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Dynamic bilateral boundary conditions on interfaces

Abstract. Two boundary value problems for an elliptic equation in divergence
form with bounded discontinuous coefficient are studied in a bidomain. On the in-
terface, generalized dynamic boundary conditions such as of the Wentzell-type and
Signorini-type transmission are considered in a subdifferential form. Several non-
constant coefficients and nonlinearities are the main objective of the present work.
Generalized solutions are built via time discretization.
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1 - Introduction

In the description of real life phenomena, challenges in science and technology
such as diffusion problems with transmission conditions are being addressed (cf. for
instance [7] and the references therein). We refer to [14, 15] a general framework
which allows to prove, in a unified and systematic way, the analyticity of semigroups
generated by operators with generalized Wentzell boundary conditions on function
spaces with bounded trace operators. The thin obstacle problem (also called the
Signorini problem) models threshold phenomena like contact problem, thermostatic
device or semipermeable membranes [4]. In [1] the study relies on the presence of
differential operators. We point out that their method is based on a fixed point ar-
gument. Under continuous or even constant coefficients, the regularity was shown
for the Laplace-Wentzell problem [13] or the thin obstacle problem [5]. The question
of dynamic boundary conditions can be found in frictional contact problems (see [21]
and the references therein). Their theoretical and numerical achievements are based
on the time discretization method being closely related to ours.

With the aim of forcing to make realistic assumptions and then deal with the
mathematical consequences, we prove the well-posedness of boundary value pro-
blems subject to dynamic nonlinear and friction-type boundary conditions. The
present work extends the known results of Laplacian operator to a general elliptic
operator in divergence form with bounded measurable coefficient in the context of
diffusion processes. The motivation comes essentially from the models for the elec-
trical conduction in biological tissues [1, 6, 10, 11]. The construction of generalized
solutions is shown via time discretization, following the Rothe method [17, 19, 20].

Let ©; and Qy be two disjoint bounded domains of R" (n > 2) such that
Q = Q; U Qis connected with Lipschitz boundary. Let I' = 0Q; N Q C 02, denote a
nonempty interface. We are interested on that one of the following physical de-
scriptions can occur.
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1. If 9Q; C Q then I is a closed curve (n = 2) or surface (n > 3). Currently, £

and €2 are called the inner and the outer domains of Q, respectively.

2. If I'y .= 00Q, \ I =int(0Q2; N Q) # () then
o if n =2, I' is relatively open (see Figure 1 (a));
e if n = 3, 2; stands for a cylindrical-type domain such that I'; represents its
top and/or bottom (see Figure 1 (b)). Other situations such as three versions

of the illustration shown in Figure 1 (a) can also be of interest.

3. The case of 02, NIQ # () with meas(02; N IQ) = 0 can be clearly included
whenever 92 is Lipschitz continuous (see Figure 1 (c)).

In conclusion, we assume that 7" is a (n — 1)-dimensional interface, and 09,

(k =1,2) are Lipschitz continuous. The domains have neither cuts (cracks) nor

cusps, and situations as in Figure 1 (d) are excluded. Define a relatively open (n — 1)-
dimensional set I's C 9 \ I, with meas(l’s) > 0, and I'p = I'; U I'2 where we will
impose Dirichlet boundary conditions.

(a)

(b)

Q,

QL
Ql

Q,

(c)

(d)

Fig. 1. The geometry and interface conditions: 2D (a) and 3D (b) models when "y # 0; (¢)
other possible situation; (d) 2D counterexample.

Let us introduce the problems under study. For 7' > 0, find u;, : 25, x 10, T[ — R

satisfying
1

-V (akVuk) ka in .Qk (k = 1,2).
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The first mathematical interest of this problem is due to the discontinuous coefficient
which reflects the spatial dependence of the conductivity on the electrical conduction
in different materials.

On the exterior boundary 02 = (0 \ I') U I'1, we have homogeneous mixed
boundary condition

(2) Vug-n=00n0Q\I'p and u; =0on I'p.

On the interface I”, we study two different types of dynamic bilateral conditions.

Wentzell-type transmission

The generalized Wentzell transmission boundary condition is given by
3) uy =up and
4) [oVu - n] + fau; — aduy € 9j(uy) on 2 :=1 x]0,TT,
under the initial condition
(5) 1,00 =S on I'
where o and S are known functions and f is a non-negative constant. Indeed, the
coefficients can be obtained as limits of certain integrals [22]. If f =0, the
transmission boundary condition (3)-(5) accounts for the transmission in a thin (or
lower dimensional) porous layer. Here n is the normal unit vector to /" pointing
into g, J is the subdifferential with respect to the argument of the function 7, and

[ -] denotes the jump of a quantity across the interface in direction of n, e.g.
[eVu -n] := 02V -n — g1 Vuy - n.

Signorini-type transmission

The transmission that characterizes the thin obstacle problems such as the
semipermeable membrane is constituted by the jump condition

(6) [oVu-n]=gon I,

and the Signorini-type boundary condition

(7) goVug - n — adu] € 9j([ul) on X' = I" x 10, T,
accomplished with the initial condition

(8) [u](-,0) =S on I"

where g, o, j and S are known functions [1].
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The most common application appears when Jj represents the indicatrice
Heaviside. These boundary value problems also model some of the slip phenomena
observed in contact problems [12, 21]. Other related problems are the unilateral
problems [3].

The paper is organized as follows. In next Section we set the functional space
framework, the assumptions on the data, and the main results. Sections 3 and 6 are
devoted to the proofs of existence and uniqueness of weak solutions of each problem,
namely provided by the Wentzell-type and Signorini-type transmission, respec-
tively. These two sections have similar structures based on the time discretization
technique and they are split into several subsections in order to clarify the exposi-
tion. In Section 5, we show how the unique solution to the boundary value problem
provided by a thin porous layer can be obtained as the limit of perturbed problems.
Finally, some additional regularity is shown in Sections 4 and 7 corresponding to the
generalized solutions of Sections 3 and 6, respectively.

2 - Functional space framework and main results

The data are given under the following regularity assumptions. Here we assume
that

9 o € L¥(Q) : Jou, 0" >0, o4 <opx) <o, foraa. xeQ;
# #

fork=1,2,

(10) w € L) : Joy,of >0, oy <o) <o, foraa xecl;

and

(11) j:R — R is a convex and lower semicontinuous function, j >0 and j(0) = 0.
Let us define
Hy (@ = {ve H(@Q): v, = 0};
H:(Q) = {ve H(Q): o[, =0}, (k=12).

For a Lipschitz domain Q;, the trace operator HIF1 @) — H, (1)62(F ) has bounded
linear right inverse, that is, for every element S of the trace space

H(l)(/)Z(F Y={ve LA(I') : its zero extension belongs to H 1/ 2(891)}

there exists u} € H}. (2;) such that «) = S on I" [16]. However, the trace mapping
considered as a mapping from H7. () in L*(9€2;) is surjective on H, (1)(/)2(8!22 \ I2).



86 LUISA CONSIGLIERI [6]

Considering that the Poincaré inequality occurs whenever I'p N 9@y # 0, for
k = 1,2, then the above Hilbert spaces are endowed with the norms

”’UHHIFk(Q,C) = HV””z.Qk-
When I'y = () we endow H lrl (£21) with any of the equivalent norms
[v]lg.0, + [IVllgq, ~ [Vllzr + IVOllg,-

Indeed, we recognize that H }1 (@) = HY(@?;) and H, (1](/)2(1“ Y= HY2(0Q)).

2.1 - Wentzell-type transmission

We can interpret the solutions uy : Q; x ]0,7[ — R (k = 1,2) as the uniquely
(almost everywhere) determined function u : Q x ]J0,7[ — R such that u| Q = U1,
ulg, = uz and u; = ug on I'.

Let us define Hy as the Hilbert space

{veHp (Q): v1=0]g; v2=0|g; i =vzon I} if f=0;

{ve leD(Q) D0 :v|91; Vo = v\gz; v=v20onl; Vve LZ(F)} if >0,

endowed with the inner product
(u,v)p = JV@L -Vodx + J Vu - Vods.
Q T

The identity on the interface I should be understood as an identity of the corre-
sponding trace functions, that is, Tyv = Tev with T and T denoting the trace op-
erators from H }D(Ql) and H }D (£»), respectively, into L2(I).

Definition 2.1. We say that a function u € L?(0, T; Hyp) is a weak solution to
the problem (1)-(5) if du € L?(X) and it satisfies (5) and the variational formulation

T T
J J oVu -V — u)dxdt + f J J Vu -V — w)dsdt
0 0

Q r

(12) T T T
+ J J adu(v — u)dsdt + JJ{j(v) —j(w)}dsdt > J(f, v —u)odt,
0or or 0

for all v € L0, T; Hp), with 6 = 0110, + 02)0,, and f € C([0, T'; (H/g)').

The symbol (-, -),, denotes the duality pairing (-, '>(H,,)’x Hy
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Forwu : Q x 10, T[ — R such that the homogeneous Neumann boundary condition
in (2) is satisfied, the Green formula yields

—(V - (6Vu),v)o = JaVu -Vodx + ([eVu - nl,v) -, Vv € Hp.
Q

Thus, using (1) and (4) it follows (12).

Remark 2.1. In the statement of Definition 2.1 the framework is rather
general on f. Indeed, we consider [ = fiyo, + foxq,, Whenever f;. € C([0, T']; LI(£2;))
(k=1,2), where ¢ > (2*), with (2*) being the conjugate exponent of
2" =2n/(n —2) if n > 2, and any real value if n = 2. This definition of f itself as a
combination of fi, fo implies that, for each ¢t € [0, T, f(t) € LY(Q) — (H, ﬁ)’ .

Theorem 2.1. Under the assumptions (9)-(11),

(13) W ecHs: w=Sonl;
(14) J S)ds < C(IS|Z, + 1),
I

where C stands for a positive constant, and f € C*1(0,T; (Hyp)") with the Lipschitz
constant d, that is,

(15) 1F@ = fOll@,y <dlt—t, Vet €]0,TL,

there exists w € L>(0, T'; Hp) a unique weak solution in accordance to Definition 2.1.

Remark 2.2. The assumption (14) yields if for instance j verifies
j(d) < C(d? +1) for all d € R. Notice that (13) guarantees that S € L3(I') is such
that BVS € LA(I').

Theorem 2.2. Let the assumptions of Theorem 2.1 be fulfilled. Moreover, if
the compatibility condition

(16) JawO - V—u)dx+ ﬂJVuO -V —u)ds + J{ ) —5(S)}ds > (£(0),v—u’),
Q r r

holds for all v € Hy, then O € L*(0,T;Hp) NL>¥0,T;LAI). In particular,
u € C([0, T1; Hy).

The transmission problem in a thin porous layer, (1)-(5) with f = 0, can be ob-
tained as the asymptotic limit, when a small parameter ¢ goes to zero, of the following
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perturbed problem, whenever the domain Q verifies the g-property: There exists
& > 0 such that, for every 0 <e < &),

Se={&4+m(): T, O<t<ey(®)} C 2,

with y € C*X(I') such that 0<y, < p(&) <y* for all € I', and 2o, := 2\ S, is a
Lipschitz domain.

For instance, all domains consisting of inner and outer subdomains, i.e. the in-
terface I' = 0@, C Q, I'y =0 and I'p = Iy, satisfy the g-property with y =1 and
0< ¢y <dist(I", 0Q). Consequently, S, C Q for every 0<e < &.

(P,) Find u, : Q = Q; US,UQy, — R satisfying

-V -(1Vu,) =f1 in Q;
-V -(02Vu,) =fp in Qo
eydu, — adiu, € dj(u,) in S, x 10, TT;

(17) (-, 0) = u’ in Se;

[u.] =[6Vu,-n]=0 on I}

[u] =[6Vu, -n]=0 on [I,:=0S,\T;
Vue-n=0 on 0Q\ I

us =0 on I.
Let us define the Hilbert space

X.={ve HIFZ(.Qg) DU =g, Vs, = Vg, V2 =g, ;

v =g, on I, vg, = vy, on I},

where Q. = Qy US, UQs,. Set f. = fixg, +/foxs,u0,, (compare with Remark 2.1).
We emphasize that neither I" nor I"; belong to Q.. This means that the identities of a
admissible function on these interfaces should be understood as the corresponding
identities between trace functions as above.

Proposition 2.1. Let the assumptions (9)-(11), (13), and f = 0 be fulfilled,
and (14) be replaced by j(d) < C(d? + 1) for all d € R. Let u be the unique solution
of the problem (1)-(5) in accordance to Theorem 2.1, under the admissible test
fumction space X := L0, T;Ho) N H 0, T; HY(Q\ @1)), and f, € C([0, T]; LA(2,))
and f> € C([0, T1; L3(23)) such that (15) is replaced by

||ﬁ(T) _f‘l(t)HZTQl + Hf‘Z(T) _.fQ(t)HZ,Qg S d‘f - t‘7 th € ]Oa T[7
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for some d > 0. Then, u is the limit of the sequence of the unique solutions u, to
the variational formulation of the perturbed problem (P.)

T T
J J 0.V, - V(v — u,)dxdt + J J ;&sus(v — ug)dadt
0Q, 0S8, ’

(18)

+

S —

T
J%U(v) — j(u,) ydadt > J( for¥ = us)g dt, Vv € L*0,T;X,),
S, 0

with (17), and o, = o110, + s, + 0210y,

Here, the duality product should be understood as (f,v), = f Sfivrda +
j]‘zvs de+ [ fovs.de.

QZ(»
2.2 - Signorini-type transmission

Here, we keep the notation of jump [v] = vy — v for any vector v = (v, ve).
However, in order to differentiate this case from the above, let us set every vector by
boldface. In general v; # v2 on I'. Thus, their weak derivatives do not exist. Let us
define the Hilbert space

V={v=@w,v): v e H1p1(91); V2 € H}Z(Qz)} < LA(Q1) x L*(2s)
endowed with the norm (¢f. Lemma 6.1)
Ivlly = [[Vuillag + IVozlls 0, + [I[0]l2 -

Forv e V,v|, € HYXI) x HYP (02 \ T).

Definition 2.2. We say that a function u = (u1,u) € L20,T; V) is a weak
solution to the problem (1)-(2) with (6)-(8) if d;[u] € L*(X) and it satisfies (8) and the
variational formulation

J 0aVus - V(e — ug)dxdt

J J 01Vu1 . V(Dl — ’Ml)d%dt +
Q Q

0

S

T T
(19) + J(g, v —up) At + J J O u]((v] — [u])dsdt +
0 0or

S —

J{j([v]) — j((u])}dsdt
r

T
> J(f,v —wdt, W= () € LXO, T; V),
0

with f = (f1./2).
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Here, we use the same notation (-, -), to denote the duality pairing (-, -)y .y, With
V =H }1 (@) x (le2 (£2)) being the dual space of V. The symbol (-, -) - stands for
the duality pairing (-, )y, y, using the notation ¥ = H (l)éz(F ).

For u = (11, u2) such that the homogeneous Neumann boundary condition in (2)
is satisfied, the Green formula yields

2
—(V-(eVu),v), = Z J gV, - Vordae + ((oVu - nl, v1) - + (62Vuge - n, [v]) -,

k=1 O

for all v € V. Thus, using (1) and (6)-(7) it follows (19).

Theorem 2.3. Assuming (9)-(11), (14),
(20) Juev: [W1=SonTl,

and £ and g are Lipschitz functions in the following sense: there exist two positive
constants d; and dy such that

(21) [£@) = £D |y < dufr -
(22) ||g(T) - g(t)HY’ S d2|‘[ - t|3 VT,t S ]07 T[7

there existsu € L*(0, T; V) a unique weak solution in accordance to Definition 2.2.

Remark 2.3. The assumption (20) implies that
ISl < MUy p < [[u°[ly-

Theorem 2.4. Let the assumptions of Theorem 2.3 be fulfilled. Moreover, if
the compatibility condition

2
Z J akVug -V, — ug)dx + (g(0),v; — “(1)>r
k=1
(23) O

+ [~ i©)ds = 10,y ~ ),

r

holds for all veV, then o€ L*0,T;V)NL>®0,T;L*(I). In particular,
uc C(0,T];V).

3 - Proof of Theorem 2.1

3.1 - Discretization in time

In the following we use similar arguments from the methods described in [19]. We
decompose the time interval I = [0, T'] into m subintervals I;,, = [£;m, tiv1m] of size
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h=T/m, i€{0,1,---,m—1}, m € N. We define, for all i€ {0,1,---,m — 1},
uitl = u(li+1,m) as solutions given at the following proposition.
Proposition 3.1. Letic {0,1,---,m — 1} be fixed, u' € L*(I'), and
S = fltin) € (Hp).

Then there exists u™' € Hy a solution to the problem

JaVu”l Vo —u"Nde+ p J Vutl . Vw — utds

) T
(24) + J%u”l (v—u")ds + J{j(v) —j@th}ds
T r
> (v —uith, + J%ui (v— u”l)ds, Vv € Hp.
r

Proof. The existence of a solution to (24) is deduced from the general theory on
maximal monotone mappings applied to elliptic variational inequalities [23, pp. 874-
875, 892-893]. Indeed, the mapping A : Hy — (Hyp)' defined by

(Au,v) = Jo-Vu -Vodx + f J Vu - Vods + J%uvds

Q r r

is single-valued, linear and hemicontinuous; the mapping ¢ : Hz — [0, +00] de-
fined by

jj(v)ds, if jo) € L)
o) = q 7

~+00, otherwise

is convex, lower semicontinuous and ¢ # + oo; and the coercivity condition

(Au, u) + pu) = J0|Vu|2doc + BJ Vul*ds > min{oy, 1}||ul%,
Q r

is valid under the assumptions (9)-(11). Then, for b € (H ﬂ)' such that

0.0) = (v}~ [ uinds,
I
the variational inequality (24) has a unique weak solution u = u*! € H B O

Remark 3.1. Since #° = S on I" means that «° € L2(I"), then Proposition 3.1
guarantees the existence of u! € Hy and consequently u! € L*(I'). Therefore,
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Proposition 8.1 successively guarantees the existence of u*! € Hy for every
1=1---,m—1.
3.2 - Existence of a limit u

Proposition 3.2. Forallic {0,1,---,m — 1}, the following estimate holds:
(25) ol < max {2 1} F B gy + 2SI
2 = oy L2O,Ty(HpY) 2.

Moreover, if {iy},,cx 1S the sequence defined by the step functions w,, : I — Hpg

1 t=0
ibm(t) = { " fmﬁ

uH_l m ]ti,m> ti+1,m]

then there exists u such that
Wy, — w in L*0,T; Hp).

Proof. Choosing v = 0 as a test function in (24), we get

Jawum e +ﬂj Vi ds + J%(%iﬂ)st < (FHL iy J%uiu”lds,
Q r r r

foralli € {0,1,---,m — 1}. Observing that o/k > 0, and

1

min{a#,
< - - il /st Rt
Jal < 2min{ox, 1}

L . 1}, .
1 1 112 112
[ 1 e,y + B [l [,

h

o s s
J—uzuz“ds

IR EPEN: 1 & 132

I r r

then, after multiplying by the factor 2, it follows
. ; 2 o . 1 . 2 o .
minf{oy, 1} w2, + j% (u*1Yds < max { = 1} 1F iy + J% (wPds.
r r
Summing on j = 0, ..., %, it follows

i ) ) 1 i+1 .
. 2 i+1112 2
minr, 10 Y (00, o < max{ 1 by 1
J=1

=0
2
+‘X#||S||2,F'
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Consequently, we get (25) and, fori =m — 1
1
. <2 2 2
(26) min{oy, l}Huanz(O,T;H/g) < max { @a 1} ||f||L2(0,T;(H/g)’) + O‘#HSHz,r

Thus we can extract a subsequence, still denoted by u,,, weakly convergent to

u € L*0,T; Hp). O
Next, let us study the discrete derivative with respect to ¢ at the time ¢ = ¢;,;:
i ui+1 _ ui
Z7 = —
Proposition 3.3. Let Z,, : [0, T[ — L*(Q) be defined by
Z' fort=0

Ifthe assumptions (9)-(11) and (13)-(15) are fulfilled, then the following estimate holds:

m ]ti,ma ti+1,m]

-2 2 2 0112
(27) ||umHL°°(0,T;H/;) + 1 Znlzs < C(HfHLZ(O.T;(H,;)’) + [Ju ||H,,)-

Hence, we can extract a subsequence, still denoted by Z.,,, weakly convergent to
Z e LA(2).

Proof. For afixed ¢, there exists ¢ € {0, - - -,m — 1} such that ¢ € I¢;,; ti1.m].
Choosing v = u' as a test function in (24), we have

JaVu”l SVt — wd)de + B J Vultl V@t — ubds
Q r
+ J%(ui-‘rl _ ui)ZdS + Jj(ui+1)d8 < J](ul)ds + <fi+17ui+1 _ ui>g.
r r r

In order to sum the above expression on j=0,...,4, consider the relation
2(@ — b)a = a2 + (@ — b)® — b2 to obtain

i

. . . 1 . 1
ZJJV@H“ VT —ulyde = §J |Vl P de — §J0|Vu0|2dac
=05 Q Q

1 . .

+ = J0|V(u7+1 —u/)Pd;
24

Jj=0 Q
i . . . 1 . 1
val V@it — s — QJ Va2 ds — EJ IVl 2ds
=0 r r

1 j+1 2

+ 5 V@™ —ul)["ds.

J=0 r
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Now, using the assumptions (9)-(11) we find

. ; ; i\ 2
min{oy, 1} 1.2 . wtl —
2|u+1||Hﬂ+oc#Z(;hJ — ds
=r

#
28) < % IV 2 +§”Wo”§f N J].(S)ds
r
_<f1,u0>Q _ Z<fj+1 —fj,uj)g + <fi+17ui+1>g.

J=1

By (15) it follows

(FI = l)g < dh Yy |1 ||,
=1

=1

Therefore, inserting the above inequality in (28) and applying (26), we conclude
2. O

From the Rothe function defined by

ul(@) — ul(x) |

(e, t) = u'(x) +t A inIp; =1,

consider the following definition.

Definition 3.1. We say that {u,,},,c is the Rothe sequence if

u™ () — ui(x) |

U (X, 1) = ul(x) + (- ti,m) 7 n Ii,nu

forall? e {0,1,---,m — 1}.

Proposition 3.4. If Z satisfies Proposition 3.3, then
ou=271n LZ(F), for almost all t € I.

Proof. For a fixed ¢, there exists i € {0, - -,m — 1} such that ¢ € I¢; ;1]
Thus we obtain

: i- D Wl — gt ! Wt gt
JZm(r)dr => J ——dr+ Jsz in Q.
0 =0 ih ih
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¢
From Definition 3.1 we have me(r)dr = Uy (&) — S. By the Riesz theorem we get
0

t
(o (t) — S, 0) = j(zmm, wdt, Vv e LAT).
0

Indeed, the right hand side of the above equation is a bounded linear functional in
L?(IN), representable thus (uniquely) by the element ,,(t) — S from L3(I").
Because there exists w € C([0, T1; L>(I")) such that

t
(wlt), v) = J(Z(T),v)dn W € LA(D),
0

then it follows
¢

(29) lim (up@) — S —wt),v) = lim J(Zm(r) — Z(1),v)dr = 0.
m——+00 Mm——+00
0
Let us prove that the norms of the functions u,, are uniformly bounded with
respect to £ € I and m. From the estimates (25) independent on ¢ and m, and con-

sidering

”um(t)HzF =

; t—t; i t—1t
L U +17 7 um
u( + 7 >+u 7

2.r
then, we get

2 2 2
lwmllz~0. 22y < CUS 20,2,y + 1S N2.0)-

Hence, the Lebesgue Dominated Convergence Theorem can be applied in (29)
giving
lim
Mm—+00

T
J(um(t) — S —w(t),v)dt =0, vo € LA(I).
0

In the same manner this result can be derived for the case when v(t) is a piecewise
constant function of ¢ € I. Since these functions are dense in L?(X), it remains valid
for every function v € L2(2). From the uniqueness of the weak limit, we conclude

¢
) — S = JZ(T)d‘L’,
0

which corresponds to the claim. O
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3.3 - Passage to the limit on m — + oo

Set @ =2 x 10, T[. Denoting f,,(t) = f*! for t € 1t; sy, ti11.m] and 1€ {0, - - -, m — 1},
we have

JJV&m - Vodadt + J Vi, - Vodsdt + Javadsdt

Q b b

+ J j)dsdt > Ja\VﬁmFdxdt + /)’J |V b | dsdlt

Xz »)

Q
+ J 0Ly U dSCt + J](um)det + J fma v— ?ij>th-
P P

Using Propositions 3.2 and 3.3, and recalling the weak lower semicontinuity
property for the first and second terms on the right hand side of the above inequality,
to pass to the limit the above inequality it remains to prove that

Wy — u in L2(X).
Taking %,, — U = Uy, — Uy, + Uy, — u first let us prove that
Ty — Uy, — 0 in LA(Z).
Since we have 0 <t —¢;,, < in J¢;; ti1,m] We obtain
|2 @ — wn Ol r = [1Zmllgrh — & = i) <t Zn|ls 1
and from (27) then it follows

_ CcT 02 \1/2
[ — Uil 5 < —(Hf||L2<0T(H,/>> + 1w, =0

Secondly the Rothe sequence {u,} is bounded in L*(0,T;Hy), and, from
Proposition 3.4, the functions d;u,, are bounded in L?(X) then, for a subsequence still
denoted by u,,, the strong convergence holds

U — u in L2().

Then it results

JZudsdt = J@tuudsdt.

O e N3
~

T
J JZmiLmdsdt —
or

Therefore we are in the conditions to pass to the limit concluding the weak for-
mulation (12).

St—
g
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From the standard technique to prove uniqueness of solution (see, for instance,
[18]), the solution » to (12) with (8) is unique. Then the whole sequence {,,} con-
verges *-weakly to u € L>(0,T; Hp).

4 - Regularity in time

Proof of Theorem 2.2. The proof follows the time discretization argument
as in Theorem 2.1, considering the existence of the integral inequality (24). Choosing
v = (™ + u')/2 as a test function in (24) for the solutions »**! and %', summing the
consecutive integral inequalities, and dividing by &, we deduce

Jha|vzi+1|2dx + hﬂj |vzi+l|2d8 + Ja(Zi+l _ Zi)ziJrlds < <fi+1 *fi,Zi+1>Q
Q r r

taking the convexity of j into account. Applying the assumptions (9) and (15), it
results

min{cy, 1}h||Z”1||Zﬁ + Joc(Z”l —ZHZ" s < dh|| 27|y,
r

Considering the relation 2(a — b)a = a2 + (a — b)* — b%, witha = Z*' and b = Z',
and summing onj =1,---,7 (@ € {1,---,m — 1}) we obtain

2
mm{a#,l}zhHZﬁlnHﬁ+a#||zz+1||zr<2 o(5) as

Jj=1
7
+d? max { } h.
7=0
Notice that mh = T.

Let us determine the estimate for the first term on the right hand side of the
above inequality. Rewrite the integral inequality (24) for ¢ = 0 in the form

JaV(ul —u%) -V — ub)de + JO‘VZLO -V —ul)de

Q Q
1_
+ﬁJV(u1 —u%) - V(v —ul)ds +/)’JVu° -V —ub)ds + Jocu ; S(v —ub)ds
r r r

" J {J@) = j@h}ds > (f* = f(0),v — u') g + (f(0),0 —ul)g,

r
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forallv € V, and in particular v = . Thus, we apply the assumption (16) with v = u!

and divide by & we deduce

1 2
J|V(u — O Pdw+ L J|V(u T ds—i—J (“ - S) ds

Q I r

< Zh ||f1 f(0)||(H,,)

Then, using (15), we have

2
w -8

J o ds < Chd?<C.
T

Since the above regularity estimates are independent on m the proof of the
passage to the limit is similar to the one of Section 3. Moreover, the uniqueness of the

weak solution implies that the weak solution is the strong solution in the sense
u € C([0,T]; Hp) by appealing to the Aubin-Lions Theorem.

5 - Proof of Proposition 2.1

5.1 - Existence of u,

The time discretization described in Section 3.1 reads, for the perturbed

problem, as
J o Vu'tl . V( — ut)de + J%y(u”l —u) (v — ut)da
(30) & , | 8, | |
- J\g{](v) _j(ul+1)}dx Z <f1+1=/0 - ulJrl)Qﬁ’ Yo € Xs.
SS

The existence and uniqueness of a solution %/*! = u™*! € X, is due to standard
results for elliptic variational inequalities as in the proof of Proposition 3.1 (cf. [18]).
Indeed, the bilinear symmetrie form

a(u,v) = J o.Vu - Vodx + quvdw

Q! Sl}

is coercive in the following sense

au,u) > oy || Vullz o, + -7 h e P
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Taking v = 0 as a test function in (30), analogously to the proof of Proposition 3.2,
we get the estimates

OC# .
8—#||u ||u st + ”f:EHLZ(OT(X))a

(31) T
jnumnxdt < 2 1B, + o W oy
0

Next taking » = »’ in (30) and arguing as the proof of Proposition 3.3, we obtain

i+112 O‘#h 1
a4l Va5 g, toF ZIIZ]+ [

< J@J(uo)d% + C(”V“OHz,gn + 1 fellZ20. 70, + -

B

Applying (14), it results that u,, and Z,, are uniformly bounded in L*°(0, T'; X,,) and
L2(S, x 10, T), respectively. Therefore the existence of a solution u, € L?(0, T; X,) to
(18) can be proven by similar arguments of passage to the limit as in the proof of
Theorem 2.1 (cf. Section 3.3).

5.2 - Passage to the limit on ¢

In order to let ¢ — 0, we utilize the following equivalent variational inequalities to
(18) and (12) with f = 0, respectively,

T T

J J 0.V, - V0 — u,)dxdt + J J;@tv(v — ug)dxdt
0Q, 08, /
(32) " T 1 T
el _ 012 L) — i _
+ J2sy [v(0) — u’|"dx + J J " {j) — ju,) }dadt > J(ﬂ,v Ue) g, A,
08, 0
Yo e X, := L30,T; X,) N HY0, T; H'(S,));
and

JoVu -V — w)dxdt +

S
Q
O ——— Ny

Ja@tv(v — w)dsdt + Jg |v(0) — u0|2ds
T T

+

O —— Ny
~

T
J{j(v) —j(u)}dsdt > J(f,v —u)odt, YveX.
0
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Let u, be the solution of (18), or equivalently (32), satisfying (17). By appealing to
Section 5.1 we have

0
Hué‘”LO@(O,T;LZ(SE)) < C(fjw Hz,g + Hf”Z‘Q)'

Using the result (cf. [8])
1
s, < CQlE -+ el 9 )

in the estimate (31) it follows
HquHLZ(O‘T;Hl(Q,v)) < C(HUOHHO + ||f||2,Q)-

Thus there exists a subsequence ¢ — 0 and a function u € L>(0,T; L3(S,))
N L%0, T; HY(RQ,)) such that

(33) u, —u  *-weakly in L>(0, T; L%(S,));
(34) u, —u  weakly in L2(0, T; HY(Q,)).

Next we recall the following lemma which is an extension the one proved in [8, 9].

Lemma 5.1. a) For any function w € W'(Q \ Q) we have

Jﬁdx — des as ¢ — 0.
&y

Sé‘

b) For any sequence of functions w,ec L'(Q \ Q) x10,TD and any
we LY x 10, T[) such that

[Vw.ll,s, <C and

S —

J(wg —w)dsdt — 0,
r

Jfor some constant C > 0 and some exponent q > 1, we have

T T
Jj%dxdtajjwdsdt as ¢ — 0.
&y

0r

S
2

For an arbitrary v € Xr—X, N C([0, T]; HY(Q \ 21)), by Lemma 5.1 a) we have

1 012 1 02
J28y|v(0)—u ["da — J2|v(0) u|"ds.
T
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In order to apply Lemma 5.1 b), we define w, = (v — u,)ow andw = (v — u)dv. By
(33) we obtain

S—

J(w,,,. —w)dsdt — 0.
r

Since 9;Vv € L2(Q x 10, T[) we have

IVwellgs, < IV =y, [1001 20 s, + 10— %l g 106V,

for ¢ > 1 satisfying 2¢/@2 — q@) < 2n/(n — 2) that means ¢ < n/(n —1).
Thus we can pass to the limit on ¢ — 0 in (32) to obtain the desired solution.

6 - Proof of Theorem 2.3

The generalized version of the Poincaré inequality applied to functions admitting
jumps [2] can be once more extended to the following version.

Lemma 6.1. LetveV. Then

(35) J Rde < C{J Vv Ede + J[v]zds}.

2 Q r

Proof. IfI'; # (), the classical Poincaré inequality is valid and then (35) clearly
holds. If I'; = 0, we will prove (35) by contradiction. Assuming that (35) is not true,
there exists a sequence {v,,} C V such that for all m € IN

ovallog, =1 and [ VVulo + 0wl < 1/m.

Hence Vv,, — 0in L(Q) and [v,,] — 01in L2(I"). Since V is a reflexive Banach space,
we can extract a subsequence of v,,, still denoted by v,,, such that v, — vin V. Thus
Vv =0in Q and v; = vs on I'. Consequently v; € H }1 @) and vy, € H }2(92) satisfy
v1 = v2 = 0. From the compact embedding V — — L?(Q;) x L*(Qy) it follows that

Vo — 0 in L2(Q;) x L2(Qy).
Then we conclude that
[v1mllg.q, =1 — [10llz0, =1,

which is a contradiction. O
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6.1 - Discretization in time

As in Section 3.1, we will construct weak solutions u'*!=u(t;,q,),
1€{0,1,---,m — 1}, of an approximate time discrete problem.

Proposition 6.1. Let the assumptions (9)-(11) be valid, m > 4T /oy and
i1€{0,1,---,m — 1} be fixed, [u'] € LA(I'),

£ = £t eV oand g™t = gt ) €Y

Then there exists a time discrete solution uit! € V to the problem

2
Z J opVuit -V, — ulhde + (g v —ult)

k=1 o
(36) + [ (1]~ ) ds + [{700D - it 1D)ds
r r

> (£ v —uith, + J%[w’]([v] —[u1])ds, WwweV.
r

Proof. We show the existence of a solution to (36) with the aid of the general
theory on maximal monotone mappings applied to elliptic variational inequalities
[23, pp. 874-875, 892-893]. To this end, we define the mapping A : V — V' by

Mm

(Au,v) J oL Vuy, - Vopde + J%[u][v]ds
k=1

r

which is single-valued, linear and hemicontinuous; and the mapping ¢: V — [0,+4 o]
by

Jj([v])d& if j([v]) € LX)
(D(V) = I

+ 00, otherwise

which is convex, lower semicontinuous and ¢ # +oc. Because of (9)-(11) the coer-
civity condition
2

(Au )+ o =3 J o Vug P+ | luds + [ iuds = ol

Je= r r
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is valid for any & < o /o4. Then, for b € V' such that
b.v) =~ W)+ g 0n)y — [ olds,
r
the variational inequality (36) has a unique weak solution u = u**! € V. O
Remark 6.1. Since [u’] = S on I" means that [u’] € L?(I'), then Proposition
6.1 guarantees the existence of u' € V and consequently [u'] € L2(I"). Therefore,

Proposition 6.1 successively guarantees the existence of u*! € V for every
i=1,---,m—1.

6.2 - Existence of a limit u

In the sequel, let us suppose (9)-(11), f € L?(0,T;V'), g € L?(0,T;Y"), and
S e LA().

Proposition 6.2. Let m > 04T /oy Forall i € {0,1,---,m — 1}, the follow-
g estimate holds:
37) g IS < CAE N0,z + 191Ze0.22y + ISIIE -

Moreover, if {Wy},,cn 1S the sequence defined by the step functions W, : I — V

() = {ul fort=0

i T, b1 ]
then there exists u such that
u, — uin L*0,T;V).
Proof. Testing in (36) with v = 0 and using (9) and (11), we get

Tl VB + [ FE s < (07w, — (g7, 4+ [ Sl s,
r r

foralli € {0,1,---,m — 1}. Hence, applying Lemma 6.1 it follows

T4 tioraqit1]2 S irRge < L (g i1y \2

LI g+ | gyl s < o (1 e+ Crlg™ )

g . o .

H N+ | o i,
r
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with Cy standing for the continuity constant of H}I(Ql)%Y. Summing on
7 =0,...,1, multiplying by 2k and applying (10), we find

7 . . 2 1+1 . )
2 2 2 2
ayhy 0 ol 5 < —U#h > 15 + CH g lI5)
=0 1

i
112 2
+0#hz 0”llz 1 + 27 (1Sl
=0

Consequently, by the Gronwall Lemma we get (37) and, for i = m — 1,
(38) HGMH%Z(O,T;V) < C(”fH?}(O,T;V’) + HQH%Z(O,T;Y’) + ||S||;r)~

Thus we can extract a subsequence, still denoted by u,,, weakly convergent to
uc L?0,T;V). O

Proposition 6.3. Letm > 04T /oy and U,y, : [0, T[ — L2(I") be defined by

171
K ]h S fort=20
Um(t) = on I'.
417 _ [,0
w m ]tmm ti+1,m]

If, in addition, the assumptions (14), (20)-(22) are fulfilled, then the following esti-
mate holds:

~ 2 2 2 2 02
(39) [ ll7x0.r:v) + 1 Umllzs < CUEI 2019 + 1191720 737 + 1077

Hence, we can extract a subsequence, still denoted by U,,, weakly convergent to
U € L2(2).

Proof. For a fixed ¢, there exists i € {0, - -,m — 1} such that ¢ € It;,,; tis1.].
Choosing v = u’ as a test function in (36), we have

2

S [t Vet — uide+ [ £t - s + i as
(=1 . 7

S <gi+l’u’i _ u§+1>r + J]([ul])ds + <fi+1, ui+1 _ ui>Q.
r
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Summing onj =0, ...,% and remarking that

i 2 , 2
J UkVu]H V(u]+1 —wj)dx = —Z J |Vul+1| da
0 k1 =1

—

2

J Qe

i 2 '
J 04|Vl [P + é Z J ok Vi — ul) P
k=1 -1

“E‘qm

then we find

i+17 _ Ty d T\ 2
0'#|Vu2+1”29+a#2h‘|\<w> ds

=0 r

(0) _o* . S )y — (6
= 2 HVUOH;.Q + JJ(S)dS + <91au(1)>r + <9]+1 - gﬁu{)r —(g +17“1+1>r
r J=1

i
_<f1a u0>Q - Z<f]+1 - f]a uj>Q + <fl+17 ui+l>Q'

j=1
Using (21)-(22), it follows

i

i
S W~ wl), <dih ) |y
J=1 j=1
(g =g ul) < dahCy Y W]y

j=1 j=1
Therefore, inserting the above inequalities in (40), applying (38) and gathering (37),
we conclude (39). O

We again have to relate the weak limits u and U.

Proposition 6.4. Let u and U be the weak limits obtained in Propositions
6.2 and 6.3, respectively. Then

oul = U in LA, for almost all t € I.

Proof. For afixed ¢, there exists ¢ € {0, - - -,m — 1} such that ¢ € 1¢;,; ti1.m].
By construction

¢ _y GEDR A TR
JUm(T)d 7_20 J M +JWTMdT onI.
0 =0 0 ih
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Setting the Rothe sequence {u,,},, . defined by

. i+1 _ut
u,,(,t) = u'(w) + (¢ — ti,m)w in I,

foralli € {0,1,---,m — 1} (compare to Definition 3.1) under m > g4 T /oy, it results
t
JUm(‘[)d‘[ - [um,](t) — S on [
0

From the Riesz theorem we get

t
([ ]®) — S, v) = J(Um(f),v)df, vo € LA(D).
0

Indeed, the right hand side of the above equation is a bounded linear functional in
L2(IN), representable thus (uniquely) by the element [u,,](t) — S from L?(I"). Also
there exists w € C([0, T1; L?(I")) such that

¢
(w®),v) = J(U(T),?))df, o e LA(I).
0

Then we have

t
im ([ )~ 8~ o(t).v) = Tim_ j (Un(®) — UG, v)dz = 0.
0

Let us prove that the norms of the functions [u,,] are uniformly bounded with
respect to ¢ € I and m. From the estimates (37) independent on ¢ and m, and con-
sidering

H[um](t)”Qr =

i t— ti,m i+1 t— tim
[u](l+h ) B Ll

2,

then, we get
2 2 2 2
Il N~ 1.2y < CUL L2029y + 19020 737 + [IS]l2.0)-

Hence, the Lebesgue Dominated Convergence Theorem yields

T
MIBE J([um](t) - S —w®),v)dt =0, Vo € LA(I).
0
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Proceeding as in the proof of Proposition 3.4, we end up with

t
[ul(t) — S = J U)de.
0

6.3 - Passage to the limit on m — + oo

Denoting f,,,(t) = £ and g,,(t) = g'** fort € It; . tis1mlandi € {0, m — 1},
we have

7
01V - Vrdadt + J( Gms V1 — U1 ) At + JocUm[v]dsdt
o 0 z

>

k=1

S —

+ Jj([v])dsdt >

X

J 4| Vit et + JaUm[am]dsdt

2
=19 o 3

Stm—3

T
+ J]([avn])det + J<fmyv - ﬁm>th-
z 0

Using Propositions 6.2 and 6.3, and recalling the weak lower s.c. property for
the first term on the right hand side of the above inequality, we can pass to the
limit the above inequality if we prove that

[2] — [u] in L*(2).
To this end, we take u,, — u = u,, — u,, + u,, — u in order to prove that
(2] — (] — 0 in LA(X).
Since we have 0 <t — ¢, < o in 1¢; 1; i1, ] We obtain
T @) = [ J Dl = 1 Unllg,r o = ¢ = tiu) <[ Uil -

Using (39) we derive
CT

~ 2 2 0512 \1/2
6] = el < ==l z20.m0 + 1920070 + 030 = 0.

Next, the Rothe sequence {u,, } is bounded in L2(0, T’; V), and, from Prop. 6.4, the
functions 9;[u,,] are bounded in L2(X) then, for a subsequence still denoted by [2,,],
the strong convergence holds

[U] — [u] in L2(2).
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Then, it results

T T
J J Um[am]det — J J Ululdsdt =
0or 0or

St— 3

J [Oyu][u]dsdt.
r

Therefore, we can pass to the limit to obtain the weak formulation (19). From the
standard technique to prove uniqueness of solution (see, for instance, [18]), the so-
lution u to (19) with (8) is unique. Then the whole sequence {u,,} converges weakly to
ueL20,T:V).

7 - Regularity in time

Proof of Theorem 2.4. The prooffollows the time discretization argument as
in Theorem 2.3, considering the existence of the integral inequality (36). Testing in
(36) for the solutions u’*! and u’ with v = (u**! + u’)/2, summing the consecutive
integral inequalities, and dividing by &, we deduce

2
Z J ho_k|vz;'€+l|2dx + J(x(UPd _ Ui)Ui+1ds < <fi+1 _ fi,Zi+l>Q
k=1¢, r

gl — g 20,

with U = ([w'*] — [wi])/h on I' and Z"7" = (u*! —u’)/h € V, and taking into
account the convexity of j. Applying the relation 2(a — b)a = a2 + (a — b)* — b% with
a = Ul and b = U, and the assumptions (9), (21)-(22), it results

hoy|VZH 5 o + Joc(U”l)zds < Jo«Ui)zds +(dy + Cydo)h||Z |y
r r

Notice that the V-norm may be no equivalent to a seminorm. Thus, summing on
j=1,---,i@ e {1, ---,m—1}) we obtain
i
()’ . .
5 D MIVE G o+ oy [UTE < o UV

=1
(41)

(dy +Cyda)? o4 12
+TT+?;}LHU I2.rs

with mh = T.
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Let us determine the estimate for the first term on the right hand side of the
above inequality. Rewrite the integral identity (36) for ¢ = 0 in the form

2 2
Z J oV —ud) - V(vp — ub)da + Z J o Vuy - V(v — up)da
k=1 g k=1 g

n_
+JJ”2 Smﬂ—wHM&+ﬁﬂwD—ﬂmmhkz<P—ﬂmw—u59
r

r

+ (£(0),v — u1>Q - <gl —9(0),v1 — ubr — (g(0),v; — ubfv

for all v €V, and in particular v = u’. Thus, we apply the assumption (23) with
v =ul, (9), and we divide by %, deducing

[u!]— S\*
el V2 g + [2(M572) ds < (I - 1Ol + 19" - 9Ol ) 12 -
r

Then, using (10), (21)-(22) and taking the Young inequality into account for the right
hand side, we get

(dy + Cydy)*h

142
oyl U ||2,r < 204

ag
+ 5 MU -
Considering & <oy min{1/g4,1} we insert the resulting estimate for U! into (41)
concluding

T4 : : (di +Cydo)® | o4x~, o
D HIVE o 4y [0 < @ 4 D TS S
= =

Applying the Gronwall Lemma, U,, is uniformly estimated in L>(0; T; L*(I")), and
successively Z,, is uniformly estimated in L2(0; T; V). Therefore, the existence of a
solution u € C([0, T]; V) in accordance to Theorem 2.4 can be proven by similar ar-
guments of passage to the limit (cf. Section 4).
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