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Dissipative quantum fluid models

Abstract. Some macroscopic models for diffusive quantum systems are reviewed.
The model equations are derived from Wigner-Boltzmann equations by a moment
method. Depending on the properties of the collision operator and the scaling of the
Wigner equation, three model classes are presented: the quantum drift-diffusion
equations, inviscid and viscous quantum hydrodynamic equations, and quantum
Navier-Stokes equations. For each of these models, the derivation is sketched and
analytical results are reviewed.
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1 - Introduction

Quantum fluids have been studied experimentally for many years and have by
now become very attractive due to novel experimental discoveries in Bose-Einstein
condensation, the use of liquid helium for superconducting materials, and potential
applications in quantum computing. Recently, disordered superfluids and, in parti-
cular, the interplay between superfluidity and the onset of dissipative processes have
been investigated [28]. Typically, the dynamics of the condensate is modeled by a
nonlinear Schrédinger equation involving dissipative terms [5]. Whereas diffusion
has been extensively studied in classical physical systems, much less is known in
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quantum systems, and the theoretical understanding of quantum diffusion is difficult
and not complete. The reason is that diffusion is an incoherent process, whereas
quantum dynamics are typically very coherent.

In this paper, we review some approaches to include diffusive phenomena in
quantum fluid models. The target reader is supposed to be mathematically oriented
since we present the mathematical modeling and analysis of the model equations
only. For amore physical exposition, we refer to the book [92]. Semiconductor devices
are modeled and analyzed in [126]. Furthermore, numerical schemes and simulations
can be found, e.g., in [33, 68, 99, 101, 107, 108, 133, 135] and references therein.

A simple fluid dynamical model is obtained from the single-state Schrodinger
equation via the Madelung transform [124]. In fact, by separating the imaginary
and real part of the Schrédinger equation, we arrive at the pressureless Euler
equations involving a third-order quantum correction with the so-called Bohm
potential. However, these Madelung equations describe ballistic transport only.
An alternative approach to derive quantum fluid models is to apply a moment
method to the Wigner equation. It has the advantage that dissipation can be
included in a rather natural way via collision operators on the right-hand side of
the Wigner equation. Examples, used in semiconductor modeling, are the
Caldeira-Leggett scattering operator, the Fokker-Planck operator, or BGK-type
operators (named after Bhatnagar, Gross, and Krook [16]); see Section 2.4 for a
detailed description.

Depending on the properties of the collision operator, various model equations
can be derived. In this survey, we present three model classes (see Figure 1).

Wigner-BGK L ) Wigner-BGK
e relaxation-time Wigner-Fokker-
model (diffusive . model (hydrody-
B Wigner model Planck model ; .
scaling) namic scaling)
Chapman- Chapman-
Enskog moment moment Enskog
g method method .
expansion expansion
Viscous
. Quantum Quantum
Quantum drift- . quantum A
diffusion model hydr[?]?g;?mlc hydrodynamic Navner-g,tcl)kes
zero- inviscid model osmotic mode
relaxation limit velocity

limit

Fig. 1. Model hierarchy. The Wigner models are explained in Section 2.4.

The first class, the quantum drift-diffusion equations, are derived from the
Wigner equation, in the diffusive scaling, with a BGK-type collision operator which
conserves mass [53]. The quantum drift-diffusion model consists of a nonlinear
parabolic fourth-order equation for the particle density and the Poisson equation for
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the electric potential. The main difficulty of the analysis of this model is due to the
fourth-order operator in the particle equation, which is highly nonlinear and pre-
vents the use of maximum principles.

This technique has been also applied to spinorial systems by Barletti and
Méhats in [12] obtaining quantum drift-diffusion systems for the spin-up and
spin-down electron densities (also see [13, 64] for related macroscopic spin
models).

The second model class are the (viscous) quantum hydrodynamic equations.
They consist of balance equations for the particle, current, and energy densities,
self-consistently coupled to the Poisson equation. The equations are derived from
the Wigner-Fokker-Planck equation using a moment method [78]. Compared to
the Madelung equations, they contain a pressure function and spatially diffusive
terms (Laplacians) in the macroscopic variables. Although the Laplacian operator
makes the mass equation parabolic, the momentum equation still contains the
nonlinear third-order Bohm-potential term whose mathematical treatment is
challenging.

When a Chapman-Enskog expansion is applied to the Wigner-BGK model,
diffusive corrections to the quantum equilibrium can be derived [24]. This leads
to the third model class, the quantum Navier-Stokes equations. A character-
istic feature is that the viscosity depends on the particle density. Surprisingly,
there exists a connection between the quantum Navier-Stokes and viscous
quantum hydrodynamic models. By introducing a new velocity variable, con-
taining the so-called “osmotic velocity”, both models are formally equivalent
(see Section 5.2).

This review is organized as follows. In Section 2, three quantum view
points—the density-matrix, Schrodinger, and Wigner formalism—and their re-
lations are sketched. Furthermore, the quantum equilibrium is defined and ex-
amples for Wigner-Boltzmann equations are given. Section 3 is concerned with
the derivation and analysis of local and nonlocal quantum drift-diffusion models.
Quantum hydrodynamic equations, derived from the (mixed-state) Schrodinger,
Wigner, or Wigner-Fokker-Planck equations, are introduced in Section 4.
Moreover, some analytical results for the inviscid and viscous quantum equations
are reviewed. Finally, the derivation and analysis of quantum Navier-Stokes
equations is presented in Section 5.

We remark that the derivations of the models are purely formal, and a “proof” of
atheorem on the model derivation is not a proof in the strict mathematical sense but
rather signifies formal computations. The sections on the analysis of the equations
contain theorems which are rigorous in the mathematical sense, but only the key
ideas of their proofs are given.
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2 - Quantum Kinetic models

In this section, we present various formulations of the evolution of quantum
systems: the density-matrix, the (mixed-state) Schrodinger, and the Wigner form-
alism. The Wigner equation is the starting point for deriving quantum fluid models in
the subsequent sections.

2.1 - Density-matrix formalism

The quantum mechanical state of a system can be described by the Schrodinger

equation
iy =Hy inR3 t>0, w(,0) =y,

where ¢ > 0 is the scaled Planck constant and H is the quantum mechanical
Hamiltonian, for instance, H = —(¢2/2)4 — V(x,t) with V(x,t) being a potential.
When we have an ensemble of many particles, like electrons, the Schrodinger
equation needs to be solved in a very high-dimensional state space. Moreover, there
exist systems which cannot be described by a single-state wave function since they
are statistical mixtures. This leads to the concept of density matrices. We assume in
the following that the quantum state is represented by a density-matrix operator p,
whose evolution is governed by the Liouville-von Neumann equation

(1) ieop = [H,pl, t>0, p0) =7,

where [H,p]= Hp — pH is the commutator. In this section, we perform formal
computations only, and we refer to the literature for the mathematical setting in
functional spaces [1, 6].

The density-matrix operator p is a positive, self-adjoint, and trace-class operator
on L2(R?). A bounded linear operator 5 is called trace class if it is compact and its
trace Tr(p) = Z]- ((ﬁ*ﬁ)l/ Zuj, u;) is finite, where (-, -) is a scalar product and (u;) is
any complete orthonormal set of L2(R?). The self-adjointness and compactness of
provide the existence of a complete orthonormal set (y;) of eigenvectors with ei-
genvalues (4;). The positivity implies that the eigenvalues 4; are nonnegative and
hence, Tr(p) = >_; 4;<oc. We assume that the initial operator p; is positive, self-
adjoint, and trace class too, such that there exist orthonormal eigenvectors (y/})).

We claim that the wave functions 1//_7-(90, t) are solutions to the Schrédinger equation

ieoyy; = Hy; in R?, £>0, y,(-,0)=y).

More precisely, y; describes a pure state of the quantum system, and the eigenvalue /;
is the corresponding occupation probability. The sequence (y;, 4;) of eigenvectors-
eigenvalues is called a mixed state. For a system of many particles, the mixed state
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describes a statistical mixture of states Y; with oceupation probabilities /; > 0 (7 € IN).

These numbers depend on the initial state of the system. Before we detail the con-

nection between the Liouville-von Neumann equation and the Schrodinger equation,

we need some properties of the density-matrix operator. We follow Section 10.11in[92].
Each density-matrix operator has the unique integral representation

R®

for all y € L2(R®), where pis the density matrix (function). The self-adjointness of p
implies the symmetry p(x,y,t) = p(y,x,t). The “diagonal” of the density matrix is
interpreted as the pasrticle density

nwx, t) = plx,x,t), «€ R3, ¢t>0.
Furthermore, the particle current density is defined by
J(@,t) = eImV,pla,2,t), € R> t>0,

where Im(z) denotes the imaginary part of z € C. The density matrix solves the
Liouville-von Neumann equation in the “matrix” formulation

(3) 16875/7(957?/7'5) = (Hx _Hy)p(xvyvt)v t> 07 ,0(937?/70) = ,01(937 y)a

where z, y € R®, H, denotes the Hamiltonian acting only on the variable « and H y
only acts on y. This follows from the self-adjointness of H,,. Indeed, by integrating by
parts, we find for any function w(y, t):

J iedp(a, y, Oy (y, Ddy = ieOply(a, 1) = (Hpy — pHy)(, 1)
R?

R3

= (Hﬂcp(xvyvt)l//(yat) - Hyp(x’yvt)l//(yat))dy

b Q
R?

= | He — Hyp(x,y, y(y, dy.

R3

The initial datum p; is computed from the representation

@) = j e wapdy, @ € RE.

R?
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Lemma 2.1. The density matrix can be expanded in terms of the eigenfunc-
tions y;,

pl,y t) = Ay, Dyy. b).
=

Here, z denotes the complex conjugate of z € C.
Proof. We employ the representation (2) for the eigenfunction y = y;, multi-

ply this equation by w,(x, ) and integrate over R®. Then, in view of the orthonorm-
ality of (l//j),

R? R?

where Jj, is the Kronecker delta. The set (z//j(x, Dy, (y,1)) is complete and ortho-
normal in L2(R?® x R®). Therefore, the density matrix can be expanded in this
basis:

/7(907 Y, 1) = Z Cnm(t)y/m(xa ) Wn(ya ?).

m,n=1

Inserting this expansion into (4) and employing again the orthonormality of (y;), it
follows that the coefficients c,;(t) equal d;/4; such that the lemma follows. O

The density-matrix operators p; and p can be expanded in the form
(5) = Al 5= Al wl,
=1 =1

where |y;) denotes the function y; and (y;| the projection on y; (“bra-cket” notation).

The following theorem roughly states that the Liouville-von Neumann equa-
tion is equivalent to the mixed-state Schrodinger equations (see Theorem 10.2
in [92]).

Theorem 2.1 (Mixed-state Schrodinger equations). Let p be a density-ma-
trix operator, satisfying the Liouville-von Neumann equation (1), with a complete
orthonormal set of eigenfunctions (y;) and eigenvalues (4). The eigenfunctions of
the initial-data operator p; are denoted by (1//]9). Then y; is the solution of the
Schridinger equation

(6) ieo; =Hy;, t>0, w(,0)=y) inR> jeN.
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The particle density n(x,t) can be written as

(7) nw,t) =l D, weR® t>0.
j=1

Conversely, let W, 4) be a solution of the Schrodinger equation (6) with numbers
4j > 0 satisfying 3 _; 4;<oc. Then the density matrix operator, defined by (5), solves
the Liouville-von Neumann equation (1).

Proof. The proof is taken from Section 10.1 in [92]. Let p be a solution of the
Liouville-von Neumann equation (1), represented as in (5). The solution of the
Liouville-von Neumann equation can be written formally as

/ﬁ(t) _ efth/e I/ﬁleth/e7 t> 0,
since
-~ i —iHt/e =~ _iHt/¢ i —iHt/e = iHt/e i ~
op = _EHe 1Ht/,ple1Ht/. +Ee iHt/e pIHeLHt/' _ _E(Hp_pH)_

iHt/e

Here, we have used the fact that the Hamiltonian H and the operator e commute.

Then, inserting the expansion (5) for p; in the above formula gives

PO =Y dyle oy (o).
=

Comparing this expression with the expansion (5) for 5 shows that y;(-, t) = e~ /5!,
Finally, differentiation with respect to time yields ¢0;y; = —1Hy; which is equivalent
to the Schrodinger equation (6).

Conversely, let y; be the solution of the Schrédinger equation (6) and let p be
given by (5). Then

ap = 4 (10wl + lw;) ()
=1

, i i i
=%~ Hy) |+~ ) () = — = Hp — pH).

J=1

Thus, p is a solution of the Liouville-von Neumann equation (1). |

If the initial quantum state can be written as p;(x,%) = w;(@)y;(y), the density
matrix is given by p(x, ¥, t) = w(x, )y (y, t), where y solves the Schrodinger equation
(6). The particle density equals n(x,t) = 2p(x, x,t) = 2|w(x, t)\2 and the particle cur-
rent density

J = —eIm@V,y).
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We refer to such a situation as a single state as the single wave function y completely
describes the quantum state.

For the self-consistent modeling of charged-carrier systems (for instance,
electrons), the Poisson equation for the electric potential is added to the
Schrodinger equations (6). Let V' be the sum of an external potential Ve, mod-
eling, for instance, semiconductor heterostructures, and the self-consistent po-
tential V., which is given by

(8) AV =n —Cx), e R?

where Ap is the scaled Debye length and C(x) models fixed charged background
ions (doping concentration). The electron density » is computed according to (7).
The system of equations, consisting of the Schrodinger equations (6), the Poisson
equation (8) with (7), is referred to as the mixed-state Schridinger-Poisson
system.

2.2 - Wigner equations

In the previous subsection, we have explained how the quantum mechanical
motion of an electron ensemble can be described in the mixed-state Schrédinger
or density-matrix formalism. There is an alternative description based on the
quantum-kinetiec Wigner formulation, which we present and discuss in this section.
There are two main reasons for using this framework in applications (mostly for
transient problems). First, the Wigner picture allows, in contrast to Schrédinger
models, for a modeling of scattering phenomena in the form of a quantum
Boltzmann equation. Second, when considering bounded domains modeling elec-
tronic devices, the quantum-kinetic framework makes it easier to formulate
boundary conditions at the device contacts, which may be inspired from classical
kinetic considerations [67].

We derive the Wigner equation (or quantum Liouville equation) from the
Liouville-von Neumann equation (3). To this end, we recall the Fourier transform

FONp) = jf(y)e*iy‘p/ﬂdy,

R®
and its inverse,
-1 1 iy-p/e
F @y = e’ g(p)e”Piédp,
R?

for functions f, g : R® — C.
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For the kinetic formulation of the Liouville-von Neumann equation, we need the
so-called Wigner function introduced by Wigner in 1932 [144]:

©) wle,p.) = Wiple.p.0) = [ p(i+ 2= t)e oy,
R?
Setting
_ by . Y
(10) u(m,y,t)—p(m+2,x 2,t>,

the Wigner function can be written as the Fourier transform of u, w = F(u).
Furthermore, u = F1(w). We notice that the operator W[p] is called the Wigner-
Weyl transform. Its inverse W1, also called Weyl quantization, is defined as an
operator on L2(R?):

-1 _ *+Y ip-(x—y)/e dp dy
it = | [ 5(F5" Yoo O
R® R?

for functions ¢ € L2(R®). The Wigner transform and the Weyl quantization are

isometries between the space of operators p such that p p* is trace class (p* denotes
the adjoint of ») and the space L2(R®). Indeed, from Plancherel’s formula follows that

dp dx

(11) i) = | | Wipde.p. oWl p 0 £
(2me)

R? R?

where p; and p, are the corresponding density matrix functions.

The evolution equation for the Wigner function is obtained by transforming the
Liouville-von Neumann equation to the (x,y) variables and applying the Fourier
transformation. The result is expressed in the following proposition (Proposition
11.1 in [92]).

Proposition 2.1 (Wigner equation). Let p be a solution of the Liouville-von
Neumann equation (3). Then the Wigner function (9) is formally a solution of the
Wigner equation

(12) w+p-Vyw+0[Viw=0, t>0, w,p,0) =w/x,p)

for z, p € R?, where the initial datum is given by

wy (e, p) = J Pr (90 +%,ﬂc - %)e’iy"’/sdy,

R?
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and 0[V] is a pseudo-differential operator, defined by
(13) OIVIw)x,p,t) = ﬁ J OV) (@, y, (e, p', eV PP edp’ dy,
e
R3xR3

where

5V(ac,y,t):£<V(x+%,t> —V(x—%,t)).

Proof. The proof is taken from Section 11.1 of [92]. First, we derive the evo-
lution equation for u, defined in (10), and then take the inverse Fourier transform.
We compute, for r = +y/2 and s = x — y/2,

div, (V)@ . 8) = divy(Vop+ Vop) (2 + 50— 4 )

1 Yy Yy
—E(Arp—dsp)(er?x—é,t).

Then the transformed Liouville-von Neumann equation for « becomes,

8%(%% t) = atp(y7 S, t) - _é ( - ?(AT - As) - V(Tv t) + V(Sy t))p(,r7s7t)

= iediv,(Vu)(@, y, 1) + oV (x, y, Dule, y, 1)

or
Au — iediv,(V,u) — OV)u =0, x,y € R t>0.

The Fourier transform gives
(14) O F(u) — ie F(div, V,u) — F((0V)u) = 0.

The second term on the left-hand side can be written, by integrating by parts, as

F(div, V), p,t) = J div, (V). y, t)e‘iy‘p/”dy

lR3

= é J p - Voula,y, e P/dy

R®

= %p -V F ) (e, p,t) = %p - Vaw(e,v,t).
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The third-term on the left-hand side of (14) becomes, by (13),

FO@V @, p,t) = J OV ey, Dutee, . e Py

R®

= (2ne) J OV, y, thwe, p', e P =Pedp’ dy

RR3

— @) ? J @V, —y, ke, pl O PP Vedy dy
R?

= —(0[VIw)(w,p,?).

Therefore, (14) equals the Wigner equation (12). O

The local term p - V,w is the quantum analogue of the classical transport term of
the Liouville equation (see Chapter 3 of [92]). The nonlocal term [V ]w models the
influence of the electric potential. The nonlocality has the effect that the electron
ensemble “feels” an upcoming potential barrier. The pseudo-differential operator
can be written as, by slight abuse of notation and for w = F(u),

OV )@, p, ) = J OV )@y D, —y. VP ledy
R®

= F (W), —y, thulz, y,1)).

Therefore, it acts in the Fourier space essentially as a multiplication operator. The
multiplicator oV is called the symbol of the operator O[V]. The symbol 6V is a dis-
crete directional derivative, since in the formal limit ¢ — 0, we find that

oV, ey,t) — iV, V(x,t) - y.

We refer to [140] for a mathematical theory of pseudo-differential operators. In
particular, the Wigner equation (12) is a linear pseudo-differential equation. For
mathematical results on the Wigner equation, we refer to the review of Arnold [6].

2.3 - Quantum equilibrium

The thermal equilibrium of a gas can be defined in classical kinetic theory as the
maximizer f* of the fluid entropy (or, more precisely, free energy)

Sa(f) = — j (flogf — 1) + ke, p)f)dp,

R3
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where p is the momentum and h(x, p) = |;D\2 /2 — V(x) the classical Hamiltonian. A
simple calculation yields

1
S (@, p) = exp (V(x) ~3 |p|2), x,p € R3.

In quantum mechanics, the above local definition of entropy (as a function of the
position) does not exist. In fact, the quantum entropy refers to the entire system
whose statistical uncertainty is described by the density-matrix operator p. The
quantum entropy as a measure of the uncertainty is expressed in terms of the ei-
genvalues y; of p:

Squ(@) = =Tr(p(logp — 1)) = - Z,uj(log,uj —1).
J

The expression p(logp — 1) is defined by functional calculus applied to the function
f@) = x(logx — 1). Instead of the entropy Squ, we consider the free energy

S(p) = —Tr(p(logp — 1) + H(p)),

where H = — (& /2)4 — V(x) is the quantum Hamiltonian. Applying the Plancherel-
type formula (11) and the identity &~ = W[H], we can write for w = W[p], with a
slight abuse of notation,

&m:—jjw@%mpn+mewg§.

R® R?

Here, the quantum logarithm and quantum exponential have been introduced by
Degond and Ringhofer [55]:

Log(w) = Wllog W '[w]l, Exp(w)=W[exp W '[w]],

where log and exp are the operator logarithm and exponential, respectively, defined
by their corresponding spectral decomposition.

In order to compute the (formal) maximizer of S, we compute first its derivative.
For this, we notice that for any differentiable function g, the Gateaux derivative of
Tr(g(p)) (if it exists) is given by

(L 1eg))e = Teg 3o
dp
where p and & are density-matrix operators. For a proof, we refer to [55, Lemma
3.3]. Hence, with g(p) = p(logp — 1), we find that

dp dax
(271.3)3 ’

(?;@))3 = —~Tr((log (p) — H)3) = — J J (Wilogpl + WIHDWIo]

R? R?
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Thus, if w = W[p] and u = W[g],

dp dx
2nre)®

as .\~
(15) (G)e-- J J (Log(w) + h(x, p))u
R® R®
A necessary condition for extremality of S is that its Gateaux derivative vanishes,
which implies that Log(weq) + 2(x,p) = 0 or

(16) Weq = Exp( — (@, ).
If there exists an operator p,, such that W[p,,] = weq, we find that the quantum
equilibrium is given by
Peq = €xp(— H).
Inspired by the classical case, we may define equilibrium states which satisfy

prescribed moments [55]. Given the weight function x(p), we call

dp

m(.%',t) _ <K(p)w> = JW(xapat)K(p)W

R?
the moment of w. Physically relevant moments are the particle density =, particle
current density —nu, and energy density ne, defined by, respectively,

1
n
(nu) = Jw(ac,p,t) lp (Zd_p)g
e
e R? §|P|2

Given a Wigner function w, we define the quantum equilibrium as follows. We write
the moments of w as

d
mie,) = {1t . 085(p) = [ w0t p. O p) .
2re)
R3
where xy, .. ., ky are some weight functions. The constrained maximization problem

reads as

(17) max {S(w) : (w(x, p, i (p)) = m;(x,t) for all (x,1), j=0,...,N}.

Lemma 2.2. The formal solution of the constrained maximization problem
A7), of it exists, is given by

2
Mlwi@,p,?) = Exp (5(907 t) - w(p) + Vi, t) - %)

where &, t) € RN are some Lagrange multipliers.
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Proof. The proof is taken from Section 21.1 in [92]. We define for
E=(&,...,¢y) and m = (my, ..., my) the Lagrange functional

Fw, &) = Hw) + j £@) - (m — (e, p, i p))) dav
R®

A necessary condition for extremality of F is that its Gateaux derivative with respect
to p = W ![w] vanishes. In view of (15), this condition becomes

2
[ ] (rogtw)+ B v — &) st ute.pripae = 0

R® R?

for some functions w*(x, p) and &*(x) and for all functions u(x, p), which implies that

Log(w") + g = V(,t) - &@) - x(p) =0
and finally,
w* = Exp(f* -K-&-V—g),
finishing the proof. O

We call M[w] the quantum Maxwellian of w. If we assume that xo(p) =1 and
1
K2(p) = 5 |p|2, setting Ao = &y +V, /2 = & — 1, and /; = &; otherwise, we can write
the quantum Maxwellian more compactly as

(18) M[w] = Exp(i - <(p)).

We give some examples of quantum Maxwellians which are used in the following
sections. If only the electron density is prescribed, we obtain the quantum
Maxwellian

2
Mwl(e, p, ) = EXp(A(oc,t - %)

where the Lagrange multiplier A is uniquely determined by the zeroth moment of .
This Maxwellian will be employed for the derivation of the quantum drift-diffusion
model in Section 3. In the case of prescribed particle density, velocity, and energy
density, we obtain the quantum Maxwellian

p — v, t>|2>

(19) Mlw] = Exp (A(ac, Do

where A, v, and T are determined by the moments of w. This Maxwellian is taken as
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the thermal equilibrium state in the quantum hydrodynamic equations (see
Sections 4 and 5). Finally, prescribing zeroth- and second-order moments, one
obtains the quantum Maxwellian M[w] = Exp(4 — |jo|2 /(2T)), used in the deri-
vation of the quantum energy-transport equations. Since this model is not well
understood, we do not explain its derivation and refer to [52, 53, 92] for details. A
simplified quantum energy-transport model was derived recently from the quantum
hydrodynamic equations and analyzed in [103]. A quantum-corrected energy-trans-
port model (using the quantum drift-diffusion approach) was numerically investigated
in [40, 41].

The quantum Maxwellian is a nonlocal function on the phase space. It can be made
more explicit when expanding it in terms of the scaled Planck constant ¢, which
appears in the definition of the Wigner transform. We state only a result for the
quantum Maxwellian with prescribed particle density (see [99] for a proof).

Lemma 2.3 (Expansion of the quantum Maxwellian). The following expan-
sions holds

Exp(A - g) = exp (A - g) {1 —|—§ (AA +%|VA|2 — %pTVZAp)} + 0(eh),

where V2A denotes the Hessian of A.

This expansion corresponds to the equilibrium function found by Wigner [144]. We
remark that in the classical limit ¢ — 0, the above quantum equilibrium reduces to
Jeq=expA — Ip|?/2). In the unconstrained case, we find that Jeq=exp(V — I2/2),
which is consistent with classical kinetic theory.

2.4 - Wigner-Boltzmann equations

In Section 2.2, we have considered ballistic and hence reversible quantum
transport. When the characteristic length of the quantum system is larger than the
mean free path of the particles, scattering effects have to be taken into account.
Scattering may occur between the particles and between the particles and a back-
ground. For instance, in semiconductors, one may encounter electron-electron col-
lisions, scattering of the electrons with the quantized vibrations of the semiconductor
crystal (phonons) or with the doping atoms (ionized impurity collisions). Inspired
from classical kinetic theory, scattering may be modeled by an appropriate collision
operator Q(w), which is added to the Wigner equation, leading to the Wigner-
Boltzmann equation

(20) dw+p - Vyw+ 0[Viw = Qw), x,pecR: t>0.
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Although there does not exist a complete theory of quantum scattering, many ap-
proaches have been studied in the (physical) literature, see [17, 128] for references.
In contrast to classical kinetic models, quantum collision operators are typically
nonlocal in time. The Levinson equation at time ¢, for instance, includes an integral
over the time interval [0, £] [11, 114]. For simplicity, we present in the following local
collision operators which are employed in numerical simulations of the Wigner
equation.

24.1 - Wigner-BGK model

A simple phenomenological model for the particle-background or, in semi-
conductors, electron-phonon interactions is given by the relaxation-time BGK-type
operator

1
(21) Q) =~ (1 — 0),

where weq is some equilibrium state and 7 > 0 is the relaxation time which may
depend on the energy. It is reasonable to assume that the collision operator satifies
some collisional invariants. For instance, we expect that collisions preserve the total
mass of the system, (Q(w)) = 0. More generally, let @ satisfy, for some weight
functions « = (xy, ..., xn),

dp 0

wwww»:memm@mf:.

R3

By definition of Q(w), this implies that weq and w have the same moments. In Section
2.3, we have introduced a quantum equilibrium state M[w], which has the same
moments as a given Wigner function w. Thus, we may set

Weq = M[w] = Exp(/ - k).

Clearly, the BGK-type operator vanishes if and only if the Wigner function equals
the quantum Maxwellian M[w].

24.2 - Wigner-Fokker-Planck model

Considering an electron ensemble which interacts dissipatively with an idealized
heat bath, consisting of an ensemble of harmonic oscillators, Caldeira and Leggett
[30] and Diési [57] derived the following collision operator

Q(w) = Dppdyw + 2y divy(pw),
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where D, > 0 is some diffusion coefficient and y > 0 is a friction parameter. The
Wigner equation with the Caldeira-Leggett operator is also known under the
name of quantum Brownian motion or quantum Langevin equation and it re-
ceived large interest in the context of interaction between light and matter (see,
e.g., [48]).

The Caldeira-Leggett scattering term does not satisfy the so-called Lindblad
condition (see below) which is a generic condition for quantum systems to
preserve complete positivity of the density matrix along the evolution
(i.e. p(0) > 0 implies p(t) > 0 for all £ > 0). Such a property has to be satisfied
for a true quantum evolution. Thus the Wigner-Caldeira-Leggett equation is
quantum mechanically not correct. The reason for this shortcoming comes from
the inconsistency that the equation contains the temperature 7, through its
coefficients, but the 1/7T — 0 limit was performed in [30] along the derivation of
the model.

In [32], the approach of Caldeira and Leggett has been improved by deriving the
following Fokker-Planck operator with finite temperature:

(22) Q(w) = Dyppdyw + 2y divy,(pw) + Dggdew + 2Dy, div.(Vyw),

where the nonnegative coefficients D,,, D), and Dy, constitute the phase-space
diffusion matrix of the system, which is assumed to satisfy the Lindblad condition

DppDyy — Df,q > §
The coefficients Dy, and D), model quantum diffusion. The Wigner equation with
this collision operator is called the Wigner-Fokker-Planck equation and it has been
analyzed by Arnold, Lopez, and co-workers in [7, 8, 31].
More generally, the interactions of the electron ensemble with the environment
(called an open quantum system) can be described by the Lindblad equation or the
master equation in Lindblad form

A ey . U B
i60ip = 175) = [H.p) +1 Y (LipLi; — 5 LiLip + PLiLw) ).
k

where H is some (quantum) Hamiltonian, L, are (possibly countable many) so-called
Lindblad operators, and L; is the adjoint operator of L, [6]. A solution p is formally
positivity preserving and the operator J is dissipative on the space of self-adjoint
trace-class operators. Hence, the time evolution of p is no longer reversible.

If all Lindblad operators vanish, we recover the Liouville-von Neumann equation
(). Setting Ly = o, - ¢ + f, - Va, the quantum Fokker-Planck term (22) can be
written as a Lindblad equation [6].
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3 - Quantum drift-diffusion models

In this section, we derive formally the nonlocal quantum drift-diffusion model.
Expanding the quantum Maxwellian in terms of powers of &, local model
equations are obtained. In the O(¢*) approximation (and neglecting pressure and
electric force terms), we find the so-called Derrida-Lebowitz-Speer-Spohn
equation [56], which is a parabolic equation with fourth-order derivatives.
Furthermore, in the O(s%) approximation, a sixth-order quantum diffusion
equation is derived. These equations possess very interesting mathematical
properties which we detail below.

3.1 - Derwation

The quantum drift-diffusion model is derived from the Wigner-Boltzmann
equation (20) in the diffusion scaling with the BGK-type scattering operator (21). We
follow here the derivation of Degond et al. in [53] (also see the reviews [54, 92]).

3.1.1 - Nonlocal quantum drift-diffusion model

Assuming that collisions conserve mass, the quantum Maxwellian in (21) reads as
Weq = M[w] = Exp(A - @)
q 2 ’
where the Lagrange multiplier A is determined through
J Mlwldp = J wdp.

R? R?

We consider a diffusion scaling in the Wigner-Boltzmann equation (20), i.e., we re-
place the time ¢ and Q(w) by t/« and Q(w)/x, respectively. Then (20) becomes

23) 0w, +o(p - Vaw, + 0V, Jw,) = Mlw,] —w,, @,p€R® >0,

with initial datum w(-, -,0) = wyin R? x R3. The potential operator 0[V,]is defined in
(13). The electric potential V, is a solution of the Poisson equation (see (8))

C(x).

wdp
24 P2 AV, = (w,) — C(x) = J —~
( ) D < ) (27'[8)3
R3
We wish to perform the formal limit o — 0. This limit is carried out in three steps,

following [92, Section 12.2].
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Step 1 : limit in the Wigner-Boltzmann equation. The limit o — 0in (23) leads to
M[w] = w, where w = lim,_ow,. The function M[w] is the lowest-order approx-
imation of w,. In order to obtain more information for w,, we make a Chapman-
Enskog expansion.

Step 2 : Chapman-Enskog expansion. We insert the expansion w, = M[w,] + ag,
(which in fact defines the function g,) into the collision operator. Then the Wigner-
Boltzmann equation (20) becomes

00wy + P - Vaty + 0LV Iw, = o7 (M[w,] — w,) = =g,
In the limit & — 0, this yields
(25) g =—(p- VaMlw] + 0[VIM[w]).
Step 3 : limit in the moment equation. The moment equations are generally
obtained by multiplying the Wigner-Boltzmann equation by the weight functions

and by integrating over the momentum space. In the present situation, the weight
function is simply x(p) = 1, and the moment equation reads as

O (wy) + ot dive (pM[w,]) + dive(pgs) + o OV Iw,) = o 2(Q(w,)).

It can be verified that the function p — pM[w,] is odd and hence, its integral over R3
vanishes. Furthermore, a computation shows that (6[V] f) = 0 for all functions f( p).
Finally, by mass conservation, (Q(w,)) = 0. Then the moment equation becomes

Or(wy) + dive(pgs) =0,
and the limit o — 0 gives, inserting (25),
I(w) — divy(p(p - Vow + 0[VIw)) = 0.
Since (pl[VIw) = —nV,V, where n = (w), we infer that
n — div, (div,(p ® pw) — nV,V) = 0.

We have proved the following result.

Theorem 3.1 (Nonlocal quantum drift-diffusion model). Let (w,,V,) be a
solution of the Wigner-Boltzmann-Poisson system (23)-(24) with initial datum
wy(-,-,0) = wy. Then, formally, w, — w and V, -V as a — 0, where w(x,p,t)
= Exp(A(x,t) — |p|2/2) and (A,V) is a solution of the quantum drift-diffusion
equations

on—divd, =0, J,=divP —nVV, ipdV=n—-Ck), t>0,

n(-,0) =n; n Rg,
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the particle density and quantum stress tensor are, respectively,

B PPy dp
27 n= J Exp (A — 7) (2ns)3 ,
R?
B PPy dp
28) P= Jp@pEXp(A—2>(2m)3,

R?
where the matrix p ® p consists of the elements (p @ p)je = pjpr, and the initial

datum is given by ny = (wr).

The quantum stress tensor is a nonlocal operator involving the Lagrange multiplier
Awhichrelates to the particle density n through (27). Itisshownin[53] that VP = nVA
and hence, the quantum drift-diffusion model can be written equivalently as

(29) an —divJ, =0, J,=nV@-V).

A local model is obtained by expanding the quantum Maxwellian up to terms of
order O(¢2") for n € N. This is detailed in the following subsection.

3.1.2 - Local quantum drift-diffusion model

We derive local versions of the quantum drift-diffusion model from the previous
subsection, in particular the O(¢*) and O(&%) approximations.

Theorem 3.2 (Local quantum drift-diffusion model). Let (n,J,,V) be a so-
lution of the nonlocal quantum drift-diffusion equations (26). Then, formally,
Jn =dJ + 0@ and (n,J, V) solves the (local) quantum drift-diffusion equations

. & A/
(30) amn — divJ =0, Jan—nVV—gnV(W),
(31) 2AV =n—C@), n(-,00=n; in R t>0.

For the proof of this theorem, we need the following elementary integral identities:
J 12 — 0n)2,
R?
(32) prme"p' Pdp = @00y,
e

J pjp/fpmpneilplz/zdp = (277:)3/2(5]'557;@% + 5]’71@5211 + 5j97,5lm)7

R?
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where d;, denotes the Kronecker delta. In the following, we only sketch the proof and
refer to the proof of Theorem 12.11 in [92] for details of the computations.

Proof (of Theorem 3.2). We need to expand the electron density and the stress
tensor in powers of 2. By Lemma 2.3, the O(¢!)-expansion of the quantum
Maxwellian is given by

Exp(A—@) — exp (A—@)[H?( |VA| SpTvap)] 1O,

Thus, using (32), the electron density n = (Exp(4 — |p|2 /2)) can be expanded as
follows:

n=eA (1 a (AA . \VA|2>) (e P12

(33) Z B 890 p]péef‘p‘z/% + 0"
)

— 2n?) %2 (1 +3 (AA + % |VA\2)) +OGEY).

Next, we develop the quantum stress tensor P in powers of ¢2. By its definition
(28) and by (32),

Py = (145 (1441 1vAP)) (e 7

& %A 2
— > (pppmpne 7 + O
4 ,21 Oty Oy, T

& 1

2\-3/2 1 2\\ 5.

— 2r2) eA(l + 12( +3IVAl ))@[
A S

12 (2ne2)?/? Ou;dx, *

The O(¢*)-expansion (33) leads to

2 aZA

Pje =noj =15 " D0,

+ 0.

Differentiating the O(¢?)-expansion of n with respect to x, we arrive at
Vn = nVA + O(s2). Hence, after some computations,

. 2
. L Lody:, o4 !
(divP); = 2 ou = 890] 12 Z 890] < (8904) + ox 2> + 0.
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In vector form, this reads as

divP = Vn — ;z—znv (AA += |VA|2> + 0@H).

It remains to express A in terms of n. We already noticed that VA
= Vn/n + O(e%) from which we conclude that

m |Vn 1
Svap =] i w5 |2+ o)
(34) i
_n |Vn| A 9
=5 +0(?) = \F + 0(@).
Therefore,
& AV/n 4
J, = divP —nVV = Vi — nVV——nV( N ) + 0@,
and the conclusion follows. O

Expanding the quantum Maxwellian up to order O(:2"), quantum diffusion
equations of order 2% can be derived. Above we have treated the case n = 2. In [25],
the case n = 3 was carried out. The crucial step is to determine an O(c%) approx-
imation of Exp(a) with a(x, p;t) = A(x, t) — |p|2 /2. To this end, we follow the strategy
proposed in [53]. The idea is to define F'(z) = Exp(za) and to expand F'(z) formally as

aseriesing ie. F(z) = > & F}(2). The functions F.(z) can be computed by pseudo-
k=0

differential calculus. Foriodd indices k, we have F.(z) = 0, and for even indices, we
have to solve the differential equation

dr
(35) —’“<z> = o) Fi@) + aos Fr o)+ +aop Fo@), 2>0,

with initial condition F;(0) = Jy. The multiplication o,, is defined as a sum of partial
derivatives of order n (see the appendix of [25]). The sixth-order quantum diffusion
equation is obtained by solving (35) for k = 4. It turns out that Fo(1) = ¢* and that
(35) can be written as

dF
—’“(z) = aF}(2) + ¢Py(z,p,4), Fp0)=0

where Pj(z,p,A) is a multivariate polynomial in z and p and contains spatial deri-
vatives of A up to order k. This linear differential equation can be easily solved, and
Fr(1) (k=0,2,4) gives the O(¢*?) approximation of the quantum Maxwellian
Exp(a).
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It remains to represent the density » as a function of A. Inserting the expressions
for F',(1), we obtain

+ 0.

7V=JEmmwéZ) [ #ow+ 2o+ pi) 2

R3 R3

(2me)’

After integration, the density can be written as the sum Gy(A) + £G2(A)
+6*G4(A) + O(%). To derive an e-approximation of A in terms of n, we insert the
ansatz A = Ay + 24z + ¢*A4 + O(e5) in the above expression for » and equate equal
powers of ¢. The resulting system of equations can be solved for A leading to

1 4yn
&:M@ﬁ%,&:7§g

1
( |Vzlogn\ + V2 (anlogn))

47360

Here, V? denotes the Hessian matrix and the double points in A : B signify sum-
mation over both indices of the matrices A and B. The sixth-order model is obtained
by inserting the approximations A;, into the formulation (29),

om —divinVA -V)) =0

which gives the following result [25, Appendix].

Theorem 3.3 (Sixth-order local quantum drift-diffusion model). In the O(c5)
approximation, the nonlocal quantum drift-diffusion equation (26) can be written
as follows:

A 2 e 1 o o
8m-d1v<Vn 6nV( f)+360nV( |V=log n| —i—nV :(nV logn)) ,

where |V?log n| is the matrix norm of the Hessian of log n.

3.2 - Analysis of the fourth-order equation

In this subsection, we present some analytical results on the quantum drift-dif-
fusion model (30)-(31) and related equations.

3.2.1 - Existence of global solutions

The main difficulty of the mathematical analysis of the initial-value problem (30)-
(31) is due to the fourth-order differential term div (nV (12 4n1/2)). Indeed, there is
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generally no maximum principle available for fourth-order equation, which would
allow one to conclude positivity preservation and a priori estimates. Consequently,
one has to rely on suitable regularization techniques and energy-type a priori esti-
mates. The latter, however, is difficult to obtain because of the highly nonlinear
structure of the equation. We remark that similar difficulties appear in the study of
the thin-film equation

o + div(u*Vdau) =0,  u(-,t) =up >0,

for which preservation of positivity strongly depends on the exponent o > 0; see [15]
for details.

The first existence result for the simplified equation (obtained from (30) by ne-
glecting the second-order diffusion and electric force and by setting 2/6 = 1)

(36) 8tn+div(nV(M)) =0, n(,)=n>0 inT t>0,

N
where T¢ is the d-dimensional torus, is due to Bleher et al. [18]. This equation is called
the Derrida-Lebowitz-Speer-Spohn or DLSS equation in [98] since it has been first
derived in [56] by these authors. The result of [18] provides the existence and unique-
ness of local-in-time classical solutions of (36) for strictly positive initial data from
WP (T withp > d. The proofis based on semigroup theory applied to the formulation

2
20,(v/1) + £/t — (‘%@ 0,

which is equivalent to (36) as long as # remains bounded away from zero. Lacking

suitable a priori estimates, existence was proven only locally in time. In one spatial
dimension, global existence of solutions can be related to strict positivity: if a clas-
sical solution breaks down at ¢t = ¢*, then the limit profile lim; ;- n(x, t) is an element
of H! but vanishes at some point x € T.

This observation has motivated the study of nonnegative weak solutions instead
of positive classical solutions. The first global existence result was proven in [106]
and later generalized in [80]. The DLSS equation (36) was considered on the interval
(0,1) C R with physically motivated boundary conditions

(37) nw(0,t) =n1, nl,t)=mnz, nx0,t)=m1, n,A,t)=mg, ¢t>0.

Global existence was proven in the class of functions with finite (generalized) entropy

1
Eyn) = J(n —logn)da.
0

The following result corresponds to Theorem 1.2 in [80].
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Theorem 3.4 (Existence for the one-dimensional DLSS equation). Let 74,
ng > 0 and my, mg € R. Let ng > 0 be an integrable function satisfying Eo(ng) < oc.
Then there exists a weak solution n of (36)-(87) satisfying n(x,t) >0 in
(0,1) x (0, c0) and

n € W0, 00; H-2(0, 1)) N LY/%(0, 00; W10, 1)),
logn € L2 (0, 00; H*(0,1)).

loc

To explain the key ideas of the proof, we simplify by assuming n; = ng =1,
my = mg = 0; see [80] for the general case. A formal computation shows that
1
dkE 8 "y

=0y J ((log n)ix +5

4
(38) - e )dac —0.
0

This estimate as well as the equivalent formulation of (36),
1
o+ é(n(log )ga)ew = 0,

motivates to employ ¥ = log n as a new variable. Theorem 3.4 is proved by the fol-
lowing strategy. First, the equation d;(e¥) + 5 (€Y uz)ue = 01is discretized in time by

the backward Euler scheme with approximation parameter t > 0, which provides a
sequence of elliptic equations. The Leray-Schauder fixed-point theorem yields the
existence of a weak solution 7, € H%(0,1). The compactness of the fixed-point op-
erator follows from the uniform H? bounds obtained from a discrete variant of the
entropy dissipation identity (38). This variant also provides estimates for y, in-
dependent of 7, and compactness (Aubin’s lemma) allows one to extract a sub-
sequence of 7, = exp (y,) strongly converging to a weak solution to (36)-(37).

This technique was used by Chen et al. [45] to prove the global-in-time existence
of weak solutions supposing Dirichlet boundary conditions on the particle density,
quantum Fermi potential (see (47) below), and electric potential.

The restriction to one space dimension in Theorem 3.4 is essential since Ej is
seemingly not a Lyapunov functional in higher dimensions.

For the multidimensional equation (36) on a domain Q c R?, global existence of
weak solutions was obtained only recently by two different methods [76, 98].
Whereas the framework of the first approach is that of mass transportation theory,
the second approach extends the fixed-point argument used in the proof of Theorem
3.4. Both proofs, however, rely at a crucial point on a compactness argument, i.e., a
consequence of the estimate

(39) % +c Jn|V2 log n[*dx < 0,

Q
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where [VZlogn| is the euclidean norm of the Hessian of log 7,

(40) Ein) = Jn(logn —Ddx
Q

is the physical entropy and ¢ > 0 is some constant. This inequality is shown for
Q="T% or @ =R" since this avoids boundary integrals. It follows that E; is a
Lyapunov functional but, lacking a lower bound on %, the above inequality does not
yield an H? estimate for log n. However, it is possible to show that

(41) Jan log n[*da > KJ \V2V/nlPdz,
Q Q

where kx = 4(4d — 1)/(d(d + 2)) if @ = T [98]. The proof is based on the method of
systematic integration by parts developed in [97] to one-dimensional functions and
extended in [25] for radially symmetric functions. Inequality (41) leads to an H?
bound for /7. This motivates to rewrite the nonlinearity in (36) in terms of \/» giving

dn+ V2 (VVi/n - Vi@ Vy/n) =0

or, more explicitly, with the notation 9; = 9/0x; ete.,

d
(42) o+ BV - O/n i) = 0.

1,j=1

The key idea in the paper [76] of Gianazza et al. is the observation that (36) con-
stitutes the gradient flow of the so-called Fisher information

Fn) = J |V\/7'a|2dx

Q

with respect to the Wasserstein metric. Then, the above estimates are used to prove
that the subdifferential of the Fisher information is closed. Employing deep results
from mass transportation theory [2], this eventually provides the existence of a
global solution of (36) with the natural regularity /n € leoc(O, oo; HA(Q)), where Q
may be the whole space R? or a bounded domain equipped with variational boundary
conditions.

The ideas in [98] are more elementary and straight-forward. As in the one-di-
mensional case, (36) is written in logarithmic form, discretized in time by the

backward Euler scheme, and additionally regularized by a bi-Laplacian,

orn, + %Vz : (mVZ logn;) + e(ALlogn, +n,) =0 inQ="T%
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Here, 0} is the discrete time derivative with time step t > 0. The regularization is
needed to ensure the existence of solutions of the linearized elliptic problem for
Y, = logn, in the space H2(T?) via the Lax-Milgram lemma. A variant of (39) to-
gether with (41) provides an a priori estimate for /7, in H 2(T?) uniform in ¢ and .
Moreover, thanks to the elliptic regularization, we obtain an estimate for log 7, in
H2(T%) (not uniform in &) and hence, by Sobolev embedding, in LT for d < 8.
This shows that n, is strictly positive in T¢, which justifies all formal calculations.
The uniform bounds allow one to apply compactness (Aubin’s lemma) and to pass to
the limits ¢ — 0 and v — 0, yielding the existence of a global solution of (42) on the
torus T% The precise result is as follows (see Theorem 1.1 in [98]).

Theorem 3.5 (Existence for the multidimensional DLSS equation). Let d <3
and let ng be a nonnegative measurable function on T with finite entropy E1(ng) < oo
(see (40)). Thenthere exists aweak solutionn of (42) satisfyingn(-,t) > 0on T fort >0,

n € Wi /0,00, H2(TY),  Vn € L0, 00; HA(T?),

loc loc

and the nitial data is satisfied in the sense of L, (0, oo; H2(T' @),

The theorem is valid in the physically relevant dimensions d < 3. This restriction
is related to the lack of certain Sobolev embeddings in higher dimensions d > 4.
Most prominently, the fixed-point argument exploits the continuous embedding
H2(TY — L>°(T9) to conclude absolute boundedness of Y. = log n, and hence strict
positivity of n, = exp (y.). We have chosen periodic boundary conditions in order to
avoid boundary integrals.

Based on the above ideas, Chen [42] proved the existence of global solutions of the

quantum drift-diffusion system
2
A
(43) am — divd, =0, Jn:Vn—nVV—%nV( \/ﬁ)

NG
(44) BAV =n—C@), n(,00=ny in T t>0.

We recall that »n is the electron density, J, the electron current density, V the
electric potential, C(x) the given doping profile (see (8)), and the given parameters
are the scaled Planck constant ¢ and the Debye length /p.

Theorem 3.6 (Existence for the quantum drift-diffusion model). Let d < 3,
C € L>(Q), and let ny be a nonnegative measurable function such that

Ei(ng)<oo and J nodx = J C(x)dux

T T
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(see (40) for the definition of E). Then there exists a weak solution (n, V) of (42) and
(44) satisfying n > 0 and
n e Wit 10,00, H A1), v/ € L3,.(0, 00; HA(TY),

loc loc
Ve L 0o ), [Vae =0, [ nde— | e

Td Td Td
The proof uses the following identity:

dE;

(45) at

+ J (fz—anZ lognf* + 4|V\/ﬁ|2)dac = It J n(n — C(x))dx.

T T

Since the right-hand side is bounded and (41) holds, we obtain uniform H2 bounds for
/7 and uniform L? estimates for . Then, the Poisson equation implies uniform H?
bounds for V. These key estimates and the Gagliardo-Nirenberg inequality lead to
further uniform estimates needed to achieve compactness results.

The paper [107] shows the stability and, in one space dimension, the convergence
of a positivity-preserving semi-discrete scheme for the quantum drift-diffusion
model.

3.2.2 - Long-time behavior of solutions

Several papers have been concerned with the analysis of the long-time behavior
of solutions 7 of the DLSS equation (36) with unit mass. As an example, let us
consider (36) on the torus. The essential tool to derive a priori estimates needed for
the long-time decay are the so-called relative entropies, as introduced in [9],

E,(ny|ng) = J ¢a<%)n2dx,

T

where 71 and ng are nonnegative functions on T with unit mean value, and ¢, is
given by

¢,(8) = (s"—as+o—1), s>0,

1
oo — 1)
where o # 0,1. The natural continuation for o =1 is ¢,(s) = s(logs — 1) + 1; the
functional E; corresponds to the physical entropy (40). The functional £, is non-
negative and vanishes if and only if 7; = np. To obtain a priori estimates (and decay
rates), we consider entropies of solutions n; = 7 relative to the spatial homogeneous
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steady state ng = 1:

1
= * — > 1.
B0 = | [wde-1). a1
T:Ll

Then a formal computation shows that

d
dz“ = i . Z J naz(logn)(?z(n“’l)dac,

where 8% = 2 /Ox;0x;. By an inequality similar to (41) (see Lemma 2.2 in [98]), we
find that the right-hand side can be estimated, up to a factor, by the integral over
(4An*/2)?, which gives

dl,

b o/2\2 <
7 —I—KaJ(ATL )Y dx <0,

1

for some constant x, > 0. To conclude decay to equilibrium, we need to relate the
entropy production | (Un*/2Ydux to the entropy E,. This is done by applying the

Td
generalized convex Sobolev inequality [98, Lemma 2.5]

p

(46) pil J e — J F2IP g inél J Uf2de,

T T T

valid for all nonnegative functions f € H2(T?%) and 1 <p<2tof =n*?andp=o.
Then, taking into account that % has unit mass, we find that

dE,

<
i + 872, E, 0,

and Gronwall’s lemma implies that {— E,(n(-,t)) decays exponentially with rate
8n*ok,. By the Csiszar-Kullback inequality [49, 113], the solution decays expo-
nentially in the L' norm with half rate:

”n(‘;t) - ]-HLl(Td) S (ZEI(WO))1/2674HZK1267 t Z 0-

Notice that, as remarked in [58] for the one-dimensional equation, this global decay rate
for £ coincides with the decay rate of the linearized equation and thus, it is optimal.
Decay rates were also shown for the functionals

F,(n) = J |Vn“/2|2dac, Fon) = J |Vlogn|2dx, o> 0.

T T
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The first decay result is due to [29], where exponential decay of Fy was shown under a
smallness condition of Fy. Exponential convergence of the Fisher information F;
along weak solutions was obtained in [58]. It was observed in [97] that actually all

2 2
functionals F', with %(25 —6V10)<a< £(25 +6v10) are nonincreasing along

smooth solutions. This observation was rigorously proven for weak solutions in [110].

The long-time decay of solutions of the one-dimensional DLSS equation with
homogeneous Neumann boundary data and constant Dirichlet data was shown in [106]
without rate and in [109] with exponential rate. For nonconstant boundary conditions,
the steady state 7., is no longer spatially homogeneous. It was proved in [80] that this
steady state is exponentially attracting in terms of the relative entropy under the
additional assumption that log 7., is concave. In several space dimensions, a very
general result on the long-time behavior of the DLSS equation was proved in [76].

The asymptotic behavior of solutions of the quantum drift-diffusion model can be
analyzed similarly as for the DLSS equation by combining the results for the DLSS
equation and the drift-diffusion model. For instance, for the one-dimensional system
with constant doping profile, Chen et al. [46] showed, by using the methods of [58],
that the electron density converges exponentially fast to the constant steady state.
The multidimensional case was considered in [47].

3.2.3 - The stationary equations

The stationary quantum drift-diffusion model corresponding to (43)-(44) has been
studied by Ben Abadallah and Unterreiter [14]. They considered the system of
equations on a bounded domain and imposed physically relevant mixed Dirichlet-
Neumann boundary conditions. The equations are written in terms of the general-
ized Fermi potential

& M/n
47 F=V+1 e
(47) +logn — NG
which can be interpreted as an elliptic second-order equation for /7, coupled to the
divergence equation

0 =divJ, = div(rVF).

The advantage of this formulation is that the maximum principle can be applied to
the last equation, yielding > bounds for F'. Then, using fixed-point arguments and a
minimization procedure of the free energy functional, the existence of bounded weak
solutions was proved in [14]. The authors also tackled the case of vanishing particle
density at the Dirichlet boundary. Interestingly, the density is positive in the whole
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domain although it may vanish at the boundary. Chen and Guan [39] used the
techniques of [14] to simplify the step proceeding from the minimizer property to the
Euler-Lagrange property of weak solution.

The question of the uniqueness of solutions was left open in [14] and has been
answered in [137]. More precisely, it has been shown that the solution is unique for
sufficiently small applied biasing voltages. This is in analogy to the results for the
classical drift-diffusion equations for which it is known that there may exist multiple
steady states.

The stationary quantum drift-diffusion model was employed to simulate strong
inversion layers near the gate of MOS (metal-oxide-semiconductor) transistors [3]
(also see the discussion in [10]). Scientists developed Gummel-type iteration schemes
[27, 50, 51, 137], finite-element approximations [135, 136], finite-volume discretiza-
tions [33, 132], and high-resolution slope-limiter schemes [133]. A hybrid quantum
drift-diffusion Schrédinger-Poisson model was numerically solved in [63]. The model
has been also used to calculate current-voltage characteristics of resonant tunneling
diodes, which have the characteristic feature that the current density may decrease
with increasing applied voltage in a certain region (the so-called region of negative
resistance). This feature allows for the construction of ultrafast oscillators. It seems,
however, that the quantum drift-diffusion model is less suited for that application
since negative resistance effects occur numerically at very low lattice temperature
and for modified effective masses only. Finally, we notice that an optimal control
problem was analyzed in [143] to optimize the shape of the quantum barriers in the
diode.

3.24 - Asymptotic limits

In the quantum drift-diffusion model (43)-(44),

2

N
(49) IpdV =n —C(x), n(,00=mny in £, t>0,

there are two scaled parameters, the Planck constant ¢ and the Debye length 1p. In
certain physical regimes, these parameters may be very small compared to one, and
one may ask if the limits ¢ — 0 or /p — 0 can be performed rigorously, leading to
simpler models. In fact, when we perform formally the semiclassical limit ¢ — 0, we
obtain the semiclassical drift-diffusion model

(50) on—divd, =0, J,=Vn-nVV, inQ, t>0,

with the Poisson equation and initial condition (49). The limit Ap — 0 in (44) would
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lead to the equation n — C(x) = 0 which is less interesting. The so-called quasi-
neutral limit 2p — 0 makes more sense in the bipolar model, in which a quantum
drift-diffusion equation for the hole density p is added,

A
(51) ap —divJ, =0, J,=Vp+pVV -2 pV(\/\/ﬁ:)

and the Poisson equation is replaced by
(52) 224V =n —p— C).

If C(x) = 0, thelimit 1p — 0 gives formally » = p and hence, by adding the equations
for n and p, the drift terms vanish:

8tn+div<6nV( \\//__> n) =0.

We first review some results on the semiclassical limit. The entropy estimate (45)
provides an H! bound for /% which is independent of the scaled Planck constant e.
This observation was used by Chen [42] to prove the semiclassical limit ¢ — 0 for the
solutions (n,, V) of (43)-(44). In fact, this bound is essential to apply the Aubin lemma
showing that (n,) converges strongly to » in some Lebesgue space and that (V)
converges strongly to V in some space. Moreover, using the Gagliardo-Nirenberg
inequality, Chen showed that the uniform gradient bound on /7, implies that
¢4, V2log n, is uniformly bounded in L37(0,T;L2(T9)), for any T > 0. Since
7/4 <2, we infer that

&n,V21logn, — 0 strongly in L¥7(0, T; L>(T%).

The limit function (n, V) satisfies the drift-diffusion model (50) in Q = T,

The semiclassical limit has been studied in the literature for several variants of
the model, considering the bipolar model, replacing the pressure term V# by an
isentropic pressure V(#”) with # > 1, or imposing homogeneous Neumann boundary
conditions. The proofs, however, are based on the above described ideas, and we
refer to [37, 38, 43, 87, 88, 89] for details.

The quasineutral limit A, — 0 in (48), (561), and (52) was performed rigorously in
[111] for the one-dimensional equations in the interval x € (0, 1) with the boundary
data

n=p=1 nmy,=p,=0, V=Vp forxze{0,1}, t>0.

1

The idea of the proof is to employ the entropy Eo(n) = [ (n — logn)dax, which pro-
0

vides Ap-uniform bounds for logn and logp in L2(0,T;H?(0,1)) for any T >0
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1
(compare to (38)). The physical entropy E1(n,p) = [ (n(logn — 1) + p(logp — 1))dx
gives the additional bounds 0

) ,1
7 = pllrzexory < ¢ps 1Vallz@xom < ¢p s

where ¢ > 0 is some constant independent of Ap. This shows that n — p converges to
zero, as expected. However, the estimates are not sufficient to pass to the limit
Ap — 0 since we cannot control the drift term (n — p)V,, which is uniformly bounded
in L2(Q x (0, 7)) but does not converge to zero. The key idea is to derive the esti-
mates

) -8/9
VR = VPllrxaxory < o, W+ VPVallp2owomy < ¢4 .

The first bound is a consequence of the estimate using the entropy Ey. The proof of
the second bound is more delicate. It follows from an estimate of the electric energy

1
)% J V- W)idx, where W satisfies the boundary data of V up to first order, i.e.,
0

W =V and W, =V, for « € {0,1}. The exponent 8/9 is related to the exponents of
the Gagliardo-Nirenberg inequality.

The quasineutral limit in the multidimensional model was studied by Chen and
Chen [44]. They impose a fast-time scaling and analyze the initial-time layer pro-
blem. The limit equations are the bipolar drift equations without diffusion.

3.3 - Analysis of the sixth-order equation

The analysis of the sixth-order equation from Theorem 3.3 in the d-dimensional
torus,

1 1
(53)  Oym = div (nV(éwz log n)* +%V2 : (nV? logn))>, xeT t>0,
(54)  n(-,0)=mg >0, xecT

is very involved due to the highly nonlinear structure of the sixth-order operator.
(Notice that we have neglected the second- and fourth-order diffusions from the
model in Theorem 3.3 and that we have set £2/360 = 1. These simplifications are not
essential but simplify the presentation.) Moreover, it is not clear how to prove the
nonnegativity of the particle density, which is expected physically.

These difficulties can be overcome by extending the tools employed in the ana-
lysis of the fourth-order DLSS equation. The first tool is to employ exponential and
power variables 7 = u* = ¢” and to write equation (53) first in terms of y:

(55) Ae?) = V3 : (! V3y) + 2V : (! (V2y)?),
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where V3y is the tensor of all third-order derivatives of ¥ and A : B means sum-
mation over all indices of the tensors A and B. The advantage of this formulation is
that it provides a symmetric structure in the sixth-order differential operator for the
variable y, which is useful to apply the Lax-Milgram lemma to the linearization in the
fixed-point argument. Moreover, when y € H3(T% — L*(T% (d<6) is a weak so-
lution to (55), the particle density n = ¢ becomes strictly positive. This overcomes
the lack of the maximum principle.
The second tool is based on entropy estimates from the physical entropy
Ei(n) = [ n(logn — 1)dx (see (40)):
et
dE4

Tk J n(|V3logn|® — 2(Vlogn)® : VZlogn)da = 0.

wrd
Extending the method of systematic integration by parts [97], we are able to prove

that the entropy production is bounded from below by positive expressions involving
derivatives of n:

—% = J n(|V3 logn|” — 2(V2logn)® : VZlog n)da
Td
(56)
> o [ (Vv + [V Yav il + (9 il ).
¢
for some constant ¢ > 0 which only depends on the dimension d. The proof of the

above inequality is rather technical; see [25] for details. Similar as for the DLSS
equation, this motivates us to write the nonlinearity in terms of u = /n, giving

O =8V2: (Vi VA + 4V /@ V /n @ V /) —64V7 : (i Vi/n)

(57) +8V2: (VEVn)? — 8VEVI(V /i @ V /i)
+ 16|V V'V /n @ V /n).

With these tools, the steps of the existence proof are as follows. First, we semi-
discretize (55) in time by the backward Euler scheme, regularized by a tri-Laplacian,

I, = V3 : 0, Vy,) + 32V2 1 (Vi (Vi)
— 2.3/, V(Y s @ Y ) + |V s PV /e @V /)
+ S(ASZ/;; - Z/;;) in Tda

where n, = exp (y,), ¢ > 0, and 9; is the discrete time derivative with time step z > 0.
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The regularization is needed to guarantee coercivity of the right-hand side with
respect to .. The existence of solutions ¥, is obtained from the Leray-Schauder
fixed-point theorem. Compactness of the fixed-point operator is a consequence of a
variant of the entropy estimate (56) with additional e-dependent bounds for . in
H3(T%). Since the entropy estimates for /1 and /n, are independent of ¢ and 7, we
can pass to the limit ¢ — 0 and then t — 0, yielding the existence of a global solution
of (63) on the torus.

There is a technical difficulty in the limit ¢ — 0 (and similarly, ¢ — 0). Since (%) is
bounded in H3(T?) and W'S(T?), we infer by compactness that, as ¢ — 0, up to
subsequences,

Vi, — /e strongly in H2(T9), ¥/, — ¥/n weakly in WS(T9).

The difficulty now is to pass to the limit in, for instance, the sequence {/n; V/n;
®Vn, ® Vyn, and to identify its (weak) limit. This is done by applying the following
result, which is a consequence of Theorem 5.4.4 in [2], proved in [102, Appendix]: Let
(u.) be a sequence of positive functions such that

u; — u” strongly in WhP(T9), (uf ) is bounded in WH4(T%).
Then, if 0<f<y<a<oo, 1<p,q,r<oo, and ap = fig = yr,
ul —u’  strongly in W(T%).
The assumptions are satisfied for v, = {/n,, 0 =2, =2/3,y=1,and p =2, ¢ = 6,
r = 4, and we conclude that
Vi/n; — V¥n  strongly in LA(T?).

This implies that
e NV, @ Vi, @ Vi, — ¥nVyn @ Vyn e Vyn

strongly in L1(T?). The existence result reads as follows (see Theorem 2 in [26]).

Theorem 3.7 (Existence for the sixth-order equation). Letd < 3 and let ny be
a nonnegative measurable function with finite entropy Ei(ng) <oo. Then there
exists a weak solution n > 0 of (54) and (57) satisfying
n € Wit2(0,00; H3(T?), v/ € L3,(0, 00; HA(T?),

loc loc

Vit € L (0,00, WH(TY), ¥/ € L (0, 00 WH(T)),

loc

Equations (54) and (57) are satisfied in the sense of LY 5(0, oo H =3019)).

loc
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We notice that in [26] also the exponential decay of weak solutions was shown.
Indeed, by an extension of the convex Sobolev inequality (46), we can relate the
entropy production f |V3\/w |“da by the entropy E:(n), and we infer from (56) an

inequality of the type dE;/dt + kE; < 0 for some x > 0. Then, Gronwall’s lemma
implies that E1(n(-,t)) < E1(ng) exp ( — xt) for ¢t > 0.

3.4 - Analysis of the nonlocal equation

While the existence theory for the fourth-order and sixth-order quantum diffu-
sion equations is rather well developed, there are up to now no complete existence
results for the nonlocal quantum drift-diffusion equation (26). In this subsection, we
review a partial result due to Gallego and Méhats [68] who proved that the time-
discretized model with no-flux boundary conditions possesses a solution.

According to (29), the nonlocal quantum model can be written as

Om = divinV(A = V), 54V =n,

n= EXp(A |]0|) dp in Q, t>0,
A (27‘[8)3

where Q ¢ R? is a bounded domain with smooth boundary. The equations are
complemented by initial and no-flux boundary conditions

(58) VA-V)-v=0, V=0 onoQ, t>0, n(,0=mny inQ,

where v denotes the exterior normal unit vector to the boundary 0%.
The relation between the electron density 7 and the chemical potential A can be
formulated in a weak sense as [68, (2.4)]

Jngﬁdac = Tr(exp(— H)¢),

Q
where “Tr” is the trace of an operator and H = — (¢2/2)4+ A is the Hamiltonian with
domain D(H) = {y € H*(Q) : Vy - v = 0 on 02}. Hence, if A belongs to, say, L*(Q),
there exists an orthogonal basis of eigenfunctions (y/p) = (l//p[A]) with eigenvalues
Jp = Ap[Al], and the nonlocal relation between n = n[A] and A takes the more explicit
form

n[A] =" e Ay, [A]].
p=1

It is proved in [68, Lemma 2.3] that the mapping H'(Q) — R, A+— fn[A]dx is
Fréchet differentiable and strictly convex. @
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The existence result holds for the semi-discrete model

(59) %(nk“ —nf) = divF V(AR — VL) Q2 AV = gkt
(60) w1 =3 " exp (= 4, LA ]|y, [AF]P in @
p=1

subject to the boundary conditions in (58), where n*

result is as follows (Theorem 3.1 in [68]).

is a given function. The main

Theorem 3.8 (Existence for the semi-discrete nonlocal equation). Let n be
continuous and positive on Q. Then there exists a unique solution (n*,KAF,
Vk) e C%Q) x H2(Q) x H*(Q) of (58)-(60). Moreover, the total charge is conserved,

Jnkdﬁc = Jnodm for all k e N,

Q Q

and the free energy

2
Sk = J ( —nkAk 4 1)+ %D |VV|2>dac
Q

18 nonincreasing in k.

The proof is inspired by the variational arguments of Nier [129, 130]. First, for
given positive and continuous 7*, the variational arguments lead to a solution
(AL VE+1) to the elliptic system (59) with no-flux boundary conditions. By the
above result on the mapping A — n[A], we can define nf 1 = p[A*1] and (60) is
satisfied. The choice of the Neumann boundary conditions for the eigenfunctions y,,
ensures that ! does not vanish on Q. Consequently, n* is strictly positive (and
continuous). Thus, the sequence (n*, A%, V*) can be constructed by induction.

The limit of vanishing time steps ¢ — 0is an open problem. One of the difficulties
is to find a positive lower bound for the particle density. Furthermore, for a practical
use of the model, boundary conditions which allow for a current flow through the
boundary would be desirable, but it is not clear how to handle more physical
boundary conditions in the existence analysis.

4 - Viscous quantum hydrodynamic models

In this section, we derive quantum hydrodynamic equations from the
Schrodinger or Wigner equation. Viscous quantum hydrodynamic models are ob-
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tained from the Wigner-Fokker-Planck equation by the moment method. We sketch
the derivations and summarize some analytical results for these equations.

4.1 - Derwation

We consider first the derivation starting from the Schrodinger equation via the
so-called Madelung transform and then, we present the derivation from the Wigner
equation.

4.1.1 - Quantum hydrodynamics and the Schrédinger equation

Quantum hydrodynamic models are well known since the early years of quantum
mechanics. In fact, Madelung [124] showed already in 1927 that there exists a hy-
drodynamic formulation of the Schrédinger equation. More precisely, let  be a
solution of the initial-value problem

ieOy = — 82—21"// ~ Ve, by, t>0, w(,0) = myexp(Se/e) in R?

where the potential V(x,f) is assumed to be given. Then = = \y/|2 and
Jp = —eIm@@Vy) solves the =zero-temperature quantum hydrodynamic or
Madelung equations

. _ . (I ®dy A
61) Om—divd, =0, &Jy — dlv(T) + vV 4+ S nV( N ) 0,
(62) n(,0)=mng, Ju(,0)=Jy inR?
where the initial data is given by ny = |z,//0|2 and Jy = —ngVSp, aslong asn > 0in R?.

Here,“Imz” denotes the imaginary part of a complex number z and Z is its complex
conjugate. This result can be shown by decomposing the wave function y as
w = y/nexp (iS/e), which is possible as long as |y| > 0, by inserting this decom-
position into the Schrodinger equation and taking the real and imaginary parts.

The above system is the quantum analogue of the classical pressureless Euler
equations of fluid dynamies. The expression A4y/n/+/% in the momentum equation in
(61) can be interpreted as a quantum self-potential or Bohm potential. The quantum
hydrodynamic equations are employed in Bohmian mechanics [145] and in the
modeling of superfluids and Bose-Einstein condensates [28].

There is clearly a problem with the above decomposition if vacuum occurs, i.e. if
|| = 0locally. In this situation, the phase S is not well defined which manifests in the
fact that the Bohm potential may become singular at vacuum points. A study of these
vacuum points in the quantum hydrodynamic equations was performed in El et
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al. [62]. The problem can be circumvented by using the polar decomposition of an
arbitrary wave function y into its amplitude /% = |y| and its unitary factor ¢ such
that y = /né in the spirit of Brenier [19]. This idea has been exploited by Antonelli
and Marecati [4] to analyze the quantum hydrodynamic equations (see Section 4.2.3).

The above model is derived for a single particle and therefore, it does not contain
pressure or temperature terms. In order to include such terms, we consider an
electron ensemble representing a mixed quantum state (see Theorem 2.1). In the
following, we proceed as in [92, Chapter 14]. We recall that a mixed state is a se-
quence of occupation probabilities 4; > 0 (k € N) for the k-th state y, which is de-
scribed by the single-state Schrodinger equation

. & .
(63) ey = — 5 Ay = Vi, Oy, >0, y(,0) = y) in R3

The single-state particle and current densities of the k-th state are defined as above

by
e = wel?, i = —eIm@, V), ke N.

Then the following result holds (see [75] or Theorem 14.2 in [92]).

Theorem 4.1 (Quantum hydrodynamic equations). Let v, be a single-state
solution of the Schridinger equation (63) with occupation number A, of the k-th
quantum state. Then (n,J), defined by

o0 00
=" Al T =l
k=1 k=1

18 a solution of the quantum hydrodynamic equations
om — divd =0,

2

J+n0) +nVV+%nV

8tJ—div(J (%ﬁ) —0,

where x € R® and t > 0, with initial conditions

n(,0) =Y Jklyhl?, JC.0)=—-¢Y A4Im@Vyy) inR®.
k=1 k=1

The temperature tensor 0 is defined by 0 = Oy + Oos, where the “current tempera-
ture” and “osmotic temperature” are given by, respectively,

o0
N
O = E y %(ucu,k — Uen) ® (%cuﬁk — Uew),
k=1

o0
Mg
Oos = Z Ak " (uosjc — Uos) ® (uos,k — Uos),
k=1



[41] DISSIPATIVE QUANTUM FLUID MODELS 257

and the variables

EVlogn

J &
Ueuk = ———5 U = ——, Upsk = élegnka Ups = B
k n

are called the “current velocities” and “osmotic velocities”, respectively.

The notion “osmotic” comes from the fact that the quantum term can be written as
the divergence of the quantum stress tensor [75] P = (2 /4)nV?log n since

A
EnV( \\//7_:) 2 Z divinV? logn).
Often, the above system is self-consistently coupled to the Poisson equation

(64) 2AV =n —Clx) in R3.

Proof. We follow the proof given in [92, Section 14.2]. The pair (ny,J}) solves
the Madelung equations (61) with initial conditions

e, 0) = [WifF,  Ji(-,0) = —eIm@IVyY).

Multiplication of (61) by /; and summation over k yields

on —divd =0,
(65) e (e @J e A1y _
Ord — kz:;},kle( " ) +nVV+§kz:;/%nkV( \/ﬁ]; ) =0.

We rewrite the second and fourth term of the second equation. With the definitions
of the “current temperature” and “current velocity”, we obtain

Z ( k k ) = Z ik le (nkucu,k X ucu.k)

1 e k=1
Z A div nk(u/cu k— ucu) 02y (ucu k= ucu) + anu/cu,k ® ucu)
=

—_

— div(nUey @ Uey)

_dlv(necu)+22dlv(ika®J) dv(J(i)J>
k=

— div(nBe) + div(JffJ).

Furthermore, employing the definitions of the “osmotic temperature” and “osmotic
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velocity”, we compute

Ziknkv(df__> Z’lk dw(v2 W%;V”k)

i” 9 n, Vi@ Vn Vn@Vnk
42 kle(Vn + ” "

“m( =) e (G -T))

2
_& (o2, T
= 4 le(v n le(neos)

_ gnv(%) — div(nbyy).

Inserting these expressions into (65) finishes the proof. O

Vn@jVn)

The temperature tensor ¢ cannot be expressed in terms of the total particle and
current densities without further assumptions. This is called a closure problem.
Motivated by closure conditions in classical kinetic theory, one may assume that the
temperature tensor is diagonal with equal entries on the diagonal, § = T [, where 1 is
the identity matrix. Then we obtain div(nf) = V(rT) which corresponds to the
pressure term in classical gas dynamics. We notice that this so-called isothermal
model was first proposed by Grubin and Kreskovsky in the context of semiconductor
modeling [77]. Furthermore, motivated by isentropic fluid dynamics where the tem-
perature depends on the particle density, one may employ the closure 8 = T'(n) [ with
T(n) =nf1 (B > 1) leading to the pressure force div(n0) = V(). Another as-
sumption to close the above quantum hydrodynamic system was proposed by Grasser
et al. using small temperature and small scaled Planck constant asymptotics [74].

4.1.2 - Quantum hydrodynamics and the Wigner equation

The quantum hydrodynamic models of the previous section do not include colli-
sional phenomena. In order to allow for such effects and to derive diffusive quantum
fluid models, an alternative approach to derive macroscopic equations is to apply the
moment model to a collisional Wigner equation:

Ow+p-Vow+ 0[VIw = Qw), (x,p) € R®, ¢t >0,

with the initial conditions w(x, p, 0) = wy(x, p). We refer to Section 2.4 for a discus-
sion of Wigner-Boltzmann models. The following presentation is based on [55] and
[99] (also see Section 14.3 of [92]).
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We assume that the collision operator Q(w) is the sum of two operators, @y and Q1.
We suppose that collisions modeled by )y conserve mass, momentum, and energy,
dp
(27'[8)3

(66) (Qow) = j Qow)K(p)

R3

1
207 K(p): {lapa§|p|2}7

while the operator @ conserves mass only, (Q1(w)) = 0. Furthermore, we suppose
that Qo(w) = 0 implies that w equals the quantum Maxwellian which has the same
mass, momentum, and energy as w, i.e. w = M[w] and M[w] is given by (19),
Mlw] = Exp(A — |p — v|2 /2T) for some Lagrange multipliers A, v, and T coming
from the constrained entropy maximization (see Section 2.3). Let o > 0 be the ratio
of the mean free paths corresponding to @y and @1, respectively. We assume that
collisions described by @y occur more frequently than those modeled by @; such that
o< 1.

A slightly different strategy was employed by Romano in [138]. He supposes that
the zeroth-order part of the collision operator is the same as the classical one and that
the first-order contribution is in relaxation form which is of order O(¢2). The quantum
equilibrium is obtained by unconstrained entropy maximization.

We employ a hydrodynamie scaling in the Wigner-Boltzmann equation, i.e. we
replace « by «/o and ¢ by t/«. Then the Wigner-Boltzmann equation becomes

(67) o + o (p - Vow + 0[VIw) = Qo(w) + oQ ().

The derivation of the quantum hydrodynamic equations is performed in two steps.
Let w, be a solution to (67) with initial datum w,(-, -, 0) = wy.

Step 1 : limat in the Wigner-Boltzmann equation. The limit o« — 0 in (67) leads
to Qo(w) =0, where w = lin% w,. The conditions on €y imply that w = M[w]
= Exp@ — |p —v[*/2T). ~

Step 2 : limit in the moment equations. Multiplying (67) by the weight functions
x(p), integrating over p € R?, and employing (66) yields the moment equations
O (re(Phws) + dive (pre(plws) + ((p)O[VIws) = (k(P)Q1(w,)).
The formal limit o — 0 gives

O {r(pMIw]) + div, (pre(p)Mlw]) + ((P)OLVIMIw]) = (x(p)Qu(MIw]).

The moments of the potential operator can be computed explicitly (see (13.6) and
Lemma 13.2 in [92]):

(68 (OVIF) =0, (pOWIF) = ~()V.V, (GlOIVIF )= (o) 0.V



260 ANSGAR JUNGEL [44]

for all functions f(p). Defining the particle density %, current density J,,, and energy
density ne, respectively, by

n = (Mw)), J,=—(pMwl), ne= <%|p2M[w]>,

the moment equations can be written as
on —divd, =0,
Oy — div(p @ pMlw]) +nVV = — (pQ:1(M[w))),

O(ne) + div<%|p|2pM[W]> +dJy - VV = <%IPIZQ1(M[w])>.

The second-order and third-order moments can be reformulated by introducing the
quantum stress tensor P and the quantum heat flux ¢ by

(69) P={p-uwe(p—-uwMw)), q= <%(p —w)p —u|2M[w]>,

where u = —J,,/n is the mean velocity. Then we obtain

) (pepMu) =P+ 20

1 I
, <2p|p|2M[w]>(P+nel)nl+q,

where 1 is the identity matrix in R**3. The result is summarized in the following
theorem (see Theorem 14.3 in [92]).

Theorem 4.2 (Nonlocal quantum hydrodynamic model). Let the collision op-
erator satisfy the above assumptions. Let w, be a solution of the Wigner-Boltzmann
equation (67). Then, formally, as o — 0, w, — w where w = Exp(4 — |p — v|2 /2T),
and (A,v,T) is a solution of the quantum hydrodynamic equations

(71) on —divd, =0,
(72) A, — div(@ + P) +nVV = —(pQiw)),
(73) O(ne) — div((P +mnel) J, — q) +J,, - VV = <%p|2Q1(w)>

in R3 t > 0, where the quantum stress tensor P and quantum heat flux q are defined
m (69). The mitial data are given by

W0 = (), ,0) = ()., ()0 = (Glolm ).
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and the Lagrange multipliers (A, v, T) are determined by

1
:u = JExp(A—“O_vlz) P dp
ne B 2T 1 Ipl? (2mz)’
‘ 2
where J,, = —nu is the current density.

Similar as in Section 3.1.1, we obtain local versions of the quantum hydrodynamic
system by expanding the quantum Maxwellian in terms up to order O(e*). If only one
moment is prescribed, an expansion is presented in Lemma 2.3. In the present si-
tuation, the expansion is computationally much more laborious, and we refer to
Lemmas 3.2 and 3.3 in [99] for details. Inserting the expansion into the definition of
the moments and assuming that the vorticity Vu — V" and the temperature var-
iations are of order O(£2), i.e.

(74) Vu—Vu' =0@) and Vieg T = O(),
we arrive at
n = 2@2n?) %A + 197 (27[?2) 3264244 + VA + O@Y),
ne = §nT += n\u| — iml logn + O(*).

The quantum stress tensor and quantum heat flux can be expanded as follows (see
[99, Lemma 3.5] and Section 2.2 in [104]):

P=nTl— —W2 logn + O(&),
& . 4
q= _ﬂn(gu +2Vdivau) + 0(e%).

This leads to the following local version of the quantum hydrodynamic equations (see
Theorem 14.4 in [92]).

Theorem 4.3 (Local quantum hydrodynamic model). Let the assumptions of
Theorem 4.2 and let (74) hold. Then the moments (n,J,,ne) of the limit quantum
Maaxwellian solve the quantum hydrodynamic equations up to order O(e*),

(75) (’)tn —divd, =0,
. Jn ®Jn \/_
(76) 8tJn—d1v(T) V(nT)+nVV+— v( \/ﬁ) w,,

(T7)  Oy(ne)—div((P + neu) —;2—4 div (n(du + 2Vdivw)) +J,-VV = W,,
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wherex € R3¢ > 0, W, = = (pQi(w)), W, = <%p|2Q1(w)>, and the energy density
ne and the quantum stress tensor P are given by

82

1
(78) P:nT?[—invzlogn, ne:§WT+§n|u|2—24

1 2 nAalogn.

The wnitial conditions for n, J,, and ne are as in Theorem 4.2.

The quantum stress tensor is the sum of the classical pressure and a quantum stress
tensor. The energy is the sum of the thermal, kinetic, and quantum energy. In the
classical limit ¢ — 0, we recover the classical Euler equations. Notice that the coeffi-
cient in front of the Bohm potential term in the momentum equation (76) equals & /6
instead of ¢2/2 as in the momentum equation derived in Theorem 4.1 from the mixed-
state Schrodinger equations. The factor 1/3 is independent of the space dimension.

For constant temperature, we obtain the isothermal quantum hydrodynamic
model which equals the model of Theorem 4.1 when the temperature tensor is a
scalar and the factor £2/2 is changed to £2/6. Nonconstant temperatures in quantum
hydrodynamics were first considered by Ferry and Zhou [66], who derived the model
from the Bloch equation for the density matrix. A derivation from the Wigner
equation was proposed by Gardner [72]. He obtained the same equations as in
Theorem 4.3 except the dispersive velocity term coming from div q. The origin of this
difference lies in the different choice of the quantum equilibrium. In order to explain
this difference, let weq be the quantum equilibrium derived from the unconstrained
entropy maximization process, given by (16),

Wey (8, 1) = _ ﬁ _ JV@-Ipf/2 2 4
@, p) = Exp(Viw) -5~ ) = o (1+ 01w, p)) + O,

where g7 is an appropriate function which we do not specify here. Gardner mimicks
the momentum-shift of the equilibrium in the classical situation and employs in his
derivation the “shifted” quantum Maxwellian

~ _ p — @) 2 4

wwwm%—wpOVwrnjﬁ%5—>U+wgﬂ%p—M@»+0@)
On the other hand, the derivation of the quantum system in Theorem 4.3 employs the
constrained thermal equilibrium (19),

_ 2
Mlw] = Exp (A(ac) . %)
p —v@)

= exp (A(ac) — ) (1 + &gala, p — v(@))) + O(?).

2T (x)
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If only one moment is prescribed, both approaches coincide in the following sense.
We write Gardner’s momentum-shifted quantum Maxwellian more explicitly as
[99, Section 3.5]

&

(AV + o |VV| - pT(VZV)p>> + 0.
The quantum Maxwellian M[w] obtained from entropy maximization with given
particle density becomes

&

— QA/T-IpP/2T
Mw] = /TP ( <7

(44-+ gpIVAR - 377 () ) + 06,

where A is a Lagrange multiplier, and we see that both approximations coincide up
to exchanging A and V.

4.1.3 - Viscous quantum hydrodynamies

In the local quantum hydrodynamic model (76)-(77), the averaged collision terms
W, and W, are unspecified. In this section, we make explicit these terms by choosing
the Caldeira-Leggett or Fokker-Planck operators discussed in Section 2.4.2.

The Caldeira-Leggett operator

Q1(w) = ( pw + div,(pw)), >0,

conserves mass, (Q1(w)) = 0, and satisfies the assumption imposed in the previous
subsection. Integrating by parts, we find that

_1 p _ I
~(p@ad) = | b
R
1 1
<2p| QI(M['W])> Jp (VpM[w] + pM[wl]) (2 )3
R?
_1 2 2 3
—+ | @M1~ p) (2 Ly =2 (ne—5n)

R3

These expressions are referred to as relaxation-time terms, and ¢ > 0 is called the
relaxation time.
Another choice is the Fokker-Planck operator (22),

Q1(w) = Dy dyw + 2y divp( pw) + Dygdyw + 2Dy, div,(V,w),
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with positive diffusion coefficients D, Dyq, Dyq and the friction parameter y > 0.
This operator does not conserve mass:

(@1(w)) = quAx"a
and the mass equation becomes
On — divd, = Dygdn.

However, introducing the effective current density Jetr = J,, + Dyq V1, this equation
can be written in conservative form:

oan — diVJeff =0.

The other moments become, for w = M[w],

—(pQ1(w)) = 2(2ne) > J (pw + Dy Vow)dp — Dyy(2me) 34, J pwdp
R? R3

= —2pJy + 2Dy Vyn + Dyg Ay,

1 _
<§|p2Q1(w)> = Q2 J (Dypp - Vo + 2y|p[*2w + 2Dy - Vow)dp

R®

B 1
4 Dyy(2re) 4, J S lolPwdp

R?

3 .
=-2 (Zyne - iDppn) + 2Dy, divydy, 4+ Dyq i (ne).

The spatial second-order expressions A4,n, 4,J,, and 4,(ne) can be interpreted as
viscous terms. We choose Dy, = v, D), = 1/(21), D))y = 0, and 2y = 1/(27). Then the
Lindblad condition (see Section 2.4.2) D, Dyq — D?)q > 92 /4 is satisfied if v > 1/(321).
We obtain the viscous quantum hydrodynamic equations, which have been first

proposed in [78]:

(79) om — divd, = van,
. J77/ ® Jn 82 A\/%
Oy — le( P > — VT +nVV +§nV(W)
(80) = - JTW +vdaJ,,

2
dy(ne) — div((P + nelu) — ;—4 div(n(du + 2Vdiva)) +J,, - VV

(81) = —% (ne — §n> + vA(ne).
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The following result shows that the energy is dissipated (compare to Proposition 14.5
in [92]).

Proposition 4.1 (Energy dissipation). Let (n, J,,ne, V) be a solution to the
viscous system (79)-(81) and the Poisson equation (64). Define the energy

12
B(t) = J (ne+2219V[*)de,
R?

where ne is defined i (78). Then we can write the energy as the sum of thermal,
kinetic, electric, and quantum energy,

(/3 1 o M & 2
(s2) Bt) = | (Gu1+ guluf® + 21V + Vi)
and the energy dissipation relation reads as

dE 1( (3 1 2
o J (50T =D+ Sufu + 5|V Vil ) o

R?

Proof. We differentiate the energy formally with respect to time and employ
the energy equation (81) and the Poisson equation (64):

E
‘fl—t = | (ane) + 25 VV - VO,V )da

R?

_ 1 3 2

= |~y - - (ne - én) ~ V0,4V
e

= ((divJ w1l (ne - §n) — BV n)dx

n T 2 D t
R?
1 3
= J (ne — én)dac.
R?
Finally, formula (82) is obtained by integrating by parts. O

4.2 - Analysis

The mathematical analysis of the quantum hydrodynamic equations is very
challenging due to the interplay between dispersion (coming from the third-order
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quantum term) and dissipation (originating from the relaxation-time or viscous
terms). Therefore, there are only a few results in the literature. First, we review
analytical results on the relaxation-time model with constant or isentropic tem-
perature:

83)  gn—divd, =0,

84) 9, - div(%) — V(Tn) +nVV+§nV<A—) =-=,

(85) 2AV =n—C) inQc R t>0,
with the initial conditions
n(-,0) =mny, J,(-,00=Jy inQ, t>0,

and appropriate boundary conditions. Here, T is either a positive constant (iso-
thermal model) or related to the particle density via T(n) = »#~1 with > 1 (isen-
tropic model).

4.2.1 - Thermal equilibrium

First results in the literature have been concerned with the thermal equilibrium
state, i.e. J,, = 0. Then the isothermal model (83)-(85) with T' = 1 reduces to

& av/n 2
(86) —VnJrnVVJrgnV(W) =0, 24V =n-C).
If » > 0, we can divide the first equation by n. Integrating over Q, we arrive at
& A/n
(87) leogn—V—EW, 22AV =n — Cx).

The integration constant F' can be interpreted as a quantum Fermi potential and it is
determined by the boundary conditions. Thus, by integrating the third-order
equation, we arrive to a second-order elliptic system in the variables (n, V). The first
analytical result is due to Pacard and Unterreiter [134]. They prove the existence of
weak solutions to

& A/n

_ 2 o
V(logn—V—gW>—0, 2pdV =n — C(x)

with the mixed boundary conditions

V=Vp onl'p, VV-v=0 on [y, Jndac:N7
Q
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where I'p is the union of contacts, the remaining set I'y = 0Q\I'p represents the
insulating boundary segments, and N > 0 is the given particle number. The proof
consists in minimizing the total energy

2
En) = J (% Vvl + n(logn — 1) +%D IVVIZ)dx
Q

in the set {n € L1(Q) : n >0, [ndx = N, v/n € H'(Q)}. The result has been gen-

eralized to the bipolar situatior? in [141].

The authors of [73] have imposed Dirichlet boundary conditions and proved the
existence and, for sufficiently large ¢ > 0, the uniqueness of weak solutions of (87)
with n = np and V = Vp on 9Q for some functions np and Vp. This result was
generalized to mixed Dirichlet-Neumann boundary conditions in [59].

Another approach is to differentiate the third-order equation which yields a
fourth-order problem. This idea has been first employed by Brezzi et al. [23] in the
one-dimensional setting Q = (0,1). Indeed, dividing the first equation in (86) by =,
taking the derivative, observing that

(88) n( N ), =3 (ntlogn)..),.
and finally using the Poisson equation in (86), we infer that
& 1 1
(89)  —15((ogm), +5(ogn)) -+ (logm),, - 0= Ca) =0

Brezzi et al. prescribe Dirichlet and homogeneous Neumann boundary conditions at
x e {0,1}:

(90) n=mnp, n,=0 forxe{0,1}.

The electric potential V' can be computed from the first equation in (86) after having
solved (89)-(90). Using a fixed-point argument, the following result was shown in [23,
Theorem 2.1].

Theorem 4.4 (Existence for the thermal equilibrium problem). Let np be
defined for x € {0,1} and let C € L>(0,1). Then there exists a weak solution
n € H?(0,1) of (89)-(90) satisfying n > 0 in (0,1). Moreover, for sufficiently small
& > 0, the solution is unique.

Further results in the literature were concerned with the semiclassical limit
e — 0[23, 73, 141] and the quasi-neutral limit 1, — 0[141, 142]. For the existence of
solutions for the whole-space problem, we refer to [147].
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4.2.2 - Stationary equations

The above ideas of the treatment of the third-order quantum term can be applied
to the stationary equations: either integrating the momentum equation to obtain a
second-order equation or differentiating this equation to arrive to a fourth-order
equation (also see [91]). In the one-dimensional setting, the ideas of the paper of
Brezzi et al. [23] have been extended in [81]. Indeed, in the one-dimensional case, the
current density J, is constant, by the mass equation (83), and the momentum
equation (84) can be formulated as

J2 82 n

Ny J,
" T, +nV, +33 (nlog n)y,),, = -

where we have used (88) and introduced the temperature constant 7' > 0. Then,
dividing this equation by =, differentiating, and setting y = log n, we arrive at

& L, 2(,-2y Loy Tu oy
O (v +502) +T3C 2 = T 56" = O) = =T,

for « € (0,1) with the boundary conditions (compare to (90))
(92) yO0)=yo, Yy =wy1, Y(0)=y.(1)=0.

The main problem is the treatment of the convective part J2(e~%y,),. In fact, for
& = 0, the quantum model reduces to the Euler (or hydrodynamic) equations which
may change type: if the velocity is sufficiently small, the hydrodynamic system is
elliptic (subsonie flow), whereas it is generally hyperbolic (supersonic flow), and the
equations may exhibit discontinuous solutions. The quantum term acts like a dis-
persive regularization of the hydrodynamic equations; however, it appears to be dif-
ficult to exploit this fact. The approach to solve (91)-(92) is to consider small velocities
(or current densities). Due to the analogy to the Euler equations, it is not surprising
that under this assumption, equation (91) can be solved using elliptic methods.
Multiplying (91) by v and integrating by parts, we infer that (ifyy = y1 = 0to simplify)

1 1 1

& 1
J (ﬁ Yo, + Ty%) de = — 2 J(ey — C(x))ydax + J= Je‘zyyidm.
0 D% 0

The first integral on the right-hand side is bounded from above, while the second
integral needs to be estimated by the left-hand side:

1

1
%J?ﬂwdm + J(T — J2e W yyPda < c.
0 0

[u—y
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Hence, if the mean velocity J,, /n = J,e7¥ is smaller than the sound speed VT Ge.,
the flow is “subsonic”), we find that 7' — J2e~2/ < 0, yielding an H? estimate for .
This is the key idea for the following theorem which is shown by the Leray-Schauder
fixed-point theorem [81, Theorem 2.5].

Theorem 4.5 (Existence for the one-dimensional model). Let vy, 1 € R,

C € L*0,1), and let
0<J, <eK\/T +e2/6,

where K >0 depends on the given data. Then there exists a weak solution
y € H?0,1) of (91)-(92) satisfying Yl L~ < K. Moreover, if e >0 and J, > 0 are
sufficiently small, the solution is unique.

This result was generalized in [94] for general pressure functions p(n) instead of
the isothermal pressure p(n) = Tn. Assuming that the electric potential and field are
prescribed at the left boundary point (instead of the homogeneous Neumann con-
ditions for n), the non-existence of weak solutions to the quantum hydrodynamic
model can be shown if the current density is sufficiently large and the pressure
pn) = Tn is replaced by p(n) = n* with o > 2 [69].

The second idea is to integrate the quantum hydrodynamic equations and to
obtain a system of elliptic second-order equations. For this, we consider a potential
flow, i.e., we assume that the current density can be written as J,, = nVF, where F'is
the quantum Fermi potential. This condition means that the velocity —J,,/n = — VF

1
is irrotational. Since div(J,, ® J,,/n) = énV|VF %, we can write the stationary var-
iant of (84) as

1 2 82 A\/ﬁ . n .
nV(§|VF| +Tlogn—V—gW) = —;VF in Q,
where Q ¢ R?is a bounded domain. If z > 01in @, we can divide by » and integrate:
1 9 Ea/m F
= T1 —-V-—=—4+—=0.
2|VF'| + T'logn 6 \/ﬁ+f 0

The integration constant can be assumed to be zero by choosing a reference point for
the electric potential. Now, the stationary quantum hydrodynamic system can be
written in the potential-flow formulation as

& 1 2 F
(93) ggfzﬁ(é\vp| —l—Tlogn—V—i—?),

(94) div(nVF) =0, 224V =n—C) in Q.
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The boundary conditions are
(95) n ="mnp, FZFD, VZVD on 0%.

The difficulties to solve this elliptic system are the squared gradient of F'in (93) and the
degenerated diffusion coefficient # > 0 in the first equation in (94). By using
Stampacchia’s truncation method, elliptic regularity, and fixed-point arguments, the
existence of a weak solution was shown in [90] under the condition that F'p is sufficiently
smallin some Holder space. Since F'p is related to the applied potential, this assumption
means that the applied voltage has to be chosen sufficiently small. Since we expect that
small applied voltages imply small current densities and small velocities, this is akind of
“subsonic” assumption. The following result was proven in [90, Theorem 2.1].

Theorem 4.6 (Existence for the potential-flow model). Let Q C R (d > 1) be
a bounded domain with 0Q € CV1, C € L™(Q), and let np, Fp, Vp be smooth
Sfunctions satisfying infagnp > 0. Then there exists 6 > 0 such that if

HFDHcL;‘@) < 57
there exists a solution (n, F',V) satisfying infon > 0 and
Ve WHP(Q), FeCY(@Q), VeLXQ) nHXQ),

wherep > d/2and y =2 — d/p > 0. The solution is unique if ¢ is sufficiently large.

The positivity of » is needed for the first equation in (94) to be uniformly elliptic.
It is shown in [90] that the positivity of 7 is related to the regularity of F': the density
n is strictly positive if and only if ' € W>(Q).

Asymptotic limits such as the semiclassical limit ¢ — 0 and the quasineutral limit
Ap — 0 were studied too; we refer to [70, 81, 125] for details.

4.2.3 - Transient equations

First results for the time-dependent quantum hydrodynamic equations (83)-(85)
were concerned with the local-in-time existence of solutions or the global-in-time
existence for solutions with initial data close to thermal equilibrium.

One of the first results is contained in the paper [100]. Assuming a potential flow,
the quantum hydrodynamic system can be written as (see Section 4.2.2)

om —divinVF) =0, 254V =n - C),
& A F

6tF——\VF| —logn—kV—FG\/w -
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Setting w = /nexp (iF /¢), the first and last equations are formally equivalent to a
nonlinear Schrodinger equation,

2

. 0 1
100y = — 5 Ay =V + log (jy[*)w + Fy,

where 6% = & /3. The phase (or velocity potential) F' satisfies an equation of the type
AF = f(y, Vy, Ay) for some nonlinear function f. Using semigroup theory and the
Banach fixed-point theorem, the existence of mild solutions to the system, consisting
of the above nonlinear Schrodinger equation, the elliptic equation for F, and the
Poisson equation, is proved. The solutions are local in time with a bound for the time
which comes from the contractivity argument of the fixed-point operator.

Later, the global-in-time existence of solutions of the one-dimensional model was
proven [95]. More precisely, let (124, J o, Vo) be a solution of the stationary problem
with boundary conditions n = np,n, = 0,and V = Vp on Q. Then, if the differences
between the stationary solution and the initial data /7., — /% and J, — Jy are
sufficiently small in some Sobolev norm, there exists a global solution (n,J,, V) of
(83)-(85) and the solution decays exponentially fast to the steady-state solution,

IVn — Vx|

where ¢, 2 > 0 are some constants. The proof is based on a formulation of the mo-

@ T 1w = ol + IV = Vel < ce ™, t>0,

mentum equation as a nonlinear fourth-order wave equation. In fact, differentiating
the mass equation n; — (J,,),, = 0 with respect to ¢ and the momentum equation (84)
with respect to x, we can eliminate (J,,),¢, and dividing the resulting equation by 2+/n,
we arrive at

Wi+ 2 Wi+ = () v
BT ! 2\/n NN w o 2ym "
& (V2 \ _
+ E ((\/ﬁ)w% - \/ﬁ ) =0.

This idea was extended to the whole line R in [84] and to the whole space R? in
[118, 119]. The long-time behavior is typically obtained as a by-product, also see [85].

The first general global existence result (in the whole-space R® setting) was
proved by Antonelli and Marcati [4]. They use the fact that, without relaxation
processes, the quantum hydrodynamic equations are formally equivalent to a
Schrodinger equation. Let (n,J,, V) be a solution of (83)-(85) with the pressure

pn) = Tnreplaced by p(n) = g;i n” with > 1. Then the evolution problem can be

decomposed into two parts, the relaxation-free quantum hydrodynamic problem and
a relaxation problem without quantum hydrodynamics. More precisely, let the initial
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data be given by 129 = |w,|%, Jo = —e Im (7, Viy,), where v, is a given wave function.
At the first step £ = 0, we solve the Cauchy problem for the Schrédinger-Poisson
system

) 5 ~ . )
ﬁ&w=—§AW+WW1w—V% ZAV =P, w(,00=y, inR?

on the time interval (¢;_1, t;], where t;, = k/At. The solution defines the particle and
current densities % := |y|* and J,, := —e Im (V). Then we solve the differential
equation

atJn = —%, t > t, Jn(tk) g'iven.

The function J,, is employed to update y, defined on (¢;_1, ], and to close the loop.
This procedure requires to decompose the wave function into its amplitude and
phase which may be undefined if the amplitude vanishes. Antonelli and Mareati
utilize the polar decomposition method developed by Brenier [19]. They prove that
for given we H L(R®), there exists ¢e L>*(R?®) such that w = \/n¢, where
Vi = |y € HY(R®). Moreover A := —¢Im($V¢) is an element of L2(R?). The weak
solution of the quantum hydrodynamie system is defined via (%, A) instead of (%, J,,).
For smooth solutions, we have the relation J,, = v/nA. The main result reads as
follows (Theorem 4 in [4]).

Theorem 4.7 (Existence for the transient model). Let T >0, C(x) =0,
wo € H\(R®), and ng = |y, |, Jo = —eIm@p,Vy,). Then there exists a weak solution
(n, A4,V) of the quantum hydrodynamic equations (83)-(85) in R3 x (0, T) such that

Vi€ L3 0, T; Hi (RY), A€ Li.0,T;LE (R),

loc loc loc

and the energy is finite for almost every t > 0,

j (f VAP + L 2 WV dar < o0
6 2 B+1 2 '

R?

The current density is defined by J,, = \/nA.

The quantum hydrodynamic model is related to the drift-diffusion equations
studied in Section 3. Indeed, when we replace ¢ by ¢/t and J,, by ©J, in (83)-(84),
where 7 is the momentum relaxation time, we have

okn —tdivd, =0,

é@):—Jn.

(IR
2 2 n n
“Ody — T dlv(gn i

) — TVn+nVV+§nV(
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In the formal limit ¢ — 0, the limiting model becomes

NG
\/_

which equals the quantum drift-diffusion model. This limit was made rigorous (with
initial data close to the equilibrium) in [96].

In the semiclassical limit ¢ — 0, the quantum hydrodynamic model reduces to the
hydrodynamic (or Euler) equations, see [131] for a result for the one-dimensional
initial-boundary value problem. The combined semiclassical and zero-relaxation

aym — divJ, = 0, an—'gnv( )+Tv —nvvV,

limit was studied in one space dimension [121] and in three dimensions [120]. The
limits can also be performed independently, see [146]. Finally, we mention the result
for the quasineutral limit Ap — 0 achieved in [117].

The numerical approximation of the quantum hydrodynamic equations is chal-
lenging due to the strong nonlinearity and dispersive effects in the quantum term.
Up to our knowledge, all available numerical schemes in the literature treat the one-
dimensional equations only. Gardner [72] employed the second-upwind finite-dif-
ference scheme originally designed for hyperbolic conservation laws. It was shown in
[101] that this scheme introduces a numerical viscosity whose order is even larger
than the order of the grid size. Kendrick [112] introduced artificial viscosity in his
scheme to avoid numerical instabilities due to large Bohm forces. Hu and Tang [83]
observed a deviation of the asymptotic transient solution from the stationary one,
using a central finite-difference scheme. Another strategy was employed by Lin et
al. [123]. They constructed a third-order modified Osher-Chakravarthy (MOC) up-
wind-centered finite-volume scheme for the conservation law to evaluate the con-
vective terms and a second-order central finite-volume scheme to map the quantum
potential field. Furthermore, a mixed/discontinuous Galerkin finite-element scheme
was developed by Michoski et al. [127] for applications in quantum chemistry.

4.24 - Viscous equations

The first existence result for the viscous quantum hydrodynamic model

(96) om — divd, = van,

(I @y & N
BT, — dlv(T> Vp) + nVV + = nV( N )
(97) =— ‘% +vAT,,
(98) 224V =n - Cx),

where p(n) = Tnf (f > 1, T > 0) is the pressure function, was proved in [78]. In this
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work, the one-dimensional stationary equations with f = 1 were considered in the
interval (0, 1) with boundary conditions for n, n, at x € {0,1} and V and J,, at & = 0.
Notice that the current density is prescribed at one boundary point but not the
applied voltage V(1) — V(0). Given J(0), the applied voltage can be computed from
the solution to the above boundary-value problem. The idea of the existence analysis
is to differentiate the momentum equation such that we obtain a nonlinear fourth-
order equation. This strategy requires, as in the stationary quantum hydrodynamic
model (see Section 4.2.2), a “subsonic”’-type condition on the mean velocity. Due to
the regularizing viscous terms, this condition appears to be weaker than in the in-

viscid case v = 0: if
K 82 v
0<J(0) <e” \/T‘Fg‘f';y

then there exists a weak solution (n,J,,V) to (96)-(98) satisfying n > e X >0in
(0,1). Furthermore, if J(0) and v* + ¢* are sufficiently small, there exists a unique
solution. Later, the smallness condition on J(0) could be removed, and existence of
stationary solutions for all J(0) was shown in [101] (with different boundary condi-
tions than above).

Later, the transient model was examined by Chen and Dreher [34]. They prove
the local-in-time existence of solutions in the multidimensional torus and the global-
in-time existence of solutions in the one-dimensional torus T, with # = 1. The latter
result holds if the initial energy

2 2
E= J (% IVy/nl? + % + Tn(logn — 1) +%D |VV|2)dx

T
is sufficiently small. The proof is based on a regularization of the momentum
equation, by adding the bi-Laplacian 4%J,,, and energy estimates. Indeed, it holds
formally that

(99) d—E+ﬁJn|Vzlogn|2dac <0,
dt 3 T

and the inequality (41) provides H? estimates for /. Related results, but with
different boundary conditions, were shown in [61]. By showing that the principal part
of the viscous quantum system constitutes a parameter-elliptic operator in the sense
of Douglis-Nirenberg-Volevich, provided that the boundary conditions satisfy the
Shapiro-Lopatinskii eriterion, the local-in-time well-posedness was achieved in [35].
This paper, as well as the review [36], gives some insight into the properties of the
operator associated to the viscous quantum hydrodynamic system.
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Two years later, Gamba et al. [71] were able to eliminate the smallness condition
on the initial energy. They proved the global existence of weak solutions on the one-
dimensional torus ', which satisfy the momentum equation (97) in a “renormalized
solution” sense, i.e., the test functions are 7%/24 instead of ¢. This allows one to avoid
possible vacuum regions 7 = 0. The proof exploits the fact that the mass equation

o + div(nu) = van,

where nu = —J,, is parabolic in n. Thus, if the mean velocity satisfies
u € L2 (0,00; H(T)), by the maximum principle, the particle density is strictly po-
sitive if it is strictly positive initially. The problem is that there is no gradient esti-
mate for the velocity guaranteeing the L2 (0, co; H*(T)) regularity. In [71], there-
fore, a Faedo-Galerkin method is employed yielding smooth velocities and positive
particle densities. Since this method uses the embedding H* () < L>(T), it is re-
stricted to the case of one space dimension only.

The global-in-time existence of the multidimensional problem on the torus T¢ was
recently proved in [93]. As in the one-dimensional case, the H? estimate for /% (see
(99)) is essential for the analysis. The existence proof employs the Faedo-Galerkin
method, following [71], together with a second regularization, i.e. adding the term
o(4u — u) to the momentum equation, where u = — J,, /n is the mean velocity. This
yields gradient estimates for u. By applying the results of Feireisl [65], we conclude
the positivity of the particle density. In order to pass to the limit of vanishing ap-
proximation parameters, we prove compactness of the sequence of approximate
solutions by the energy estimate. The very technical limit can be made rigorous only

if we use n?¢ as test functions. The result reads as follows (see Theorem 1.1 in [93]).

Theorem 4.8 (Existence for the viscous quantum hydrodynamic model). Let
d <3,V e LX0,o00; L°(T%), p(n) = nf with p > 3ifd =3 and f > 1ifd < 2, and
let the initial energy be finite. Then there exists a weak solution to (96)-(97) sa-
tisfying n > 0 in T and
Vit € Lig(0, 003 H(TH) 0 12,0, 005 HA(TY),

loc

nu € L2 (0, 00; WH2(TY),  n|Vu| € L2 (0, oo; LA(T9).

loc loc

The restriction § > 3 is needed to improve the uniform L? bound for n (obtained
from the H' bound for v/n) to an L* bound. This property helps us in the limit of
vanishing approximation parameter ¢ — 0 to achieve a suitable weak convergence
result (see [93] for details).

In the literature, some asymptotic limits were studied. In [78], the semiclassical
limit ¢ — 0 and the inviscid limit v — 0 were proved in the one-dimensional sta-
tionary problem. The quasineutral limit Ap — 0 in the multidimensional transient
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model was performed in [115] using modulated energy estimates. The long-time
behavior of solutions was analyzed in [34, 35, 79]. A related result can be found in
[122]; in this work, however, the third-order quantum term is replaced by its linear
main part V4An. Numerical results for the one-dimensional equations were presented
in [101] for the stationary equations and in [108] for the transient equations.

5 - Quantum Navier-Stokes models

This section is devoted to the derivation of Navier-Stokes equations for
quantum fluids, starting from a Wigner-BGK equation. Compared to the pre-
vious section, the Chapman-Enskog expansion yields diffusive corrections to the
macroscopic equations.

5.1 - Dertvation

The hydrodynamic equations can be derived from the kinetic Boltzmann equation
by a moment method, similar as in the quantum kinetic context of Section 4.1. It is
well known that the next order expansion, the so-called Chapman-Enskog expan-
sion, of the Boltzmann distribution function leads to the Navier-Stokes equations.
This idea was extended by Brull and Méhats [24] to the quantum case with the aim to
derive a quantum analogue of the Navier-Stokes equations with constant tempera-
ture. Quantum Navier-Stokes equations including the energy equation were derived
in [104]. In the physical literature, quantum Navier-Stokes systems are typically
motivated from the classical Navier-Stokes model by using a chemical potential
obtained from the Thomas-Fermi-Dirac-Weizsicker density functional theory (see,
e.g., [139]).

We consider, following [104, 105], the Wigner-BGK equation in the hydrodynamic
scaling

(100) 20w + o p - Vaw + O[VIw) = Mlw] —w, (x,p) € R® x R?, t >0,

where w(x, p,t) is the Wigner function in the phase-space variables (x, p) and time
t > 0,and o > 01is the scaled mean free path (see Section 2.2). The right-hand side of
(100) describes a relaxation process towards the quantum Maxwellian M[w] defined
in Section 2.3. When scattering conserves mass, momentum, and energy, the
quantum equilibrium is given by (see (19))

_ 2
Miw] = Exp (A(x, t) - %) ,
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where A, v, and T are some Lagrange multipliers. The moment equations are de-
rived as in Section 4.1.2: we multiply (100) by 1, p, and |p|2 /2, respectively, which
leads to

O (w) + div, (pw) + (0[VIw) = 0,

O (pw) + div.(p @ pw) + (p O[VIw) = 0,

1 . 1 1
on{ g P v o)+ 5 loP0IV I ) 0,

where n = (w) is the particle density, J, = —(pw) the current density, and
1
ne = <§ |p|2w> is the energy density. The integrals involving the potential operator
can be computed using (68). It remains to compute the higher-order moments
L 2
(p @ puw) and (5 plpfw).
The idea in Section 4.1.2 is to replace these moments by (p ® pM[w]) and
1
<§ p|p|2M [w]>, which can be justified (formally) by a zero mean-free-path limit

a — 0, and by expanding the integrals in powers of ¢2. Here, we follow a different
strategy. We introduce the Chapman-Enskog expansion

w = M[w] + ag

(this equation defines the function g), and we do not pass to the limit o — 0 but let
o > 0 fixed. Furthermore, introducing as in Section 4.1.2 the quantum stress tensor
P and the quantum heat flux ¢ by

P={(p—we(p—-—wMwl), q= <%(p—u)|p —u|2M[w]>,

where u = —J, /n is the mean velocity, and employing the identities (68) and (70),
the above moment equations can be written as

om + div,(nu) = 0,

O(nu) + divy(P + nu @ u) — nV,V = — o divy(p ® pg),
1
Oi(ne) + div, ((P + neﬂ)u) +divy,g —nu - V,V = —ua divx<§p|p2g>,

where 1 is the unit matrix in R**3. In order to calculate the moments of g, we take
advantage of the simple structure of the collision operator, allowing us to specify g
explicitly. Indeed, inserting the Wigner equation and Chapman—Enskog expansion,
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we find that
g =—WMlw] —w)/o=—w; —p- Vyw—0[Viw
= —(M[w] + og); — p - Vo(M[w] + og) — O[VIM[w] + ag)
= —Mlw); — p - V.M[w] — 0[VIM[w] + O(x),

where O(o) contains terms of order o.

More explicit expressions are obtained by expanding the moments of M[w] in
powers of the squared scaled Planck constant ¢2. The quantum stress tensor and heat
flux are expanded according to (78), assuming that the temperature variations and
vorticity are of order O(¢*). Moreover, a tedious computation, detailed in [104], shows
that

—adivy(p ® pg) = a dive.S, —a divx<%p|p|2g>: o div, (Su) + gnTVWT,

where S = 2nTD(u) — ganivmuI[ + O(&® + o) can be interpreted as a viscous stress

tensor. Here, D(u) = (V,u + V,u")/2. The term g nTV,T is the Fourier heat term,
and it adds to the quantum heat flux. This shows the following result [104].

Theorem 5.1 (Quantum  Navier-Stokes  model). Assume  that
(Vu—Vu")/2=0) and VegT =O0(?). Then, up to terms of order
O + a® + &*), the moment equations of the Wigner equation read as

(101)  Qym + div(nu) = 0,

(102) Oy(nu) + div(nu @ w) + VnT) — iz—z div(nv? logn) — nVV = a divsS,

&
(ne); + div((ne + nT)u) — = div (n(V2 logn)u) + divg
—nu - VV = o div(Su),
where the quantum heat flux and viscous stress tensor are given by, respectively,
& . 5 2 .
q= 21 n(du + 2Vdivu) + 5 wTVT, S=2nTD(u)— 3 nT divau L.

The energy density ne is given by (78).

When the collisions conserve mass and momentum only, the quantum equilibrium
becomes M[w] = Exp(A — |p — v|2 /2). In this situation, a Chapman-Enskog ex-
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pansion has been carried out by Brull and Méhats [24]. They obtain equations (101)-
(102) with T'=1 and S = 2nD(w).

5.2 - Analysis

System (101)-(102) with constant temperature 7 =1 possesses a surprising
property which has been exploited in [93] to prove the existence of global weak so-
lutions. More precisely, we consider the system

(103) on+divinu) =0, xeT9 t> 0
(104) O(mu) + div(nu @ u) + Vp(n) — — V( \/_) —nVV
N
= 20 div(nD(u)),
(105) n(-,0) =ng, (nu)(-,0) = nouo in T7,

where T is the d-dimensional torus (d < 3). The function p(n) = nf with § > 1is the
pressure. Compared to (102), the quantum term is reformulated using the multi-
dimensional analogue of (88),

P 4y
div(nV*=logn) = 2nv( Jn )

In the treatment of (103)-(105), we need to overcome several mathematical dif-
ficulties. Besides the lack of maximum principle due to the third-order differential
term, another problem is the density-dependent viscosity u(n) = an which degen-
erates at vacuum. In fact, most results for the Navier-Stokes equations in the lit-
erature are valid for constant viscosities u(n) = o only, since this enables one to
derive H' estimates for the velocity. Recently, some works were concerned with
density-dependent viscosities, see, e.g., [21, 116] and references therein.

A third problem is the lack of suitable a priori estimates. Indeed, let us define the
energy of (103)-(104) by the sum of the kinetic, internal, and quantum energy
(compare to (82), which also includes the electric energy)

(106) mmmzj(w+ﬂm+\WN)

/~[~‘d
where H(n) = n//(f — 1) if > 1 and H(n) = n(logn — 1) if f = 1. A formal com-
putation shows that, without electric field VV = 0,

dEfz

(n,u) + o J n|D(u)|2dx =0

w[lj
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This provides an H' estimate for /7, but this seems to be insufficient to obtain
compactness for (an approximate sequence of) V/n needed to define the quantum
term in a weak or distributional sense.

Our main idea to solve these problems is to transform the quantum Navier-
Stokes system by means of the so-called “osmotic velocity”

(107) w=1u+aVlogn.,

the term oV logn has been called in [82] the “kinematical quasivelocity”. It also
appears in the derivation of the quantum hydrodynamic model from the mixed-state
Schrodinger system; see Theorem 4.1. A computation shows [93] that the system
(103)-(105) can be equivalently written as the viscous quantum hydrodynamic
equations

(108)  O¢m + div(nw) = adn,

. € AVn _
(109)  S(nw) + div(nw @ w) + Vpn) — Env (W) —nVV = adnw),

(110)  n(-,0) =ng, (uw)(-,0) = ngwy in T,

where wy = ug + «V log ng and gy = & — 1202, This formulation has two advantages.
The first advantage is that it allows for an additional energy estimate if &2 > 12072
Indeed, if VV = 0, we compute

)
12

(111) B (0, 1) + J (n|Vw|2 + H®)|Vaf +

0t |V2 logn|2>dx =0.

e
Inequality (41) provides an L2 (0, co; H2(T?) bound for \/7. This estimate is the key
argument of the global existence analysis. The second advantage is that we can apply
the maximum principle to the parabolic equation (108) to deduce strict positivity of
the density n if % is strictly positive and the velocity w is smooth.

Interestingly, the “osmotic velocity” (107) has been used in related models. First,
Bresch and Desjardins employed it to derive new entropy estimates for viscous
Korteweg-type and shallow-water equations [22]. Brenner [20] suggested the
modified Navier-Stokes model

on + div(nw) =0, O(nu) + div(nu @ w) + Vp(n) = div S.

The variables # and w are interpreted as the volume and mass velocities, respec-
tively, and they are related by the constitutive equation u — w = «Vlogn with a
phenomenological constant o > 0. The variable nw = nu + o Vn was employed in
[101] to prove the existence of solutions of the one-dimensional stationary viscous
quantum Euler problem with physical boundary conditions (see Section 4.2.4).
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According to the above equivalence, the existence of solutions of the quantum
Navier-Stokes equations (103)-(104) is a consequence of the existence analysis for
the viscous quantum hydrodynamic system presented in Section 4.2.4. The result
reads as follows (see Corollary 1.2 in [93]).

Theorem 5.2 (Existence for the quantum Navier-Stokes model). Let d < 3,
pn) =nf with f>3 if d=3 and f>1if d <2, VV € L*(0, o0; L”(Td)), and
(no, uo) 18 such that ng > 0 and E2(ng, ug + oV log ng) is finite. Then there exists a
weak solution (n,u) of (103)-(105) with the regularity

Vi € L0, 00 H'(TY) N L2 (0, 00; HA(TY), 0> 01in TY,

loc loc

nu € L2 (0, 00; WH2(TY),  n|Vu| € L2, (0, oo; LA(T9).

loc loc

The weak formulation of the momentum equation (104) is defined similarly as for
the viscous model using test functions %@ instead of ¢. Theorem 5.2 is proved in [93]
for the case & > 1242 or, equivalently, & > 0. This condition is necessary to obtain
H? bounds for v/n via the viscous quantum Euler model from the new energy esti-
mate (111). In the case & < 1242, we loose the H? control on /7.

The limiting case & = 1242 has been treated recently by Dong [60]. Indeed, using
(an approximation of) the test function Av/n/+/n in (108) leads to

(112) % J |V v/ Pda +% J n|VZlog n|de < % J n|Vw| de.

r[wd rf3 T*S
In view of the energy inequality (111), the right-hand side is uniformly bounded. By
(41), this shows the desired H? bound for /n. Jiang and Jiang [86] have combined the
inequalities (111) and (112) to treat the remaining case & <1242 Let gy = & — 124> <0
and define

Fn,w) = J (5 lwf? + Hoo — 219 )de > 0.

T

Then we use (111) and (112) to conclude

dF dE, & d 9
at ~ dt SdtJ Vnfde
Td
1 2 2 / 2
< —q J (W(l&x + eo)n|Vw|” + H'(n)|Vn| )dm <0.

T

Since 1202 + & = & > 0, we obtain an L? estimate for /n|Vw|. Going back to (112),
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we see that the right-hand side is bounded, which provides an L? bound for
vn|V?log n| and hence, by (41), the desired H? bound for /7.

Finally, we remark that numerical results for the isothermal quantum Navier-
Stokes model (103)-(104) or the full quantum Navier-Stokes model (101)-(102) have
been presented in [104].
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