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1 - Background and motivation

The viscosity solution notion gives an important answer to the research of a
definition of weak solution for strongly nonlinear equations.

It fits in a natural way in the second order equations setting. If H is proper, the
maximum principle for the equation

H(x, u(x), Du(x), D*u(x)) = 0

where u is a regular function and Du and D?u are respectively the gradient and the
second order derivative matrix (i.e. H(x,, u(x,), Do(x,), D*p(x,)) < 0( > 0) for every
p € C3(Q)if ¥, € Qis alocal maximum (minimum) point of % — @) doesn’t involve any
regularity of u and then it can be utilized to define the viscosity subsolution (in case <)
or supersolution (in case >) notion even if % is only continuous. The definition in the
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parabolic case
wit, ) + H(t, o, u(t, x), Du(t, ), D*u(t,x)) = 0
is similar.

However one can refer also to a different but equivalent definition of viscosity
sub(super)solution (see Subsection 3.1).

For a better investigation in the Euclidean case we mention the celebrated paper
of Crandall et al. [8] where both stationary and time dependent problems are con-
sidered. The notion of viscosity solution has been introduced in [10] about first order
equations. These results were extended by the same and other several authors. We
just mention the books [2], [1].

In this paper we prove some results about viscosity solutions for a class of para-

ey’ Ay’ T Oy,
in R" are replaced by an arbitrary orthonormal (with respect to a Riemannian metric)
collection of vector fields or frame

R = {X1,Xe,..., X0}

bolic equations in vector fields, that is when the vector fields { 0 9 e i}

where

X;=> a;@ady, i=1,...,n

J=1

for some choice of smooth functions a;;(x). We denote by tu, R2u and (R2u)* re-
spectively the natural gradient, the natural second order derivative matrix and the
symmetrized second order derivative matrix of the function u (a precise definition is
given in § 2.2).

Important examples are, besides the canonical frame, the Heisenberg group and
the Engel group (see Section 2.2). We consider parabolic equations of the form

(1.1) wy + Ht, o, u, Ru, R2u)*) = f(t, x).

Here we consider functions H : R x R” x R x R" x S(n) — R where S(n) denotes
the set of symmetric nxn matrices equipped with its usual order (thatis Y < X when
(Yp,p) < (Xp,p) for every p € R") and f : R x R" — R. Moreover we suppose [
continuous and H continuous and proper. Recall that H proper means

(Hl) H(t,%,"",f?,X) SH(tax7s7na Y)

whenever r < s and Y < X, for arbitrary ¢, x and #. Let us note that the deri-
vatives Ru and (R?u)* are taken in the space variable x. Examples of parabolic
equations in the frame include the parabolic infinite Laplace equation relative to
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the frame R

U+ Dp oot = U — ((%Zu)*ﬁim Ru) = up — [Z (Xiu)(Xju)Xinu] =0
ij=1

and the parabolic p-Laplace equation for 2 < p < co relative to the frame R
i + Dyt = uy — divg(||Rul|”2Ru)

=, — || Rl Aqu+ (p — 2)||%Ru||”*4Aw} =0.

In this framework, following the outline of [3], the author of [5] proved a max-
imum principle for viscosity solutions of parabolic equations, and consequently,
under additional hypothesis, he established a comparison principle in the same
frame. We apply the comparison principle to establish a decay estimate from which
we deduce uniqueness and existence of time almost periodic (a.p.) viscosity solutions
in vector fields.

We partially follow the method of [6], where existence and uniqueness of viscosity
solutions of first order evolution Hamilton Jacobi equations in the Euclidean en-
vironment are considered.

About the interest to have a.p. solutions we recall in particular the relation-
ship between almost periodicity and stability. Stable electronic circuits exhibit
a.p. behavior. In Celestial Mechanics a.p. solutions and stable solutions are
strictly related.

In Section 2 we describe almost periodic functions and the framework.
Section 3 contains all the results of the paper. § 3.1 is devoted to give the defi-
nitions of viscosity sub(super)solutions. § 3.2 contains the comparison principle
and a decay estimate for viscosity sub(super)solutions. § 3.3 is devoted to es-
tablish the existence of viscosity time almost periodie (a.p.) solutions. It largely
refers to the results of § 3.2.

Finally in § 34 we treat a classical result. We consider a time periodic
Hamiltonian of period T and prove that if « is a viscosity sub(super)solution for
t € (0,T), then u is a viscosity sub(super)solution for ¢ € R.

2 - Basic notions and framework

2.1 - Almost periodic functions

In this subsection we recall the definition and some fundamental properties of
almost periodic functions. For more details one can refer to [7], [9].
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Definition 2.1. Let f: R — R be a continuous function. We say that f is
almost periodic if it satisfies the following condition

Ve > 0 Jl(e) > 0 such that Va € R 3t € [a,a + I(¢)) satisfying
(2.1) lf¢+10)—f)|<e, VteR.

A number 7 verifying (2.1) is called ¢ almost period.

Proposition 2.1. Assume that f : R — R is almost periodic. Then

1) f 1s bounded and uniformly continuous in R.
a+T
it) (1/T) | f@)dtconverges as T — + oo uniformly with respect to a € R. The
a

limit is called the average of f and denoted by

a+T
(f):= TETOO% J f@®dt , uniformly wrt. a € R.
a
If f is periodic then (f) denotes the usual definition of mean of f over one
period.
1t) If F denotes a primitive of f, then F' is almost periodic if and only if F' is
bounded.

The following definition extends the notion of almost periodicity in order to apply
it to differential equations [11].

Definition 2.2. Let Q2 be a subset of R". We say that u : R x 2 — R is al-
most periodic in t uniformly with respect to x if u is continuous in ¢ uniformly with
respect to « and Ve > 031(e) > 0 such that all interval of length I(¢) contains a
number 7 which is ¢ almost period for u(-,x), Vo € Q

[u + 7,x) — ult, x)| <e V(t,x) € R x Q.

2.2 - Vector fields

Let
R={X1,Xs,..., %X}
be a collection of n linearly independent smooth vector fields or frame in R" defined as

n

Xizzazj(x)a’ﬂja i:]-a"'vna
=1
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for some choice of smooth functions a;;(x). If A(x) denotes the matrix whose (i, j)-entry
is a;;(x), then we suppose detA(x) # 0 in R". We choose a Riemannian metric so that
the frame is orthonormal. The gradient and the second order derivative matrix in the
frame are respectively the vector

Ru = {XI(M),XZ(’M), cee 7X7L(u)}

and the not necessarily symmetric matrix ®%u = X; (Xj(u)). The symmetrized second
order derivative matrix is

(R2u)* = %{%Zu + (R2u)'}.

Fixapointx € R" andlet & = (&1, &, ..., &,) denote a vector close to zero. We define
the exponential based at x of &, denoted by 0,(&), as follows : let y be the unique
solution to the system of ordinary differential equations

Y = &EXi((s)

i=1

satisfying the initial condition y(0) = x. We set ©,(¢) = y(1) and note this is defined in
a neighborhood of zero.

As examples of the frame we could cite the canonical frame of the usual first order
partial derivatives, the Heisenberg group or the Engel group [3].

The Heisenberg group. We consider the Riemannian frame of the left invariant
vector fields {X;, X», X3} in R? given, for p = (x,y,2) € R?, by

g yo g x0 0

Xi=+—3+ =—4-—  Xz3=—.
=00 202 T oy 20 T oz

The Engel group. We consider the Riemannian frame of the vector fields
{X1, Xz, X3, X4} in R* given, for p = (x,y,2,w) € R, by

0 yo —xy 2\ O 0 xd x* I

X = —_—— = — _ — — ) — | p— R -

'™ o 28z+(12 2>8w’ z 8y+28z+128w
0 x 0 0

3 - The results

3.1 - Parabolic jets and viscosity solutions to parabolic equations in vector fields

Let O C R" be an open set and let T > 0. We define the set Op := (0,T) x O.If u
is a function defined in O and (¢,,x,) € Or we denote by P> u(t,, x,) the parabolic
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superjet of u at (t,,x,) defined as P>*u(t,,x,) = {(a, 7, X) € R x R" x S(n) such
that

Ut 02, O) < ulto 20) + alt — 1) + (1. + 3 (X&,8) 0t — 1] + 127

ast —t,and & — 0}. The parabolic subjet of u at (t,, x,) is defined as
P27 ulty, o) = — P2 (— u)(to, ).

We also define the set theoretic closure of the superjet, denoted P?*u(t,,x,)
by requiring that (a,n, X) € P>tu(t,,x,) exactly when there is a sequence
(@ Ty Ty Wiy, ), My X)) — (@, 80, o, o, ), 17, X) With the triple (a,,, #,, Xy)
€ P>t u(ty,x,). A similar definition holds for the closure of the subjet.

We use these jets to define viscosity subsolutions and supersolutions to
equation (1.1).

Definition 3.1. Let (t,,2,) € O be as above. An Upper SemiContinuous
(USC) function u is a viscosity subsolution in Or of (1.1) if for all (¢,,x,) € Op
whenever (a, 7, X) € P>"ult,,x,) we have

(31) a+H(thxO7u(thxO)a”7 X) Sf(toaxo)~

A Lower SemiContinuous (LSC) function u is a viscosity supersolution in Oy if for
all (t,,2,) € Or whenever (b,v,)) € P>~ u(t,,x,) we have
(32) b+H(tO)x07u(t07x0)7va y) Zf(tmxo)-

A continuous function u is a viscosity solution in Oy of (1.1) if it is both a viscosity
subsolution and a viscosity supersolution.

We observe that the continuity of the function H allows (3.1) and (3.2) to hold
when (a, 7, X) € P>tu(t,,x,) and (b,v,)) € P>~ u(t,, x,).

An equivalent definition of sub(super)solution can be obtained from the following
result. Let O and T as above. If u is areal function defined in O and (¢,, x,) € Oy weset

Auty, x,) = {¢ € C*(Op) : ut,x)— o, ) < ulty, x,) — (ty, x,) for (¢, ) € Op}

consisting of all test functions that “touch from above”. We define the set of all test
functions that “touch from below”, denoted Bu(t,, x,), by

Bu(ty, x,) == {¢ € CZ(OT) s x) — ¢(t7 x) > ulty, o) — ¢(t0,900) for (f,x) € OT}~
We have [5, Lemma 2.1]

P2’+u(t07xo) = {(th(to; %o), §R¢(t0; %o), (§R¢’)*(to,xo)) : ¢ e Au(t,, 96'0)},
Pz'iu(tmxo) = {(th(tm'%'o)a §R¢(t07xo)a (%Qb)*(tmxo)) : ¢ S Bu(to,xo)}-
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3.2 - Comparison principle and decay estimate

Let © C R" be an open bounded set. Let us start by listing the usual hy-
pothesis, besides H proper, for the existence and uniqueness results. Sometimes
in the following we will consider H independent of the time ¢ or dependent on ¢
variable in a finite interval. We will formulate all the hypothesis for time de-
pendent Hamiltonians, with ¢ € R, whereas when dealing with Hamiltonians not
depending on time, stationary variants have to be considered. We need obvious
variants also when the time is restricted to a finite interval.

(HZ) H(t;y;rv évX) _H(tax;ra 1, Y) S 6()1(|9(; - y|7 ||é - ’7”7 ||X - YH)’

whenever (t,7) c R xR, v,y @, &y R" , X, Y € S(n), where the function
w1 : [0, +00] — [0, +oc] satisfies li%l w(z) = 0.
2—0"

(H3) H(t,W;Va’%X)—H(tvan’WaX)ZV(V—S)

where y is a suitable positive constant, for any r > s, (¢, 2,7, X) € R x 2 x R" x S(n).

Example. H = —vR%u)" + f(x,u, Ru), where v>0, f(r,u,n —f@ v,
>y(u—v) if u>wv, for all x, and a constant y >0, f(x,u,& —f(y,u,n)
< o|x—yl|,||& —n|) for all u.

This case may be regarded as a first order Hamilton-Jacobi equation perturbed
by an additional “viscosity term” —v(R%u)".
We now formulate the comparison principle for the problem

(B) wyt, )+ H(t, x, ut, x), Rut, x), R2u)* (¢, ) =, 2)in (0,T) x Q
(3.3) (BC) u(t,x) = h(t,x) in [0,T) x 0Q
IC) u(0,%) = p(x) in Q.
Here ¢ € C(Q) and &k € C([0, T] x 0Q). We also adopt the convention in [8] that a
viscosity subsolution u(t, x) to problem (3.3) is a viscosity subsolution to (£) such that

u(t,x) < h(t,x) on [0, T) x 02 and u(0,x) < p(x) on Q. Viscosity supersolutions and
solutions are defined in an analogous way.

Lemma 3.1 (Comparison principle). Let Q be an open bounded subset of R"
and let T > 0. Assume that H € C([0,T] x 2 x R x R" x S(n)) satisfies (Hy) and
(H2). If u is a viscosity subsolution and v is a viscosity supersolution to problem
B.3)thenu <von[0,T) x Q.
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Proof. See[5, Theorem 3.3] O

Theorem 3.1. Let Q be an open bounded subset of R"” and let T > 0. Assume
that H € C([0,T] x 2 x R x R" x S(n)) satisfies (Hy), (Hz) and (Hs). Let u,v be
bounded viscosity subsolution of

ue + Ht, e, u, Ru, R = f1(¢,2)
in (0,T)x Q, ut,x) =g'¢t,x) for x € 02 and 0 <t <T, respectively supersolution of
v+ Hit, 2,0, Ro, (R20)) = fA(t, @)

in (0,T) x Q v(t,x) = g*(t,x) for x € 0Q and 0 < t<T, where f1, f* € C([0,T] x Q),
g%, 97 € C([0,T] x 0RQ). Then for all t € [0, T] we have

(34) e}’t Sup(u(t7 90) - /U(t7 m))_‘_g || (u(07 ) - /0(07 ))J,—”L”"(.Q)

reQ

t
i JG%H (15,0 =f%5,)) i~ ds+ sup  €”(g" — g, (s,).
0 (5,:2)€[0,t]x0Q2

Proof. For (t,x) € [0,T] x Q, set w'(t,x) := e’u(t, x) and W, x) := e’v(t, x)
+ A(t), where
A®) = [|(w(0,) = v(0,)) |~ + sup  €°(g" — g (s,)

(s,0)€l0,t]x0R2
t

+ Je"f’sn (£ = 1%6s,) e ds-

0

It is not hard to see that w' and w? are a subsolution and resp. a supersolution of the
problem

ot @) + Ht,x, 0, Ro, R2p)") = e'f1(t, ), in (0,T) x
o(t,x) = e'glt, x), on [0,7) x 9Q

where H(t,x, 0, Rp, (R20)") = ¢ H(t, x,e g, e " Rp, e " (R2p)") — yp and where, in
virtue of (Hj), H satisfies (Hy), (Hs).

In fact, about w', let ({,,2,) be a maximum point for w' —y, where
w € C%(0,T) x Q). We can suppose w(t,x) = e’a(t,x) where a € C2((0,T) x Q). So
w! —y = et (u —a). Let y,(t,x) =y, x)+ L where L =w'(ty,x,) — y(ty, ). So
(to, ) is a maximum point for w' — w, and (w' — w,)(t,x) < (W' — w, )y, ) = 0. Let
a0, = o+ Le 7. Thenw! —y, = (u — a,)e’ and (u — o,)(t, 2) = e 7H(w! — y, )¢, 2) <0
< e Mol —w,)(to, %) = (U — o,)(to, ,), that is (¢,,,) is a maximum point also for
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(u — ). The definition of subsolution implies that
((xo)t(tm X) + H(,, %0, ulty, xo)a Rty by, ), (ﬁzao)*(tm %)) < fl(to; %)
that is, as o, = e "y,

Wt(t07 Xo) + eytoH(tm Lo, e_ytowl(to; %), e Mo Ry (o, x0), e (%ZV/)*(tm %))
—yw' (Lo, %) < €7f (to, o).

With regard to w? take into account that, by virtue of (H3), we have

e H(ty, %o, " (WP (ty, o) — Alty)), € 7" Ryp(to, 3,), €7 (R2y)* (t, 0,))
< eytoH(tm Lo, e_ytow2(to; m0)7 e—ytu %W(t()a x0)7 6_}% (%ZW)*(tm 900)) - VA(to)
where (t,,%,) is a maximum point for (w?—A)—y, ie. for w® — ¢, where

¢ =y + A (which is C! in the variable ¢ after regularization A¢ of A, that is after

substitution of  sup  €”(g' — ¢*).(s,x) with a regularization ¢°(¢), and C?
(s 0)E[0,11% 02
in the variable x). Let us observe that Ry = Rp, R%)* = R2p)", v, = ¢, — A¢

and, as Aj > e"||(f1@¢, ) — f2(, ~))+||L0¢(Q) (A is increasing , so we can suppose
a; > 0)

&"f (b, o) + AL(Ly) > € f (t, o).
Moreover, for (¢,x) € [0,T) x 0Q

wA(t, x) = e"v(t, x) + A(t) > e"¢A(t, x) + €' (g" — ¢P)(t, x) = g (¢, ).

It is also clear that w'(0, x) < w?(0, x) on Q. By the comparison principle, Lemma 3.1,
we get
w(t, ) < wi(t,x) on [0,T] x Q

and the conclusion follows. O

Corollary 3.1. Let the hypothesis of Theorem 3.1 be in force. Then for all
te[0,T]

(3.5) sup(u(t,x) — v(t,x)) < et

reQ

(u(0,-) —v(0,)), |l L~@)

t

+ sup [sup(fo.0) — fHo.0) do+ sup (g~ ). (5,00
0<s<t ! reQ (s,2)€[0,t]x0Q
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Proof. Let us fix t€[0,7]. We denote by %:[0,7] — R the function
(o) := sup (f(o,2) — f*(o, ). Consider the function w : [0, 7] x 2 — R given by

re

w(s, x) == v(s,x) + Jh(a) do + sup (— Jh(a) da)

0<z<t
0

+ Sup (gl - 92)+(a7x) ) (8790) S [Oat) X Q
(e, m)€l0,]]x0Q
It is easily seen that w is a bounded viscosity supersolution of Js + H = f1,
(s,x) € (0,t) x Q, since w > v on (s,x) € (0,t) x 2 and H is nondecreasing with re-
spect to the third variable. Moreover we have on [0,) x 902,

wis, x) > g?(s, ) + [Jh(a) do + sup ( Jh(a) da)]
0

0<t<t
0
1 2 2
+  sup (g —g)i(x,x) > g7(s, %)
(o, 2)€[0,t]1x 002
+  sup  (¢' - D) (@) > g (s, ).
(o,)€[0,¢]x 02

We deduce from Theorem 3.1 that for any (s, x) € (0,) x Q

e (uls, ) — w(s,x)) < sup(u(0,x) — w(0,x)), < sup(u(0,x) — v(0,2)),
rxeQ reQ

implying that

reQ

u(s, x) — v(s,x) < e sup(u(0,x) — v(0,x)), + Jh(a) do
0

0<7<t (o,0)€[0,t]1x 0Q2

+ sup (Jh(ﬂ) drr) +  sup  (¢' — D). ().

In particular for s = t one gets for any x € Q

ult, ) — v(t, x) < e sup(u(0,x) — v(0,x))
reQ

0<t<t reQ (s,2)€[0,t]x0Q
T

t
+ sup (J sup(f'(c,x) — f*(0,v)) da) + sup  (g'—gD).G,m).
O

Note that in the right hand side term of (3.5) we have now sup ( f Yo, x) — f 2(0, 90))
and not sup (fl(a, x) — %o, ac))+. weQ

re
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The following Theorem 3.2 and Corollary 3.2 have an interest independently of
the aim of the paper.

Theorem 3.2. Let Q be an open bounded subset of R". Assume that
HeCR xQ2xRxR"x8n) satisfies (Hy), (Hz) and (Hs). Let u,v be bounded
subsolution of g + H (b, 0, )" =f1(t, )
m R x Q u(t,x) = g'(t,x) for (t,x) € R x R, respectively supersolution of

vy + H(t, v, R, (R20)") = f2(¢, )

in R x Q v, x) = g*(t,x) for t,x) € R x 0Q, where [, f2 € BUC(R x Q) and ¢",
g* € BUC(R x 0Q). Then one has for all t € R

(3.6) sup(u(t, x) — v(t, x))

reQ

t
<e” J | (15, = 156,)) e ds +e7 sup  €¥(g" — g7 (s, )
S (8,2)€[—00,t]x0Q2

Proof. Taket, tecR,t, <tand using the proof of Theorem 3.1 write for all

re
ult, ) — vt @) < e ()l +vllL)

t
e J | (F1s,) = 125,) e ds +e7 sup  €¥(gt — g7), (s, ).
¢ (5,2)€lto,t1x 02

The conclusion follows by passing ¢, — —oc. O

Corollary 3.2. Let the hypothesis of Theorem 3.2 be in force. Then for
every t € R
(3.7 sup(u(t, x) — v(t, x))

re
t

< suszup(fl(a, x) —fAo,@)do+  sup  (g' — gD, (s,w).

s<t J xeQ (s,)€[—00,t]x0Q2
S

Proof. Repeating the proof of Corollary 3.1 in [¢,,t] x Q we obtain

ut, x) — v, x) < e’ sup(ult,, ) — v(t,, x)) N
reQ

to<t<t reQ (s,2)€lty,t]x0RQ

t
+ sup (Jsup(fl(ﬂ, x) — f%(0,x)) da) + sup (¢ - gD Gs,m).

T

The conclusion follows passing to the limit £, — — co. O
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3.3 - Existence

We are now in a position to state the existence of almost periodic (periodic)
viscosity solutions of the Dirichlet problem
(3.8) wy + H(e,u, R(u), (R2w)") =f({) in R x Q
u(t,x) =0 in R x 0Q

where H is independent of ¢.

Theorem 3.3. Let Q be a bounded open subset of R". Assume that
H < C(Q xR x R" x S(n)) satisfies (Hy), (Hs), (Hs). Assume that f :R — R is a
continuous almost periodic (periodic) function. If u is a bounded viscosity solution
of (3.8) i BUC([a, b] x Q) for any a < b, then it is a.p. (periodic) in t uniformly
with respect to x and it is in BUCR x Q).

Proof. Letu be abounded viscosity solution of (3.8) in BUC([a, b] x Q) for any
a < b. Asf is a.p., then for all ¢ > 0 there exists l(¢y) such that any interval of length
l(ey) contains a number 7 which is an &y almost period for /. We will show that any
interval of length I(ey) contains a number t which is an ¢ almost period for u(-, x), for
allx € Q.

Consider an interval of length I(¢y), fix t an &y almost period of f and fix ¢ € R.
Observe that for any integer n > 0 the function « solves in the viscosity sense

wy + H, u, Ru), R2u)*) = £(t) in [ — n, +00) x Q
w(t,x) =0 in [ — n, +00) X 92
and the function u.(t, x) = u(t + 7, x) solves in the viscosity sense
Ueg + H@, ue, R, R2u)) =fE+1) in [ —n —1,+00) x Q
u(t,2) =0 in[ —n — 7,+00) X 0.

If M is a positive constant such that ju| < M in R x Q, then, by Corollary 3.1 we

have for all t > t,, = max{—n,—n—1}, x € Q
¢

e ut, x) — u.(t, )| < e (||Jull o + Jell) + Je7’s|f(o + 1) —f(0)| do.
t

In particular, for ¢ = ¢ and » large enough we deduce

t
lu(t, x) — ut + 7,2)| < 2Me /1) 4 o7t J eyedo < 2Me "t 4 ¢,

t’l?,
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Letting # — +o0o0 we have t, — — oo and therefore |u(t, x) — u(t + 7,2)| < ¢ for all
(t,x) € R x Q. Since we already know that u € BUC([a, b] x Q) for every a < b, by
time almost periodicity we deduce also that u € BUC(R x Q).

In case of f periodic of period 7' > 0 the same calculations give for any fixed
t € R if the integer = is large enough

Ju(t, ) — u(t + T,x)| < oMe—E+nT)

for any x € Q, as u(t,x) and ur(t, x) := u(t + T, x) solve the same problem (3.8) in
(—nT,+00) x Q, and the result follows again by passing n — +oc. O

3.4 - About periodic solutions

Lemma 3.2. Assume HeC([0,T1xQ2xRxR"x S(n)) and let w e C((0,T1x Q)
be a viscosity subsolution (resp. supersolution) of

(3.9) wy + Ht, 2, u, Ru, R2u)*) =0

m (0,T) x Q. Then u is a viscosity subsolution (resp. supersolution) of (3.9) in
0,77 x Q.

Proof. The proof is the same as [6, Lemma 1]. O

Proposition 3.1. Assume that HeCRxQxRxR"xSm) and
u € CR x Q) are T periodic. Let u be a viscosity subsolution (resp. supersolution)
of 3.9) i (0, T) x Q. Then u s a viscosity subsolution (resp. supersolution) of (3.9)
mR x Q.

Proof. The proof is the same as [6, Proposition 2]. O
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