence $b_i \geq r$ for all i < e. If e = m, then we get $\sharp(B) \geq (m-1)r+1$, a contradiction. Now assume $e \leq m-1$. Since $m \geq 6$, we have $(m/2-1)r+1 \geq 1+(m+1)(r+1-\lfloor (r+2)/2\rfloor)/2$. Since $\sharp(B) < (m/2-1)r+1$, we get e < m/2. First assume $a_e + b_e \ge 4(m - e + 1) + \alpha - 4$. Hence $b_e \ge -1 + 4(m - e)$. Hence $\sharp(B) \ge 4e(m - e) - e$. Set $\psi(t) := 4t(m - t) - t$. The function ψ is non-decreasing in the interval $2 \le t \le (m - 1)/2$. Since $2 \le e < m/2$ and $\psi(2) = 8m - 18$, we get $\sharp(B) \ge 8m - 18$, a contradiction. Now assume $a_e+b_e\leq 4(m-e+1)+\alpha-5$. By [1], Theorem 1, applied to the integer m-e+1 there are an integer $j\in\{1,2,3\}, j\leq\alpha$, and a j-dimensional linear subspace $N_1\subseteq U$ such that $\sharp(S_{e-1}\cap N_1)\geq j(m-e+1)+2$. Notice that $\sharp(A\cap N_1)\leq j+1$ and hence $\sharp(B_{e-1}\cap N_1)\geq j(m-e)+1$. Iterating we get an integer $s\geq 2$ and integers $e(i),\ 1\leq i\leq s$. By the cases just done we get a string of nonnegative integers $a_{i,j}$ and $b_{i,j},\ 1\leq i\leq s$. By the cases just that $a_{i,j}\leq r$ for all i,j, each sequence $\{b_{i,j}\}_{j\geq 2}$ is non-decreasing and $b_{i,j}\geq r$ if j< e(i). Since $\sharp(B)<(m/2-1)r+1$, we get e(i)< m/2 for all i. As in step (d) of the proof of Theorem 1 we get an integer s>0, linear spaces $N_i,\ 1\leq i\leq s$, of dimension $r_i\in\{1,2,3\}$, with $r_1+\cdots+r_{s-1}+s-2\leq r-1< r_1+\cdots+r_s+s-1$ and $\sharp(N_i\cap (B\setminus B\cap (N_1\cup\cdots\cup N_{i-1}))\geq r_i(m-e(i))+1$ for all $i\in\{2,\ldots,s\}$. Set $\rho:=\sum\limits_{i=1}^{s-1}r_i$. Since $m-e(i)\geq (m+1)/2$, we get $b_{s,1}\geq s-1+\sum\limits_{i=1}^{s-i}r_i(m-e(i))\geq s-1+\rho(m+1)/2$. Instead of (6) we get the inequality $$\sharp(B) \qquad \sharp(B) \geq (e(s)-2)((s-1)+\sum_{i=1}^{s-1}{(m-e(i)))}+1+r_s(m-e(s))+b_{s,1}.$$ Since e(i) < m/2 and $b_{s,1} \ge s - 1 + \rho(m+1)/2$, we get $\sharp(B) \ge \rho(m+1)/2 + 1 + r_s(m+1)/2$. We have $\rho \ge r - s + 1 - r_s$ and $s \le \lfloor (r+2)/2 \rfloor$. Hence $\sharp(B) \ge 1 + (m+1)(r+1-\lfloor (r+2)/2 \rfloor)/2$, a contradiction. Acknowledgments. I am happy to thank the referee for her/his very helpful critical remarks. ## References [1] E. Ballico, Finite subsets of projective spaces with bad postulation in a fixed degree, Beitr. Algebra Geom. 54 (2013), no. 1, 81-103. - [2] A. Bernardi, A. Gimigliano and M. Idà, Computing symmetric rank for symmetric tensors, J. Symbolic. Comput. 46 (2011), 34-55. - [3] A. Couvreur, The dual minimum distance of arbitrary-dimensional algebraicgeometric codes, J. Algebra 350 (2012), no. 1, 84-107. - [4] D. Eisenbud and J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), no. 1, 15-30. - [5] PH. ELLIA and CH. PESKINE, Groupes de points de P²: caractère et position uniforme, Algebraic geometry (L'Aquila, 1988), 111-116, Lecture Notes in Math., 1417, Springer, Berlin 1990. EDOARDO BALLICO Dept. of Mathematics University of Trento 38123 Povo (TN), Italy e-mail: ballico@science.unitn.it