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Global existence for an Oldroyd-type model

for viscoelastic fluids

Abstract. In this paper we show global existence of weak solutions for a class of
integrodifferential equations generalizing the Oldroyd model for viscoelastic fluids.
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1 - Introduction

In this paper we are interested in the following equation.
p t
(1) %u(t)—k u®) - Vut)= —Vp) + div F(Vu(t))+J Gt — s)div H(Vu(s))ds + f(2),
0

in a bounded domain @ in 2D and 3D with C? boundary. We assume divu = 0,
Dirichlet boundary condition and initial condition ug. We show that we can get the
same results as for the equations without integral term.

To be more precise, we assume power-like type nonlinearities ¥ and H. If the
integral term is missing and F' is monotone and satisfies ||[F'(Vu)|, < C |\Vu||7;71
then existence of global solution (and uniqueness in 2-dimensional case) was shown
by Ladyzhenskaya (see [7], [8], [9]) for p > 11/5. This result was extended to p > 2
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by Mélek, Necas and Rizicka (see [10]) under additional assumptions on ¥ and then
by Wolf (see [13]) to p > 8/5 without any additional assumptions. Finally, it was
solved by Diening, Razicka and Wolf in [3] for p > 6/5. In our paper we show
Ladyzhenskaya’s result for the integrodifferential equation.

Equations similar to (1) were studied by Agranovich and Sobolevskii (see [1], [2]). In
[2] a local in time solution is obtained for dimension N = 3 (more regular than weak
solution) under more restrictive assumptions in many aspects (the nonlinearities /' and
G arelocal in space, they depend on the second invariant of symmetric gradient of u and
satisfy some boundedness conditions, but do not need so strong monotonicity). Let us
mention that there are weaker assumptions on  in [2], however our assumptions can
also be weakened a lot (in fact, only local integrability of (¢, s) — G(t, s) with respect to
the second variable uniform with respect to the first variable is needed).

The main problem of [2] is that the integral term depends on the past values of »
in the same space point x. However, if the equation describes the behaviour of a
viscoelastic fluid, it should depend on % in the same material point X, i.e. in a different
space point x(s) (see [4], [5], [12]). In our equation H depends on the whole function
u(s, ), so the exact space point is not specified. Hence, our result can be a good tool to
study more realistic models presented in [4], [5], [12], where global existence of weak
solutions has been proved in linear case.

2 - Definitions and Main Results

For p €[1,00), p’ will be always the number satisfying 1/p +1/p’ =1. Let
Q C RY be open, bounded with C? boundary and N = 2 or N = 3. Define Wé"giv(Q)
(resp. L3 ;,(€)) as the closure in W*-norm (resp. in L?-norm) of all C** functions with
compact’support in 2 and zero divergence. We consider solutions in a weak sense
according to the following definition. If uy € L2 ;, (@) and f € L¥ (0, T; (W&"S;U(Q))’)
we say that a function we LD (0, T; Wb () NLX0,T; L)  with

w € L2 (0, T; (W&ﬁw(g))' ) is a weak solution of (1), if

loc

t
@) (u ) +J (- )y +JF<Vu) Y+ ”G(t — HH(Vu(s) : Vod)ds = (f, g)
Q Q Q0

holds for all p € W, (2) and a.e. t € [0, T] and
Lim {|uu(t) — ol = 0.

We say that u is bounded weak solution if in addition u € LP(0,T; Wé_”gw(Q))ﬂ
L>(0,T; L3(Q)).
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Let co > p > 2 > q > 1. We introduce the assumptions on F, G, and H. We as-
sume F : LP(QNN — L7 (@NN H : Ly@™N — LY (@MY with F(0) = H(0) = 0
and there exist positive constants y, Cr, Ar, Cy, Ag such that

(Fmon)  (F() = F@p),x —y) > up(lx —yl3 + @ — ylD), @y € LP@YY,

(Fbdd) IF@)|l,, < CrA +|z[b™), @ e LP@™ Y,
(Flip) IF@) —F@l,y < irlle—yll, @yelP@VVNB,
(Hbdd) |H@)|, < Callelli, e LU,

(Hlip) |H@) — Hlly < 2ulle —yll,, @y e L@V,

where B is any ball in LL? and 4 may depend on its radius. Moreover, we assume
(©5) G e Lj,.(R,).

For example, ' can be a pointwise mapping F' : R¥*Y — RNV that is monotone,
locally Lipschitz continuous and satisfies

IF@I| < c(llz] + 2’ D), @ e RNV,
IF@) = F@|| = colle —yll, w,y € RV,
Then F' satisfies the above assumptions.
We start with a lemma.
Lemma 2.1. Let F, H satisfy (Fbdd), (Hbdd) on [0, T], T < + oo and G € L.
Then there exists Cr depending on T such that

L F@)llpr oz < CrQ + |50 510 for all v € LPILP)
2. |G * HW)|| gy < CrllGllpa 10l r for all v € LIWLA).

Proof. We have

T 1/p T 1/p
||F<v>|Lp/<Lp/>( ||F<v>||§§,) < <j02<1+||v||;“>”’) < Cr (14 0ls)):

0

S

since p'(p — 1) = p. The first assertion then follows since p/p’ = p — 1. The second
assertion follows from the inequality

G+ HO)| 1o 0y < NGl IH®) 1o 1,0

and the same computation as in the first assertion. O
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We say that G is of positive type if
ts
JJG(S — ){v(1), v(s))dzds > 0
00
for allv € L}

1Ry and t € [0, +-00).
Now we are ready to formulate the main results of this paper.

Theorem 2.2 (2D existence and uniqueness). Let N =2, p > 2, ¢ < 2. Then
forevery 0<T < + oo there exists a unique bounded weak solution u to (1) on [0, T].
There exists a weak solution on R, .

Theorem 2.3 (2D boundedness). Let N =2 and p > 2, ¢ < 2. Then the weak
solution u to (1) is bounded on R if one of the following conditions hold.

L4 G S Ll(R+)

e G c Ll (R,)is of positive type and H is linear.

loc

Theorem 2.4 (3D existence). Let N =3, p > 11/5 q <2 Then for every
0<T < + oo there exists a bounded weak solution u to (1) on [0, T]. There exists a
weak solution u to (1) on R,.

Theorem 2.5 (3D boundedness). Let N =3 and p > 11/5, ¢ < 2. Then there
exists a bounded solution on R if one of the following conditions hold.

e GeL'(R,).
o G Ll (Ry)is of positive type and H is linear.

loc

3 - Local existence of Galerkin approximations

We use the standard Galerkin method. Let {w”"},”, be the basis of
H .= WOI“giv(Q) consisting of the eigenfunctions of the Stokes operator. Denote
V. = span{w', ... w"}.

Proposition 3.1. There exist Ty >0 and noncontinuable functions
n .
¢ € WloC 0, Tiae), j = 1,...,m, such that u"(t,x) := Y c;(Ow’(x) satisfies
j=1

t
3) Jufw +J (" Vo = (FVu"), Via) +( JG(t ~ DH(VW (&), Vo) + (. 0)
Q Q 0
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forallw eV, (here (f,9) = [ fg) and
Q

n
u"(0) = uy == E aw', e = Juow’.
J=1

Q

Moreover, if Tyax < + oo then c; is unbounded for some j.
Proof. Since (w/,u*), = d;; we obtain

@) GO =-> ¢t J @’ - V' +JF ( > ! (x)) L V' (@)dae
j=1

J= ) o
t n
+ J JG(t - s)H< q,-(s)wf(x)> : Vak(e)dsdw + (f (), w),
Q0 =t
with initial conditions ¢(0) = al!. For ¢ := (c¢1,...c,) € R" and w = (w!,...,w") €
(C>(2))" we denote
Ale) = = o J ! (@) - V! ())w(e)dae

Jil=1 0

F(c) = F<chwj(x)> : Vw(x)dx
o N\

H(e) = H(chuﬂ'(m)> s Vao(e)dae
o N

t

Gt = |Gs)ds

0

f@ = [{(fs)w)ds + a”

0

and after integration from 0 to ¢, (4) yields
t

(5) ct) = JA(c(s)) + F(ce(s)) + Gt — )H(c(s))ds + F (t).
0

Since ¢(t,s,7) := A(z) +FQR) + G(t — $)H(2) satisfies the assumptions of Theorem
12.2.6 in [6] (here we need local Lipschitz continuity of ' and H and local integrability
of (), this theorem gives us a unique continuous noncontinuable solution ¢ to (5),
which is defined on R, or blows up in finite time. Since the right-hand side of (5) is in
Wllo"f(O, T:R"), we have ¢ € Wllo"f(O, T:R™ and ¢ solves (4) for a.e. t € [0, Typae). O



42 TOMAS BARTA [6]
4 - Energy estimates
In this section we prove some estimates on Vu and ;.

Proposition 4.1. There exists a constant K depending only on Q, up and Cy
a constant C depending on || f |y o v, and [[uolly but independent of n such that if
T 0.div

T satisfies | |G|ds <K then any solution of (3) on [0,T) satisfies
0
(6) lw" @3 + V"7 < C-
Proof. Let us take w = «"(t) in (3). Since

J(u"’ -Vuu" =0
Q
we obtain
t
(7 J %(un)u” = —(F(Vu"),Vu") —J Gt — s)(H(Vu"(s), Vu"(@))ds + (f,u").
0

It follows that

1d

5 g 1Ol + el o O] <

¢
JG(t — )(H(Vu™(s)), Vu'(t))ds
0

Ol 10" Dllyas

where we used (Fmon) and F(0) = 0. Integrating this inequality from 0 to ¢ and
applying Young inequality and Poincaré inequality to the last term we obtain

1 vz N Nty < CONF W s 5+ T8 Wy

hence,

t

1 ,
8) 5 IO+ e~ T 5 <
0

JG(‘L’ — s)(H(Vu"(s)), Vu'(z))ds|dt
0

"
+ CONS sy + 5 Il
The integral term in (8) can be estimated using Holder inequality and Lemma 2.1 by

9) G * HV U o @) V" |y < Crll Gl Ve [ Lagzey-
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Since for p > q we have
[ollg < C-olly < C- (ol + 1)
(with C depending only on () then taking ¢ small enough (so, CCxl|G|| 1,14 <e is

small) we obtain

1., , 1
(10) 5 1 DI + (g = 2|V |71y < CEI S +5lleall + e

P
LY (W)

This proves the assertion. O

Proposition 4.2. If H is linear and G of positive type, then
(11) " ®15 + Va0 < C

holds on [0, + c0).

Proof. The proofis similar to the previous one. We integrate (7) from 0 to ¢ and
estimate the convolution term by 0 from below (according to the definition of posi-
tive-type functions). The remaining terms we estimate as in the proof above. O

For T'< K from Proposition 4.1 (resp. for all 7'in linear case) we already know that
the sequence #” is bounded in L>(0, T; L?) and L?(0, T Wéfgw)- We want to show
boundedness of ;. It will be needed to show convergence of " to a solution «.

Lemma 4.3. Letv € L*(LA)NLI(Wy"h,).
1. IfN =3thenv e L%p(L%p) and Hv||L§P(L§P) < C(||?}||Loc(L2), HV/U”L])(L/J)).
2. If N = 2then v € L*(L*) and ||v| 220y < CUD I ezeys IVl poiin)-

Proof. This lemma follows easily from Hélder’s inequality and Sobolev im-
beddings. O

Proposition4.4. Letp >11/54 N =3 andp > 2if N = 2. For any finite T
from Proposition 4.1 there exists C(f,ug) > 0 (independent of n) such that any
solution of (3) on [0, T) satisfies

(12) 1l @ ey, < CCF s tt0)-

Proof. We have

T
[ lorasy = s Jwd ot
' peLPO.TWh )lpll<1
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Moreover, we have

<

T
Jmf, )t < Juf(pndxdt +

Q

S

S

J(un . vun)¢7z
Q

T
J<F<vm>, Vo)
0

T

Jroom

0

+ -

O ey N3

t
JG(t — ){H(Vu"(s)), Vo")ds
0

Using Lemma 2.1 and Proposition 4.1 the second, third, and forth term on the right-
hand side can be easily estimated by

~ -1
VO ooy - U o mwen, vy + CPUAV I + D

-1
+ Cull Gl VU 1 Ly < CUIVG | Loin-

The convective term can be estimated as usually. In fact, we have

(13)

St
e}

J(un . vun)q)n

T
2 y 2
< C”Iu“l 96" | < CIVO e Bl
0Q

. 2 2
= C||V(ﬂnHLW(Lp)Hun”m’(mp’) = C||Vgp”||L,,(L,,)||u”||L% (LI%)

IfN:S,pZ%thenpzflggp. IfN:2,p22thenpf1§2p. In both these
cases, by Lemma 4.3, the right-hand side of (13) is bounded by C||V¢" | 1,z The
proof is complete. O

5 - Convergence of approximations

In this subsection we show that a subsequence of %" converge to a candidate
function % and that the function u is a solution to the original problem. The method
will be standard using Aubin-Lions Lemma and interpolations to obtain as good
convergence as possible and then using Minty trick to pass to the limit in the non-
linear terms.

Lemma 5.1. There exists a function u : [0, T) — L? and a subsequence of the
Sfunctions u" from Proposition 3.1 such that

1. w" — u weakly* in L>(0,T; L?)

2. Vu" — Vu weakly in LP(0,T; LP)
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u" — w weakly in L°P/3(0, T; L°P/3) vesp. L?(0, T; L?P)
u — wy weakly in L7 (0, T; Wy, )')
u" — u strongly in LP0,T; LP)

A O

u" — u strongly in L"(0, T; LP), r< + oo

u" — u strongly in LP0,T; L"), r< 3319

=

resp. r<< + 00

8. ||[u'®)|, — [[u®)|s for a.e. t €[0,T]

for N = 3, resp. for N = 2. The assertion 7. for N = 3 holds if p<3, if p > 3, then it
holds for all r< + oc.

Proof. Thel.and 2. assertions follow from Proposition 4.1, the 3. from Lemma
4.3, the 4. from Proposition 4.4, 5. from Aubin-Lions lemma and 6. and 7. from in-
terpolation and compact Sobolev imbeddings.

Let us prove 8. From strong convergence in L?(0,T; L?) and Cauchy-Schwarz
inequality we have

T T
0 — lim J o — w|2dt > lim sup J [l — [l 2dt
0 0

T/
> liminf | [, ~ ul,%dt = 0.
0

So, scalar functions t— ||u"(t)||, converges to ¢t |[u(t)||, in L*(0, T). Hence there is a
subsequence converging for a.e. t € [0, T]. O

Proposition 5.2. For any finite T from Proposition 4.1 (resp. for any
0<T < + 0o tn linear case) there exists a bounded weak solution u to problem
1) on [0,T).

Proof. Writing the weak formulation for " € V,,, w € C3°(0,T) and wk we
obtain
T
J(u” . Vu”)wkl// = — J(F(Vu"), Vwk)y/
Q

0

T
(14) J((u")’m;k vt
0

S —_

Tt T
JJG(t — 8)(H(Vu™(s)), Vu Yy (t)ds + J(f Wy
00 0
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We pass to the limit for n — co. For the linear term we have

T T
lim J((un)’,wk>q/ = J<u’,u/f>w.
0

N—00
0

For the convective term we have

(15)

T
J J(u” VU —u - Vuuw" day (t)dt
00

<

O ey N3

T
J|u"’| Ju™ — || VuFy|dadt + JJ " — | - |u|| V| dadt
Q 0Q

k
< lu’ — “”LZ(LS)HVW ||L2||‘//||oo(||u||L2(L6> + ”un”LZ(LG)) — 0.

It remains to show convergence for the other two nonlinear terms. Since
t
F(Vu™) + JG(t — 9 H(Vu"(s)) =: B(Vu")
0

is by Lemma 2.1 a bounded sequence in L” (L”'), there exists a subsequence of "
(denoted again by «") and a function B € LV (L") such that B(Vu™) — B weakly in
LY (LP). If we showed that

(16) (B, V) = (B(Vu),Vg) forall p € Wy, and ae.t e (0,7)

then % would be a weak solution and the proof would be complete.
In Lemma 5.4 we show that

t
J(B(V(u +¢p)) — B,eVp)ds > 0
0

for all p € LP(W, %), & € R. Since
0 <(B(V(u + ¢p)) — B,eVp) = (B(V(u + ep)) — B(Vu),eVe) + (B(Vu) — B,eVp)
< &5Vl + e(B(VW) - B, V),

holds for every e (—9,+9) (and for ¢ as well as for —¢), we obtain
(B(Vu) — B, Vo) =0, i.e., (16) holds and the proof will be finished as soon as we
prove Lemma 5.4. O
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Lemmab.3. Letu"™ — winthe senseasin Lemmab.1, let B(Vu™) — B weakly
in LY (L. Then

(17) (B,Vo) = (f —w —u-Vu,p)

forall p € Wi, and a.e. t € [0, T,

Proof. Since u" satisfies
(Bu™), Vub) = (f — ! —u™ - Vu", )

for all w > k and a.e. t € [0, T'], we have
T T
J(B(u”), Vi (s)ds = J< F—ul — - v why(s)ds
0 0
for every y € C*°(0, T). Taking the limit for n — oo we obtain
T T
J(E, Vwk>y/(s)ds = J(f —uy —u - Vu, wk>t//(s)ds
0 0

since u} — u; weakly in Lp’((Wé,’gw)’) by Lemma5.1 and " - Vu" — u - Vu weakly in
L”/((W&’giv)’) according to (13). Since this holds for all k, we have

T T
J(E, Vo)w(s)ds = J(f —ur — u - Vu, p)p(s)ds
0 0

forallp € Wéﬁiv (passing to the limit for £ — oo) and for ally € C*. Now, (17) easily
follows. O

Lemmab.4. Letu" — wasin Lemmab.1, let B(Vu'") — Bweakly in L¥ (LV).

Then
¢

(18) J(B(Vv) — B, Vv — Vu)ds > 0
0

for all v e LPWyh ).

Proof. If we justify all steps in the following computations, the assertion will
be proved.
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t ¢ t

(19) J(B(Vv) B, Vv — Vu)ds J(B(Vv) Vv — Vu)d J (B, Vv)ds +J , Vu)ds
0 0 0

t

¢ ¢
= lim <J<B(Vv), Vv — Vu')ds J(B(Vu”) Vv)ds +|(VB@"™), Vu'™)d )
0 0 0

Nn—00

t

= lim J(B(Vv) — B(Vu"), Vv — Vu")ds > 0.
0

The first equality is trivial. To show the second equality we need to justify

t ¢
nlgrolo (J(B(Vv), Vo — Vu')ds — J(B(Vu"), Vv)ds)

0 0

¢ ¢
= J(B(Vv), Vv — Vu)ds — J(E, Vv)ds
0 0

(this follows immediately from weak LY (LX) convergence of Vu" — Vu and
B(Vu™) — B) and
¢ ¢

(20) lim J<v3(u”>, Vu')ds = J(B, Vau)ds.

n—0o0
0 0
However, since %" is a solution of (3) and by the previous lemma, equality (20) can be

rewritten as
¢ t

lim J(f —uy —u" - Vu',u")ds = J(f —ur — - Vu,u)ds.
NnN—00

0 0

Clearly, .

(21) lim J(f, w* —u)ds =0

N—00

0
by weak LP (Wé”giv) convergence of u" — u. The terms
(" - vu',u"y =0, (u-Vu,u)=0

vanish for a.e. t € [0, T, so it remains to show
¢

lim J(uf,u”) — (ug, uyds = 0.

0
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Sincew € LP (Wol”giv) and u; is in the dual space (and the same holds for #” and '), the
left-hand side of (21) is equal to

. 1 n n
Jim 5 (Il @l — @Il + " O]l — [[eO)]]2),

convergence to 0 follows from Lemma 5.1, part 8. and L? convergence of initial va-
lues. The second equality in (19) is proved.
The third equality in (19) is trivial and the last inequality follows from

¢ ¢
(22) J(B(Vv) — B(Vu"), Vv — Vu")ds = J(F(Vv) — F(Vu"), Vo — Vu")
0 0

t
+< JG(t — 8)(H(Vv(s)) — H(Vu'(s))), Vv — Vu">ds
> gl Vv = V| Tz — 1G] 20 VY = Vo722 > 0

since up — Ag||G|| > 0if T <K from Proposition 4.1. If H is linear and G of positive
type, then the estimates in (22) follow easily. The proof is complete. O

6 - Energy inequality and the initial condition

Proposition 6.1. The weak solution u obtained by the Galerkin method
satisfies

(23) [uc)||5 + ¢

C—

t
IVulds < [(£6),u6s)ds + ol

0
Proof. Taking ¢ = »"(t) in (3) and integrating from 0 to £ we obtain

t t T
% ||u"(t)||§ + J JF(Vu"(s)) :Vu'(s)ds +J J JG(T — 9 H(Vu"(s)) : Vu'' (t)dsdr
00 020

t
- e wpas+ g o
0

Estimating the second term from below and the third term from above we get

t t

1 1

1 O1E +c [ 70 lds < (1760 @)as + 5 | O
0 0
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Multiplying by v € C;°(0,T), y > 0 and integrating from 0 to T, we get

T t t
e | [; [ O + ¢ [ 1T @ds - [(70).a0)ds ~ 5 s ||2] VDt <0,
0

0
We have (by strong convergence in L*(L?))
T
J @) Bt —

0

[u(@)|[5p(t)dt

o

and (by weak semicontinuity of the norm)

t
liminf J J |V dsy(B)dt >
00

St—

t
[ Ivuzasyioa
0

Since the other two terms in (24) converge, we obtain

T t
| {% a3+ [ [Futo)ds — [ uepas — 5 ||uo||§] y(bt < 0.
0

0 0

If v is a molifier w, and we let ¢ — 0, we obtain (23).

[14]

O

Proposition 6.2. The solution from Proposition 5.2 satisfies || u(t) —uol|; — 0.

Proof. Multiply 3) by w € C*[0, T'l, w(T) = 0, integrate from 0 to T and apply

integration by parts to the first term

Ju"(O)wwm) -

Q

Ju”wy/’ +

S —_
©
S —_
©

T
J(u” - VuYwy + J(F(Vu"), Vw)y
0

T ¢ T
+ J < JG(t — S)H(Vu™(s))ds, Vw>1// — J(f, W)y =
0 0 0

Pass to the limit for n — oo and use completeness of {w*};* | in H, we have

T
luow(o) liwﬂv/’ + “(u Vu)py + J<F(Vu), Vo)y

T

0

C—

0

Gt — s)H(Vu(s))ds, W>t// - J<f oW =



[15] GLOBAL EXISTENCE FOR AN OLDROYD-TYPE MODEL FOR VISCOELASTIC FLUIDS 51

for all p € H. Using again integration by parts we have

JW!// = u(0)py(0) — Jut.gm//.

o5
Q
O ——
Q

Inserting this equality into the previous one and using the fact that u is a weak
solution to (1), we obtain

J w(0)py(0) = J uopy(0).

Q

Hence, u(t) to uy weakly in L? and as a consequence we have lim inf; o ||u(t)|| > |juo]|.
Since u also satisfies limsup ||[u@)|, < ||uolls by (23), we have ||u@®)|l, — [|uolls-
Together with weak convergence and uniform convexity of L? this implies the
assertion. O

7 - Proofs of the main results

In this section we finish the proofs of Theorems 2.2 - 2.5. If H is linear and G of
positive type, then the existence of a bounded solution on any bounded interval
follows from Propositions 5.2 and 6.2. For the nonlinear case we have only existence
on [0, 7) for T < K. First we show that we can continue a solution by taking u(f) as a
new initial value and pasting the two solutions together. Then we show that after
finitely many steps we get a solution on any bounded interval.

Proposition 7.1. Let u be a solution of(l) on [0,T) and Ty <T. Let u be a
solution of (1) on [O T) with G replaced by G(t) =G+ Ty) and f replaced by

f@) :=ft+ Ty + j G(t — s) div H(Vu(s))ds and uy := w(T1). Then

o0) — {u(t) t<Ty
T lat-Ty) Ti<t<Ti+T

1s a solution to (1) on [0, Ty + T).
Proof. It is clear that v e LfOC(O T: + T W0 dw(Q)) NL3.0,T, + T; LA(Q))
and attains the initial condition in L?-sense. It remains to show that
v € LZOC(O T: + T (Wégw(!))) ) and that it satisfies (1) for a.e. t € [Ty, T + T)
Since v; is in the LP space on [0, T1) and also on [T, T + T) we only need to show
that v is continuous in 74 in the norm of (W():giv(g)) . The continuity from the left
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follows from the fact that « is a solution on [0,7), T > T4, continuity from the
right follows from the fact that % attains its initial value in L2-norm (hence also in
(Wéjgw([)))*—norm).

We show that v satisfies the equation for a.e. t € [Ty, T1 + T). For a.e.t € [0, T)
we have

t
25) 0= (i, )+ J(a Vi + JF(V’ZL) Vg + ”G(t — 9H(Vi(s)) : Vo®)ds
Q Q Q0

—(f, ) = (wt + T1), p) + J(v(t +T1) - Vot + T)e + JF(W(t +T1) :Ve
Q Q

¢
+ JJG(t + T1 — ) H(Vu(s + T1)) : Voit)ds — (ft + T1), p)
Q0

Ty
+ J J Gt — s)H(Vv(s))ds : Veds.
Q0

If we add the two convolution terms, we can see that v satisfies (1). O

To finish the proof of global existence, let us note that the problem (1) from
Proposition 7.1 (with G, f and i) satisfies the same assumptions as (1), ie.
ip = w(Ty) € L2 (u(t) € L? a.e., so we can take an appropriate T1), G € L}, and
f e V(W )) (according to Lemma 2.1, G« (H o Vu) € LY (L?)). Hence, by

Proposition 5.2 this tilde-problem has also a solution on [0, T) for some T. Moreover,
~ T - T1+T
by Proposition 4.1 T is an arbitrary number satisfying K > [ |G| = [ |G|. So, if
0 T
G € L}, then we get the solution on any bounded interval in finitely many steps,

loc
hence it is bounded.

Consider the interval I,, := [T}, +c0), such that ||G|; <K on I, or H linear
and G of positive type. Then the estimate (6) holds on the whole interval I,.
However, the estimate of u; holds on bounded subintervals only with the con-
stant C depending on the length of the subinterval. However, we can write I, as
union of countably many subintervals, paste the solutions on these subintervals
and the solution that we obtain will be bounded since the estimate (6) holds on
the whole I,,.

Now the Theorems 2.2 - 2.5 are almost proved, the only remaining thing is the
uniqueness. It can be shown using Gronwall Lemma. Let uy, us are two weak so-
lutions. Subtracting the corresponding equations we obtain
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(26) <%(u1 — Ug), <0> +J (U1 - Vug — ug - Vug)p +J (F(Vuy) — F(Vug)) : Vo
Q Q

t
+ J JG(t — HN () — HVus(s)) : Voltds = 0
Q0

for ¢ € H. Since u; — ug € H, we have

(27) %H(%l —u2)®)||, + J(u1 -V — g - V) U — )
Q
+ J (F(Vuy) — F(Vu)) -V ty — p)
Q

|

G — s)H(Vui(s)) — HVuz(s))) : V(ur — uz)(t)ds = 0.

e

We have

J(ul Vaur — - Vatg)y — z) < Jur — wally| Vs — w)llyl| Vel
Q

Hence,

@) & s O, + Vs~ 10
t

< lur — uzlla]| V(ur — ug)llol| Vurp + ||G||1/1HJ||V(M1 — uz)(s)|3ds.
0
Using

u
oy = 02|V a1 = )| Vs < 1V 203 + Clluy = a3 - 90 3

we get

t
% <|<u1 —u)O|% + j 1V — uz)(s>||§ds>
0

t
<C <||(u1 —up)®)||5 + J |V (uy — u2>(s)||§ds> .
0

Uniqueness now follows from the Gronwall lemma.
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