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Finite defective subsets of projective spaces

Abstract. We study finite sets S C P" such that k(Zg(m)) >0 and either
#(S) < 4m + 2r — 15 or £(S) < mr + 1 and a large subset of S is in linearly general
position.
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1 - Introduction

In [3] A. Couvreur proved how to compute the minimal distance of the dual of the
code obtained by evaluating all the homogeneous polynomials of degree m in » + 1
variables at a finite subset S of P". In [1] we considered the following classical
question.

Question 1. Fix positive integers r, m,z such that v > 2. Describe all subsets
S C P" such that §(S) < z and h*(Zg(m)) > 0.

For arbitrary r, m, z, Question 1 is hopeless. As in [1] we take z not too large with
respect to m,r (in [1] with z = 4m + r — 5 and a few other assumptions). In this
paper we prove the following results.

Theorem 1. Fix integers m >2, r>9 and 8m >r+22. Let SC P" be a
finite subset such that §4(S) < 4m + 2r — 15 and 4(S N M) < 4m — 5 for each plane
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M. We have h'(Zg(m)) > 0 if and only if there is a hyperplane H C P" such that
W (Zsru(m)) > 0.

We recall that a zero-dimensional scheme Z C P" is said to be in linearly
general position if for each t € {1,...,r — 1} we have deg(Z N M) <t + 1 for every
t-dimensional linear subspace M C P".

Theorem 2. Fix integers m > 6 and r > 10. Let A,B C P, r > 3, be finite
subsets such that AN B = () and A is in linearly general position. Set S := A UB.
Assume §(B) <8m —19, {B)<l+m+1Dr+1— [(r+2)/2])/2, #S) < mr+1,
S NH) < 4m+r—6 for each hyperplane H C P" and $#(SNM) < 4m —5 for
each plane M C P". We have h'(Zs(m)) > 0 if and only if theve is W C S as in one
of the following cases:

(a) (W) = m + 2 and W 1is contained in a line;

(b) (W) =2m + 2 and W 1s contained in a plane conic;

(¢) t(W) = 3m and W is the complete intersection of a degree 3 plane curve and a
degree m surface;

(d) 4(W) > 3m + 1 and W is contained in a degree 3 plane curve;

(e) t(W) =3m + 2 and W 1is contained 1n a reduced and connected degree 3
curve spanning P>,

Obviously #(ANW) <2 in case (a), {ANW) <3 in cases (b), (¢), (d) and
#(ANW) < 4incase (e). IfA C S and h'(Z 4(m)) > 0, then h}(Zs(m)) > 0. Hence the
“if”part of Theorems 1 and 2 is obvious. If #(S) < 4m + r — 5, then Theorem 1 is true
by [1], Theorem 1. We will use in an essential way the statement of [1], Theorem 1.
Any improvement of [1], Theorem 1, would hopefully give a corresponding im-
provement of Theorem 1 and of Theorem 2.

Proposition 1. Fix integers v > 10 and m > 6. Let S C P be a finite subset
such that 4(S) < 4m—+3r—10, §(S)<(m—2)r+1)/2+m/2+3, 4(SNM)<4m—5
for each plane M C P" and either #(S) < 12m +2r — 47 or #(S)<r(m —1)—
|(r+2)/2|(m —4) +2m — 4. Then there is a hyperplane H such that
RNH, Zgngpim — 1)) > 0.

Proposition 1 is the first possibility: we could fix £ € {1,...,m — 2} and ask
R H, s () = 0 for every hyperplane H (the case ¢t =1 is equivalent to the
definition of linearly general position ([4])).
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Remark 1. Results like Theorems 1 and 2 or Proposition 1 are interesting for
arbitrary zero-dimensional schemes, not just for finite sets. In the applications on
Goppa codes often zero-dimensional schemes must be used. When » = 2 everything
is fine for arbitrary zero-dimensional schemes ([5]). The cases » = 3 and » = 4 of our
proof of [1], Theorem 1, heavily use that S is reduced. Below, the proofs of Theorems
1 and 2 and of Proposition 1 do not use that S is reduced, except that we heavily use
the statement of [1], Theorem 1.

2 - The proofs

Lemma 1. Fix integers r,e, m such that r > 6 and 3 < e < m/2. Then

(1) e+e(dim—e)+r—6)>4m+3r—18.

Proof. Set w(t) :=t(d(m — t) + r — 5). The function y is increasing in the in-
terval 0 <t < m/2. Hence it is sufficient to prove the lemma when e = 3. We have
12m + 3r — 36 — 15 > 4m + 3r — 18, because m > 6. O

Proof of Theorem 1. Since 8m > r + 22, we may assume m > 4.

Ifr = 9, then Theorem 1 is true by [1], Theorem 1. Hence we may assume 7 > 10.
We cannot use induction on m and we do not use induction on 7, but only use [1],
Theorem 1, in P¥, 2 <k <r»—1.If A C S and K1 (Z4(m)) > 0, then K1 (Zs(m)) > 0.

Now assume h'(Zg(m)) >0 and that h'(Zg~g(m)) =0 for every hyperplane
H C P (i.e. k' (H, Zsnm n(m)) = 0for every hyperplane H C P"). Taking a subset of S
if necessary we may assume h'(Z 4(m)) = 0 for every A ¢ S. With this assumption we
need to find a contradiction. We may also assume #(S) > 4m + r — 4 ([1], Theorem 1).

Set Sy := S. Let H; C P" be a hyperplane such that a; := #(Syp N H1) is maximal.
Set Sy := 8¢ \ So N H;. For each integer ¢ > 2 define recursively the non-negative
integer a;, the hyperplane H; and the set S; C S;_; in the following way. Let H; be
any hyperplane such that a; := §(H; N .S;_1) is maximal. Set S; :=S;_1 \ S;_1 N H;.
The sequence {a;};., is non-increasing. Since any  points of P" are contained in a
hyperplane, if a; < » — 1, then a;,; = 0. For each integer ¢ > 1 we have an exact
sequence

2) 0—-Zgm—1)—Zs (m+1-10)—ZLs gzm+1—1—0

(often called the Castelnuovo’s sequence or the Horace’s lemma). By [1],
Remark 1, there is an integer i > 1 such that h'(H;,Zs, ,ng,m,(m +1—1)) > 0.
Let e be the minimal such an integer. Notice that if ¢?>m +2, then
WNH;, Ts, ,nm,m,0m+1—14) >0 if and only if S; ;N H; # (. Hence e < m + 2.
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First assume e = m + 2, then #(S) > (m + 1)r + 1. Since r > 5 and m > 4, we
have (m + 1)r +1 > 4m + 2r — 15, a contradiction. Now assume ¢ = m + 1. Since
R H i1, Ts,08,.,.H,.,) >0, we have a,.1>2. Hence #(S)>rm+2. Since
m >4 and r > 6, by induction on r we check that rm +2 > 4m + 2r — 15, a
contradiction. Hence we may assume e < m.

Since h'(H, T H,ns,H, (M) = 0 by assumption, we have e > 2.

(a) Since e < m, it is easy to check that a, > m + 3 — e and that equality holds if
and only if there is a line D C H, such that S, ; N H, C D ([2], Lemma 34). Let
U C H, denote the linear subspace of H, spanned by the set S, ;N H,. Set
o := dim(U). Since e < m and hl(Hl,IHmS‘Hl(m +1—¢)) =0, we have a, > o + 2.
Assume for the moment o < — 2. Since S,_; # (), the set S,_2 spans P". Hence
there is a hyperplane H of P" containing U and at least » — 1 — « points of S, .
Hence o1 > a,+7r—1—0a. Hence a; >a, +r—1—o>r+1 for all 1<e. Now
assume o = r — 1. In this case we get a; > r + 1 for all 7 < e, because a, > r + 1.

(b) In this step we assume e > m /2. Recall that a; > r + 1 for all i <e and that
a, > m+ 3 — e (step (a)).
First assume e > m/2 + 1. We get #(S) > m(r 4+ 1)/2 + 3. Hence

3) 8m + 4r — 30 > mr + m + 6.

Obviously (3) is false if » = 9. Since m > 4, we get that (3) is false for » > 9 by
induction on 7.

Now assume e = (m + 1)/2. We get §(S) > (r + 1)(m — 1)/2 + (m — 1)/2 4+ 3 and
hence

(4) 8m +4r — 30 > (m — 1)(r +2) + 6.

Since m > 4 and m is odd, we have m > 5. Hence (4) fails if » = 9. Induction on
gives that (4) is false for all » > 10.
Now assume e = m /2. We get #(S) > (m/2 — 1)(r + 1) + (m/2 + 3). Hence

(5) & +4r —30> (m —2)(r+1) +m + 6.

If m = 8, then (5) fails. Since » > 9, we see by induction on m that (5) fails for all
m > 8. Hence we only need to check the cases with m < 7. Since e = m /2, we only
need to do the cases (m,e) =(6,3) and (m,e) = (4,2). Assume m = 4. Since
8m > r+22, we get r < {9,10}. We have #(S) <4m + 2r — 15 = 2r + 1. Since
r <10, we have 2r+1 <7+ 11 =4m +r —>5. In this case we may apply [1],
Theorem 1. Now assume m = 6 and e = 3. Since 4m +2r — 15 =2r + 9 > #(S) >
r+1)+@+1)+ a3, we get ag <T7. Recall that hl(Hg,IH3mSZ,H3(4)) > 0. Since
ag <2-4+1,thereis aline J C Hs such that §(/ N Sz) > 6 ([2], Lemma 34). Hence
ag > 6. Since S; spans P" and 6 of its points are contained in a line, the maximality
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property of ap implies ag > r + 4. Since a; > ag, we get §(S) > 2r+14 > 2r+9,a
contradiction.

From now on we assume e <m /2. In particular we assume m > 5andm — e > 3.
Henced(m —e+1)—4>2(m—e+1)+2.

(¢) Assume a, > 4(m —e+1) + o — 4. Since a, > 0, the set S, spans P".
Hence there is a hyperplane M C P" containing U and any  — 1 — « points of S,_s.
The maximality property of a,_; gives a,_1 > 4(m — e + 1) + r — 5. Hence #(S) >
edm—e+1)+r—5)+a—r+1>edm—e+1)+r—5)—r+2.Lemmalgives
a contradiction if e > 3. Now assume e = 2. Let M; D U be a hyperplane such
that the integer m; := M; N Sy is maximal among all the hyperplanes containing
U. We just saw that m; > 4m — 9+ r. Set S} := S\ SN M;. For all integers ¢ > 2
define recursively the integer m;, the hyperplane M; and the set S C S, in the
following way. Let M; be any hyperplane such that m; := §(; N S)_,) is maximal
and set S} := S ;\ S;_; N M;. If S}, | # 0, then m; > r. Since §(S) <m; + r, we get
S, =0, ie. S CM;UMs;. Let V be the linear span of S] N Mz. Set f := dim(V).
Since mg <7, we have f < r — 2. Since k1 (M1, Zsrw, m,(m)) = k1T, (m)) = 0, [1],
Remark 1, gives r(V, Iyns,vim —1) = hl(Mg,ZMzerl_Mz(m —1)) > 0. Since
ar>my >4dm—94+7r, az>4dm+oa—8 and a;+ag <4m—15+2r, we get
dm + o < r+ 2. Since 8m > r + 22, we get 20 < r — 18 and hence r > 20. We have
my +mg > aq + ag. Since a; > my, we get mp > ap. Since S spans P, we get
my > mg + (r — 1 — f). First assume mg > 4m — 8 + f. As above we get 2 < » — 18.
Since o+ f <r—2, there is a hyperplane containing UUV. Hence a; >
dm —8+a+4dm—8+ B+ (r—2— o — ). Hence 12m —26+o + v < 4m — 15+ 27,
contradicting the inequality 8m > » + 22. Now assume mg < 4m — 9 + f. By [1],
Theorem 1, applied to the integer m — 1 and the projective space V we get the ex-
istence of an integer j € {1,2,3}, 7 < f, and a j-dimensional linear subspace N of V'
such that #(S} " N) > j(m — 1) 4+ 2. Since o +j + 1 < » — 1, there is a hyperplane of
P" containing U U V. We take one such hyperplane, Wy, such that n; := 4(W; N S) is
maximal. Since S spans P", we get ny >4m —8+a+jim —1)+2+r—-2—j— .
Define the hyperplanes W;, ¢ > 2, in the following way. Fix ¢ > 2 and assume defined
the hyperplanes W, 1 <j <1 — 1. Let W; be a hyperplane containing the maximal
number of points of S\ (SN( U};i W;)). Notice that if S ¢ ULZIW,, then
1SN W) — 84S N ( U;j W))) > r. Hence n; = 0 for all i > 3. Using (2) we get
YW, Zg\sow, w,(m — 1)) > 0. First assume (S \ S N W1) > 4m — 8 + f. As above
we get 2f <r—18. Hence there is a hyperplane containing U UV. Hence
dm —15+2r>4m —8+a+4m -8+ f+ (r—2 — o — ff), a contradiction. Now
assume #(S \ S N Wy) < 4m — 9 + B. By [1], Theorem 1, there are j' € {1,2,3},7 < f'
and a j’-dimensional linear subspace N’ such that §(N'N(S\SNWy)) > 5 (m—1)+2.
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Since j +5' <6, a < /2 —9 and r > 20, there is a hyperplane E; of P" containing
UUNUN'.Ifj+7 > 4,thenwegetdm — 15+ 2r > 4m — 8+ o+ (j +5)m — 1)+
4+ (r—-8—a—j—75)+4m —8+a, a contradiction. Now assume j+7 < 3. As
above there is a hyperplane E> containing S\ S N E;. Call ' the dimension of the
linear span of S\ SN Ey. If #(S) — #(S N E1) > 4m — 8 + f, then as above we get a
contradiction. Now assume #(S) — #(SN E1) < 4m — 9 + . By [1], Theorem 1, there
are an integer j” € {1,2,3}, 7/ < f#, and a j”-dimensional linear subspace N” of K3
such that $N"NES\SNWy) >j5(m—1)+2. Since j+j5 +j <3+5" <6,
o <7r/2—9andr > 20, there is a hyperplane P containing U U N UN' U N”. Call F};
any such hyperplane with #(SNF;) maximal. If j+7 +j’ >4, then we get
ay >4dm—8+a+ G+ +57)m—-1)+6+@r—-1—a—j—75 —35"—3) and hence
we get a contradiction. Nowassumej + 5’ + 7" < 8,i.e.j =7 =7 = 1. Asabove we get
the existence of a hyperplane Fs containing S \ S N F;. Call ” the dimension of the
linear span of S\ SN Fy. If #(S) — #(S N F1) > 4m — 8 + ", then as above we get a
contradiction. Now assume #(S) — #(S N F;) < 4m — 9 + . By [1], Theorem 1, there
are an integer j; € {1,2,3}, 71 < ", and a j;-dimensional linear subspace N, of K>
such that (N, NS\ SNF)) >jim —1)+2.Sincea +j+5 +57"+3+3<r—1,
there is a hyperplane containing U UN UN'UN"UN,. We get a; > 4m — 8 + a+
G+7+7"+D)m—-1)+6+@w—-1—a—5—75 —j5" —j1 —4), a contradiction.

(d) From now we assume a, < 4(m — e + 1) + o — 5. By [1], Theorem 1, applied
to U we get either the existence of an integer j € {1,2,3} and a j-dimensional linear
subspace N1 C U C H, such that §(Ny N S,_1) > j(m — e + 1) + 2 or the existence of
a plane containing at least 4(m — e + 1) — 4 points of S._; (we may take N; := U if
o < 2 by [2], Lemma 34). In the latter case we may take j = 2 and take this plane as
Nj. Set 1 := dim(N;). Let Hi; be a hyperplane containing N; and such that
a11 := #(S10 N Hyy) is maximal. Set S11 =810\ S10 N H1 1. For each integer ¢ > 2
define recursively the non-negative integer a,;, the hyperplane H;; and the set
S1; €811 in the following way. Let H;; be any hyperplane such that
a1 :=f(H;; N S1-1) is maximal. Set S;; :=S1;-1\S1,-1 N Hy;. The sequence
{@1,};55 is non-increasing. As for the integer a; we see that a; ;1 = 0ifa;; <r—1.
We have an exact sequence similar to (2) with /1, ;, S; ; and S; ;_; instead of H;, S; and
S;_1. From this exact sequence we get the existence of an integer e(1) > 1 such that
hl(Hlae(l)7Isl,e(l)—lmHl.e(l)le.e(l)(m 4+ 1 —e(1)) > 0. Since hl(Hl,I;ISmHU,H“(m)) =0, we
have e(1) > 2. As for e we first see that e(1) < m and then use steps (a) and (b) to
exclude the case e(1) > m/2. Now assume e(1) <m /2. Let «; denote the dimension
of the linear span U; of Si.q1)-1 NHieq). As in step (c) we exclude the case
Oe1y > 4m —e(1) +1) — 4 + ;. Hence we may assume a.q) < 4(m —e(1) +1)—
5+ o;. Hence there are an integer j € {1, 2,3} and a j-dimensional linear subspace
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N3 C Hj ) such that (N2 N Sy ea)-1) > jim —e(1) +1) + 2 ([1], Theorem 1). Set
7o := dim(N2). Notice that S; ,q)-1 N N2 N N1 = 0, because N1 C Hy; and e(1) > 2.
Hence N2 N S1.q)-1 and Ny N S,_; are disjoint subsets of S. Since r > 10, we have
dim(N;) + dim(N32) < r — 2. Hence there is a hyperplane of P" containing N; U Na.
Set Sz0:=S. Let Hz; be a hyperplane containing N; UN2 and such that
@21 = #(S11 N Hz1) is maximal among all hyperplanes containing N; U Nz. Set
S21 =820\ S20 N Hz;. For each integer ¢ > 2 define recursively the non-negative
integer as;, the hyperplane Hy; and the set Sa; C Sz;_; in the following way. Let
Hy; be any hyperplane such that ag;:=#(H2;N Sz;-1) is maximal. Set
Sz := 821\ S2i-1 N Hz;. The sequence {az;};., is non-increasing. We have an
exact sequence similar to (2) with Hy;, Sa; and Sz;_; instead of H;, S; and S;_;.
From this exact sequence we get the existence of an integer e(2) > 2 such that
B (H,02), T, 0 11 Hy iy Ho (M + 1 — €(2)) > 0. As for e we first see that e(2) < m and
that az.2)-1 > 7 + 1, and then (step (b)) exclude the case e(2) > m /2. Now assume
e(2)<m/2. Let oz denote the dimension of the linear span Us of Sg ¢2)-1 N Ha ¢2). As
in step (c) we see that ag ) < 4(m — e(2) + 1) — 5 + az. Hence there are an integer
j€{1,2,3} and a j-dimensional linear subspace N3 C Hi,e such that
(N3N SLe(Z)—l) >jm—e@2)+1)+2. Set r3:=dim(Ng). If rn+r+1r3+2>7
then we set s:=3. Assume for the moment 7 +71 +1r3+2 <r—1. Take a
hyperplane containing N; U Nz U N3. And so on. We continue in the same way
until we get a linear subspace N; of dimension ;€ {1,2,3} with
BV, NES\SNWNLU---UN;_1) > (m—e@ + Dr; +2 for all 1€{2,... s} and
s—14+7r 4+ --+7r;>7r Fix an integer i € {1,...,s} such that e(?) > 4. Since
@ieiy > 0, the set S;qi)-2 spans P'. Hence there is a hyperplane containing N;
and at least r—1— further points of S;.;-2. Hence a;ep-1>2+
rim—e®+1)+r—1—7,=r+3+r(m—e@). Since a;;, > a;, if 2 < h<x, we
get

(6) 8S) > (e(?) — 2)(r + 3 + r;(m — e())) + ri(m — e(?) + 1) + 2 + a; 1.

Obviously a;; > 7. Assume for the moment e(¢) > 4 (and hence m > 2e(7) > 8). Since
7; <3<, the right hand side of (6) is an increasing function of e(7) in the interval
[2,m/2). Hence #(S)>2(r+1+rm—4)+2)+2m—-4)+r>3r+4m—9, a
contradiction. Now assume the existence of ¢ € {1,...,s} suchthatr; > 2ande(i) = 3
(and hence m > 7). If r;, =2 from (6) we get #(S) > (r+2m —3)+2m —4+7r, a
contradiction. If ; = 3 from (6) we get #(S) > (r + 3m — 6) + 3m — 7 + 7, a contra-
diction. Now assume the existence of anintegeri € {2,...,s — 1} such that; = 1 and
e(i) = 3. Hence m > 7. We have a;3 > m and a;2 >  — 3 + m. Since H;; contains
N1 UN3z, we have a;; > —5+2m. Hence #(S) > 2r — 8 + 4m, a contradiction.
Hence from now on we may assume e(z) < 3 for all 7, e(?) =2,if2<7<s—1and
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s—1
o(1) = 2if r £ 1. Set p = 3" 7. We have

i-1
(7 r—l-r,<p+s—-2<r-1

Since there 1is a hyperplane containing N;U---UNs;3, we have
1

1> 3 (rm — e(i) + 1) +2) > 2(s — 1) + plm — 1) — 1 (we use that e(l) =2 if

-1
r# 1)1. Since s < |(r+2)/2| and r > 10, we have r > s + 4.

(d1) First assume e(s) =2 and 7, = 1. From (7) we get p > r —s. We have
as2 >m+1. We have #(S)>as1+m+1>pm—-1)—-14+2s—1+m+1>
rim—1)—s(m—3)+m—2=4m-+2r—15+[(r —s)(m —3)— 3m+13] > 4m +2r —15
(since > s + 3), a contradiction.

(d2) Now assume e(s) =2 and r; > 1. We have a,2 > 2m (case r; = 2) and
aso > 3m — 1 (case rs = 3). Since H,; contains N; UN; and S spans ", we have
a1 >r—1—r —ro—14+r(m—el)+1)+r(m—e@)+1)+4, contradicting
the assumption #(S) < 4m + 2r — 15.

(d3) Now assume e(s)=3. We have as3>7r(m—2)+2 and hence
a2 >r—1—rs+rm—-2)+2=r+1+rm—3). If r, >1, we only use that
as1>7r. Now assume 73=1. In this case we use that a;; >7r—1-—
rr—7re—2+1r(m—e() + 1) + re(m — e(2) + 1) + 4 (step (d2)). O

Proof of Proposition 1. The proof is absolutely similar to the one of
Theorem 1. It only requires few obvious numerical adjustments, due to the new
assumptions. O

Proofof Theorem 2. We observed that it is sufficient to do the “only if” part.
Assume A1 (Z 4 5(m)) > 0. Set Ay := A and By := B. Let H; C P" be a hyperplane
such that b; :=#(H;NB) is maximal and, among the hyperplanes H with
ﬁ(B N H) = by, with by := A N H; maximal. Set A; = Ay \A() NHy, a; := ﬁ(Ag NH,p)
and By := By \ By N H;.Since A is in linearly general position, we have 0 < a; < rfor
all 7. The maximality property of the integer b; implies that if b; < » — 1,then B; = ()
and that if b; < r and B; # (), then B;_; is in linearly general position in P". Set
S; := A; U B;. The exact sequences (2) imply the existence of an integer ¢ > 1 such
that h'(Hy, Zs, ,m, 1,(m + 1 — t)) > 0 and we call e the minimal such an integer. As in
the proof of Theorem 1 we get e < m + 1. Since ]’Ll(I{p}) =0 for each P € P,
HAUB) <mr+1anda; +b; > rif S; # 0, we get e < m. Let U denote the linear
span of S, 1 N H,. Set o := dim(U). Since A is in linearly general position, we have
ae <o+ 1.
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First assume e = 1. Apply [1], Theorem 1, to S N H;. We get that we are in
one of the cases (a), ..., (e). Hence we may assume e > 2. Since A is in linearly
general position, we have h'(H,Z-5(1)) =0 for every hyperplane H. Since
e<m, we get b, >0. Hence b; >r for all i<e. If e=m, then we get
#(B) > (m — 1)r + 1, a contradiction. Now assume ¢ < m — 1. Since m > 6, we have
m/2—1Dr+1>1+m+D0r+1-|(r+2)/2])/2. Since #(B)<(m/2—1)r+1,
we get e<m/2.

First assume a, + b, > 4(m — e + 1) + o — 4. Hence b, > —1 + 4(m — e). Hence
#(B) > 4e(m — e) — e. Set w(t) := 4t(m — t) — t. The function y is non-decreasing in
the interval 2 <t < (m —1)/2. Since 2 <e<m/2 and w(2) =8m — 18, we get
#(B) > 8m — 18, a contradiction.

Now assume a, + b, < 4(m — e + 1) + o — 5. By [1], Theorem 1, applied to the
integer m — e + 1 there are an integer j € {1,2,3},7 < o, and a j-dimensional linear
subspace Ny C U such that #(S,.1NNy) >jm—e+1)+2. Notice that
#(A N N7) <7+ landhence #(B,_1 N N1) > j(m — e) + 1. Iterating we get an integer
s > 2 and integers e(?), 1 <1 < s. By the cases just done we get a string of non-
negative integers a; jand b; j,1 <1 <s,1 <j < e(?),suchthat a; ; < rforall,j, each
sequence {b; ; o2 is non-decreasing and b;; > if j<e(i). Since §(B)<
(m/2 — Dr + 1, we get e(7) <m/2 for all 7. As in step (d) of the proof of Theorem 1 we
get an integer s > 0, linear spaces N;, 1 <1 <s, of dimension 7; € {1,2,3}, with
rit++re+s—2<r—1<r+---+rs+s—land jV; N(B\BNN1U- - -UN;_1)) >
ri(m —e(i)) + 1 for all i € {2,...,8}.8etp:= Szlrl Since m — e(?) > (m + 1)/2, we
get by1 > s — 1+ é‘Zln;(m —e(®)>s—1+ p(néi—il— 1)/2. Instead of (6) we get the in-
equality =1

s—1
(8) §(B) > (e(s) — 2)((s — 1) + Z (m — e(®)) + 14 rs(m — e(s)) + by 1.

i=1
Since e(i)<m/2 and bs; >s—1+pm+1)/2, we get #(B) > pm +1)/2+ 1+
rs(m+1)/2. We have p>r—s+1—7, and s < [(r+2)/2]. Hence #(B) > 1+
(m+ 1)@ +1-|(r+2)/2])/2, a contradiction. O

Acknowledgments. 1am happy to thank the referee for her/his very helpful
critical remarks.
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