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Absolutes of Hausdorff spaces and cardinal invariants Fy and ¢y

Abstract. This article extends the recent study of the cardinal functions Fj and ¢y
for H-closed Urysohn spaces and the research of I. Bandlov and V.I. Ponomarev on
tightness type of absolutes. In particular, some results are obtained and used to
study the relationships among the cardinal functions ¢, ¢y, F' and F} in the context of
Iliadis and Banaschewski absolutes of Hausdorff spaces.
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1 - Introduction

Absolutes can be traced to the fundamental papers by M. H. Stone [19, 20].
Absolutes received a major boost in research by A. M. Gleason [11] in 1958 quickly
followed by the major studies of B. Banaschewski, J. Flachsmeyer, S. Iliadis, J.
Mioduszewski, V. I. Ponomarev, L. Rudolf and L. B. Shapiro [5, 10, 13, 15, 16, 17]. The
tightness type of cardinal invariants were investigated for absolutes by 1. Bandlov
and V.I. Ponomarev [6] in 1980.

This paper continues this line of research for absolutes using two relatively new
cardinal functions Fy and 4. In particular, we obtain some results connecting ¢, ty, F',
and Fy in the context of Iliadis and Banaschewski absolutes of Hausdorff spaces.

Received: May 14, 2012; accepted in revised form: December 13, 2012.
This research was partially supported by a grant from the C.N.R. (G.N.S.A.G.A.) and
M.I.U.R. (Italy) throught “Fondi 40%”.



T2 FILIPPO CAMMAROTO, ANDREI CATALIOTO and JACK PORTER [2]

2 - Notations, terminologies and basic properties

Throughout this paper X will denote a Hausdorff space and 7(X) the topology on
X. Our notation and terminology are mainly as in [9] (for general topological notions),
[2], [12], [14] (for cardinal functions), [18] [21] (for H-closed spaces, H-closed ex-
tensions and absolutes of Hausdorff spaces) and finally in [7].

Here are a few basic definitions:

— With o, 3,7, ... are denoted the infinite ordinal numbers and with x, 4, &, ... are
denoted the infinite cardinal numbers. With N, Q, J, R we respectively denote
the sets of positive integer, rational, irrational and real numbers with the usual
topology. Also, by I and D" we respectively denote the Tychonoff cube and the
Cantor cube of weight .

— For a space X, recall that ©(X)(s) is the topology generated by the base
ROX) = {U € 1X) : U = mitx(clx(U))} (semiregularization of X). A space X
is semiregular if its topology 7(X) coincides with the topology 7(X)(s) and we
denote it by X(s) (or X;).

Clearly, every Ts-space X is semiregular (the converse is not true).

— Afunctionf : X — Y is 0-continuous if for each x € X and open neighborhood
V of f(x), there is an open neighborhood U of x such that f(clx(U)) C cly (V). It
easy to see that every continuous function is 9-continuous (the converse is not
true).

— A surjection f : X — Y is irreducible if for each closed set A C X, if A £ X,
then f(A) # Y. Equivalently, f is irreducible iff for each nonempty open set
U € ©1(X), there is y € Y such that f~(y) C U.

— A space X is H-closed if X is closed in every Hausdorff space containing X as a
subspace. Equivalently, X is H-closed if every open cover U of X has a finite
subfamily ) whose union is dense in X (i.e. XCelx( U V))

Vey

We need this well-known result (see in [18]):
X is H-closed Urysohn iff X is compact Hausdorff.

— A space X is extremally disconnected (or ED for short) if the closure of every
open set is open or, equivalently, if the closure of every open subset is clopen in
X, i.e., in symbol CLOP(X) = RO(X).
It is easy to verify that
X is ED iff X5 is ED and semiregular.
- [9] Let {X;},.; and {Y;},.; be two collections of spaces, X = [[X; and
iel

Y =[1Y; their product spaces and let {fi},.; be a family of functions

iel
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f; € F(X;,Y;). The product functionf = || f;is defined by IT} o f = f; o ITX for

1€l
each i € I (where IT¥ : X — X; and IT} : Y — Y; are respectively the i-th
projection functions of X onto X; and Y onto Y;).

X —Y
H.Xl lHY
X, -

Then, the product function is explicitely defined by:

901 76[ (H f1> (;) ze] <f2('701)>761

el

for each ¥ = (x;);.; € X.
It is well known that if for each i € I, f; is continuous (or 0-continuous), then
f =11 fi is continuous (or f-continuous) and conversely.

il
[18] eFor a space X, let X* =X U{U : U is a free open ultrafilter on X}.
Let xX be the set X* with the topology generated by the base ©(X)
U{UU{U}:U el € X*\ X}, and 6X be the set X* with the topology gen-
erated by thebase {o(U) : U € ©(X)} whereo(U) = U U{U e X*\ X : U e U}.
Both spaces kX and X are H-closed extensions of X. kX is called the Katétov H-
closed extension of X and ¢X is said the Fomin H-closed extension of X. The
identity function id : kX — ¢X is continuous. The remainder of kX (= kX \ X)
is discrete and closed in kX, and the remainder of 6X (= ¢X \ X) is a zero-di-
menstonal subspace of o X. If X is a Tychonoff space, then kX >y X >x X
where X denote the Stone-Cech compactification of X. When X is Tychonoff,
kX = pX iff X is compact and ¢ X = pX iff every closed nowhere dense subset of
X is compact. Also, we have that (kX); = (6X); = pX.
[18] Let X be a space and 60X (called the Stone space generated by RO(X) or the
Gleason cover of X) denote the set of all open ultrafilters on X. For U € 7(X) let
oU={Ue€bX : U U} and the topology on 8X generated by {oU : U € 1(X)}
is ED and compact Hausdorff. The subspace EX = {U € 0X : ad) # 0}
(called the Iliadis absolute of X) is dense, ED and T3 (hence 0-dimensional).
We define kx : EX — X by kx(U) = p where a(lf) = {p}. The function ky is
onto, perfect, irreducible and 0-continuous. Also, the function ky is continuous

if and only if X is T5. Note that EX = |J k5 (p).
peX
In general, {oU Nk5 (V) : U,V € ©(X)} is a base for a topology on £X (finer

than t(£X)). The set EX with this finer topology is denoted by PX (called the



74 FILIPPO CAMMAROTO, ANDREI CATALIOTO and JACK PORTER [4]

Banaschewski absolute of X). The map ITx : PX — X defined by ITx(U)
= kxU) is onto, perfect, irreducible and continuous. The space PX is ED but
may not be T3 (hence not 0-dimensional). Also, 7(PX)(s) = t(£X) and when X is
Ts, PX = EX.

This following fact is well-known:

X is H-closed iff EX is compact iff PX is H-closed Urysohn.

For the Katétov H-closed extension xw of w, note that P(xw) = kw and
E(kw) = (P(kw))s = (kw), = Po.

For the Fomin H-closed extension ocw of w, note that Plow) = ow =
P(fw) = fo and E(cw) = (P(ow))s = (fw)s = fo.

Definition 2.1. For x € X, t(x,X) =min{x: VA C X with tc AIBCA
s.t. |B| <k and x € B} is called the tightness of X at x.

t(X) = sup {t(x,X)} + wis called the tightness of X.
reX

to(x,X) = min{x : VA C X withex € clp(A) I3 B C As.t.|B] <rxandx € cly(B)}is
called the O-tightness of X at x.

to(X) = sup {ty(x,X)} + w is called the 8-tightness of X.
xeX

Definition 2.2. A sequence (x, : « € u) in a space X is called a free sequence
of length u if for every a € y we have

Clx{.’)()/g :ﬁ<<x} N Clx{ﬂC/; :ﬂ > OC} = 0.

A sequence (x, : o € 1) in a space X is called a 6-firee sequence of length u if for
every o € u we have

Clg{x/; :p<a}n Clg{%ﬁ p>at=10.
We define:

F(X) = sup{u : there is a free sequence of length x in X} + .
Fyp(X) = sup{u : there is a f-free sequence of length 1 in X} + w.

Here are some basic results that we will use throughout the paper:

Proposition 2.1. Let X be a space and Y C X as subspace.

(@) tp(X) = tp(Xs) and Fy(X) < F(X);

(b) If s atopology in X such that o O ©(X), then F(X) < F(X, o) (in particular
FX;) < F(X) and F(EX) < F(PX));
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(e) ¢(Y) < UX);
(d) IfY is closed in X, then F(Y) < F(X);
(e) If X is Ts, then tp(X) = t(X) and Fy(X) = F(X).

Recall the following result:

Theorem 2.1.

(a) [1]If X is compact Hausdorff, then F(X) = t(X);
(b) [7]If X is H-closed Urysohn, then

Fo(X) = Fp(Xy) = F(Xy) = tp(X) = tp(X;) = #(X).
Note 2.1. In[7], we constructed an H-closed space H for which F\y(H) <ty(H).

Now, we start with these straightforward results:

Lemma 2.1 ((18]). Let X and Y be spaces, A C X and [ : X — Y 0-continuous.
Then, f(clg(A)) C clp(f(A)).

Lemma 2.2. Let {X;},.; and {Y;};.; be two collections of spaces, X = [[ X,
1el
Y =[1Y: Suppose f =1] fi : X — Y where f; : X; — Y; (for each i € I) are sur-
el iel
jections. Then, f is wrreducible if and only if f; is irreducible for each 1 € I.

Proof. Letf:X — Y be irreducible and, fixed 7 € I, we want to show that
fi : X; — Y; is irreducible. So, let 7 € I and a nonempty open set U; in X;. Then,
U=U;x][X; is a nonempty open set in X. By hypothesis, there exists

Y= <yi>i€,#€LY such that f~(y) C U. So, for each i€, f;(y;) C U;. Thus,
fi : X; — Y; is irreducible for each 7 € 1.

Conversely, suppose f; : X; — Y; is irreducible for each i € I and we want to
show that f : X — Y is irreducible. So, let U be a nonempty open set in X. We
want to find ¥ € Y such that f~(y) C U. Now, there are a finite set J C I and a

nonempty open set U; in X; for each ¢ € I such that ) # [[U; x [] X; C U. By
icJ iel\J
hypothesis, for each i € I, there is y; € Y¥; such that f;~(y;) C U; and for i¢J

select a point y; € Yi. For y = (yi)ic, [~ ) =1 ;7 W) S [Lie; Ui x [T Xi CU.
Thus, f : X — Y is irreducible. el iens O

Lemma 2.3. Let X and Y be spaces, p € X and f : X — Y be a perfect, irre-
ducible, 0-continuous surjection. Then, p is isolated in X if and only if f(p) is
1solated in Y.
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Proof. Suppose p is isolated in Y and, since f is irreducible, it follows that

FF@) = {p).As, X\ {p}isclosed, (X \ {p}) = fX \ f~(F ) = FCO\ {f(p)} =
Y\ {f(p)} is closed. So, {f(p)} is open and f(p) is isolated in Y. Conversely, sup-
pose f(p) is isolated in Y and, since f is f-continuous, there is an open set U € ©(X)
such that p € U and f(clxU) C cly{f(p)} = {f(®)}. So, U\ {p} is open and if

U\ {p} # 0, there is y € Y such that f~(y) C U\ {p}. As f(U) = {f(p)}, y = f(p)
implying p € f~(f(p)) C U \ {p}: a contradiction. Thus, U = {p} is open and p is
isolated in X. 0

Note 2.2.

(a) Example 15 in [7] shows that there is an H-closed and Urysohn space X such
that Fp(X) < F(X).

(b) In general, neither ¢(X) < t4(X) nor t49(X) < #(X). In fact, in [7], the space in
Example 11 shows that £9(X) <#(X) and the space in Example 12 shows that
HX) <ty(X).

3 - Some results

First, we examine some of the basic properties concerning cardinal functions Fy
and ty on absolutes:

Theorem 3.1. For a Hausdorff space X we have that
(@) F(PX) > Fo(PX) = F(EX) = Fo(EX) > Fo(X);
(b) t(PX) = tg(PX) = t(EX) = te(EX) > ty(X).

Proof. (a) Let (,),c, be a 0-free sequence in X and choose y, € k% (x,) and
B<pu.
Then, by Lemma 2.1, we have that

kx (clo{yat,<p) € clo{bx¥a)},e p = clo{s} e p
and also

kx (Clg{yu}ooﬂ) C Cl@{kX(%c)}oo/; = Clﬁ{xa}aoﬂ .

Moreover, clp{ws},< 5N clo{®:},5 =0 and so clp{y},< 5N clo{ys},op = 0. Thus
Fy(X) < Fo(EX) = F(EX) = Fyo(PX) < F(PX).

(b) Let A CX and p € clp(4); we have that k5 (p) is compact and assume
k5 (p) Nelgxky (A) = 0 and this means that there exists a clopen set U such that
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ki (p) CU and U Nky(A) = 0; then kx(U)NA =0 and so kx(U) = clx(V) with
p € V. Thus p¢ cly(A) and this means that there exists ¢ € ky (p) N clgxky (A) and
then ¢ € clgxky (A). So, there is B C ki (A) such that |B| < {(EX) = tp(EX) and
q € clgx(B) = cly(B).

Now we have kx(q) € cly(kx(B)) where p=kx(q) and kx(B)C A; so, |kx(B)|
< |B| < HEX).

Thus ty(X) < ty(EX) = t({EX) = ty(PX) = {(PX). O

Note 3.1.

(a) [7, Ex. 12] w = t(kw) < ¢ = ty(kw) = Folkw) <2 = F(kw).
(b) [12, Ex. 7.22] As oo = fw, ¢ = tlow) = F(ow) = Fylow) = ty(ow).

Proposition 3.1. Let X be a Hausdorff space and Y be ED.

(a) |X| < |EX| < 22" and |X| < |PX| < 22",

(b) EX is ED Tychonoff and therefore semiregular and EY is homeomorphic
to Y,

(¢) PX is ED and PY is homeomorphic to Y,

(d) If D is a dense set of isolated points in X, then D C EX C pD;

(e) There is a discrete space D such that |D| < d(Ys) and Y can be embedded
m fD;

) A countable subset A of Y is C*-embedded in Ys. In particular, if B is an
mfinite compact subspace of Ys, then B contains a copy of fw (i.e. contains a
subset C ~ fw);

(@) If fo =Y, then t(Y) > cand F(Y) > ¢;

(h) Ifp € X, then r(EX)|k§(p) = r(PX)|n;(p).

Proof. (a) As kx: EX — X is onto, |X| < |[EX]| = |PX]. Also, as {U/ :U is a
fixed open ultrafilter on X} C P(P(X)), then |PX| = |[EX| < [P(P(X))| = 22"

For the facts (b), (¢), (d), (e) and (f) we refer the reader to [18].

(g) We have that ¢ = {(fw) < t(Y) and ¢ = F(fw) < F(Y).

(h) Both ki(p) and IT5(p) are compact subspaces in the same set. As
(EX) C 1(PX), t(kx (p)) € t(lIx (p)). Since compact Hausdorff spaces are minimal
Hausdorff, it follows that (k% (p)) = t(ITx (p)). O

By Proposition 3.1(a), it is natural to ask whether the following inequalities are
true or not:

x If X is Hausdorff, then F\(y(X) < Fy(EX) < 92"
x If X is Hausdorff, then £5(X) < tp(EX) < 920
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Proposition 3.2. Let E be an ED, semiregular space and D a discrete
subspace of E such that |D| = d(E). Then,

t(E) < t(PE) < (D) < w(pD) < 2P = 27®),

Proof. By Proposition 3.1(e), fE — D\ D and t(E) < t(fD). As, E C jiE,
then #(F) < t(PE). It always true that t(fD) < w(fD). Finally, by 3.3(b) in [12],
w(BD) < 208D — 2ID| — 2d®) -

Proposition 3.3. Let X be a H-closed space with a dense set D of isolated
points. Then,

(a) ED = D is dense in EX;
(b) EX =gp BD;
(¢) PX is the set BD with a finer topology o and t(fD) C o C (kD).

Proof. For the facts (a) and (b) we refer the reader to [18].

(e) PX is EX (and by (b), =gp D) with a finer topology, i.e, 1(PX) D t(EX),
and 7(PX)(s) = t(£X). That is, we can consider PX as D with a topology ¢ such
that o D ©(fiD) and o(s) = ©(BD). Also, kD is fD with a finer topology such that
(kD) 2 ©(fiD) and t(kD)(s) = ©(fD). By 7.7 in [18], there is a continuous bi-
jection from xD to (fD,o)( = PX) that leaves the points of D fixed. Thus,
o C ©(xkD). O

Example 3.1. The inequalities Fy(EX) < 22" and ty(EX) < 22" are false.
To show this, let D be infinite discrete space of cardinality x and X = «D be one-
point compactification of D. Note that ty(X) = (X) = Fp(X) = F(X) = w. Also,
EX = E@D)=pD and tyEX)=HtEX)=FyEX)=FEX) >k as |D|=x. We
have 227" = 922 — 2¢ but Fy(EX) > « for any cardinal x.

When x = (2°)" we have that

— FO(EX) 2 (2(‘)+ > 2( — 22FU(X)'
_ tg(EX) > (2()+ S 90 — 22t,,(X).

Proposition 3.4. Let X be a space

(a) d(EX) < d(X;) < d(X);

(b) If X is T3, then d(EX) = d(X);

(©) |EX| <22 and |EX| < d(XyE%;

(d) If X is separable, then EX s separable, |[EX| < 2° and t(EX) < ¢
(e) wEX) < 2D gnd wPX) < 2%,
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Proof. (a) The inequality d(X;) < d(X) is clear. To prove the inequality
d(EX) < d(Xs), let D be a dense subset in X such that d(X;) = |D|. For each d € D,
select &g € ky (d) and let D' = {x;:d € D}. We have D’ is dense in EX and
|D'| = |D| = d(X;). Then, d(EX) < |D'| = d(X;).

(b) Suppose X is T and D be a dense subset in £X such that d(ZX) = |D|. The
map kx:EX — X is continuous and onto. Then, kx(D) is dense in X and
dX) < |kx(D)| < |D| = d(EX). Thus, with (a) we have that d(EX) = d(X).

(¢) Recall two well-known results by Pospisil [14]: “If X is Hausdorff, then
1X| <22 and |X| < dX)YO”. So, |EX| < 22" and, by (a), |EX| < 22", Also,
|EX| < d(EX)Y" Y and, by (a), |EX| < d(X, &,

(d) If X is separable, then d(EX) < d(X;) < d(X) < w. Thus, by (¢), |EX| < 22" =2°
and moreover EX is separable too. Also, as EX C flw, then t{(EX) <t(fw)=c.

(e) First note that o(X) = |[t(X)| < 2*%). A base for EX is {oU : U € t(X)};
so, wEX) < o(X). Likewise, a base for PX is {oU Nkyx(V):U,V € 1(X)}; so,
w(PX) < oX). O
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