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Weakly well posed characteristic hyperbolic problems

Abstract. We present recent results about the mixed initial-boundary value
problem for a linear hyperbolic system with characteristic boundary of constant
multiplicity. We assume the problem to be “weakly” well posed, namely that a
unique L2-solution exists, for sufficiently smooth data, and obeys an a priori
energy estimate with a finite loss of conormal regularity. Under the assumption
of the loss of one conormal derivative, we obtain the regularity of solutions in
the natural framework of the anisotropic Sobolev spaces, provided the data are
sufficiently smooth.
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1 - Introduction and main results

For n > 2,let R’ denote the n—dimensional positive half-space
R = {x = (x1,2), ©&1 >0, &' :=(x2,...,2,) € R"’_l}.

The boundary of R, will be identified with ]RZfl. ForT > 0,weset Qr := R’ x 10, T[
and X7 := R""1 x 10, T[; also Qp := R’} x 1—o00,T[ and wy := R"1 x 11— oo, T[. If
time ¢ spans the whole real line R, we set @ := R} x R;and X' := R" ! x R,. We are
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interested in the following initial-boundary value problem (shortly written IBVP)

1) Lu=F 1in Qr,
2) Mw=G on X7,
(3) U|t=0 =f in RZ,
where L is a first-order linear partial differential operator
n
(4) L=0+)Y A, t)d; +B,t),
i—1
0 g .
= =—1=1,...,n.
O T and 0; T ) RO 7}
The coefficients A;, B, for i =1,...,n, are real N x N matrix-valued functions,

defined on Q. The unknown u = u(x, t), and the data F' = F'(x,t), G = G(x, 1), = f(x)
are vector-valued functions. M is a given real matrix of size d x N and maximal rank
d<N.

We study the problem (1)-(3) under the following assumptions. The function
spaces involved in (D), (E) and in the statement of Theorem 1.1 below, as well as the
norms appearing in (9), (10), (12) will be described in the next Section 2. The square
brackets [ ] of a real number denote its integer part.

(A) L is Friedrichs symmetrizable, namely there exists a matrix Sy, definite
positive on Q (there exists p > 0such that So(x, t) > p for every (x,t) € @), symmetric
and such that Sy4;, for 2 =1, ..., n, are also symmetric.

(B) The IBVP is characteristic of constant multiplicity 1 < r <N, namely the
coefficient A; of the normal derivative in L displays the structure

Al ALl
(5) Al(m):( ! ! )

A{I’I AiI,II

where A{’I , A{’H , A{” , A{I’H are respectively r xr, r x (N —7), (N —7r) x 7,
(N — r) x (N — r) sub-matrices, such that

LI _ 111 _ VI
(6) A1|x1:0_0’ Al\xlzo_o’ Al\xlzo_o’

and A{’I is uniformly invertible on the boundary X, namely there exists 1 > 0 such
that \detA{’I (x,t)| > p, for any (x,t) € 2. Accordingly we split the unknown u as
w= !, ul); u € R" and !l € RN™" are said respectively the noncharacteristic
and the characteristic components of u.

(C) M = (4 0), where I is the identity matrix of size d, 0 is the zero matrix of size
d x (N —d) and d < r is the (constant) number of positive eigenvalues of A{‘I (2120}
(namely the incoming characteristics of problem (1)-(3)).
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(D) Ewxistence of the L? weak solution. Assume that Sy, A4; € W2>(Q), for
i=1,...,n.ForallT > 0and B € W>°(Qy), there exist constants 7 > land Cyp > 0
(depending on T,l[), MU, HSO“WZ,{X}(‘QT), HAZHWZx(QT), ||B||W1'°°(.QT)) SuCh that fOI' all Y 2 Y0
and F e H (Qp), G € H)(wr), vanishing for ¢ <0, the boundary value problem

tan,y
(shortly written BVP)
(7) Lu=F 1in Qr,
(8) Mu=G on wr,

with B in L, admits a unique solution u € L?(Qr), vanishing for ¢<0, such that
u‘le € L%(wr). Furthermore u € C([0, T]; LA(R")), and it satisfies an a priori esti-

mate of the form

2 2 12
ez, + ”uJ’(t)HLZ(JRi) + 11%) 0oy 2200
9) 1
2

fory > yyand 0<t < T, where u, := e ", F, := ¢ 'F, G, := ¢ "'G. Furthermore, if
T = +o0, for all By € W'>(Q) and all conormal pseudo-differential operators By
with symbol in I, there exist constants y, > 1 and C} > 0 (depending on p, x,
S0l w2y 1Aillwzs(q) [1B1llwix(g), and on a finite number of seminorms of the
symbol of Bs) such that for all F' € e?’thlam,(Q), Gee'H ;(2), the BVP (7), (8) on @,

with B = B; + B; in L, admits a unique solution u € ¢”!L?(Q) such that ull 5 €
e"L2(X). Furthermore, for y > 7o, w satisfies the a priori estimate

2
Hl

tan,

F,

1
+=16G,
() VZ

2 I 2
Mwylzag) + 1%y 2 llr2)

10
1o <C <% HF;’||12L1}W(Q) + yl—z |G7||1211;<z>> -

(E) Given T > 0, let (Sy,A;) € CT(H‘;},) X CT(H‘,:’},), where o > [(n + 1)/2] 4 4, be
matrices enjoying properties (A) - (D) on Q. Assume there exist matrix-valued
functions (Sgc),AEk)) in C* converging, as k — oo, to (Sp, 4;) in CT(H;’J,) X CT(H:},) on
[0, T, and in W2>(Q) x W2**(Q) on R;. Assume also that (S{’, A®) satisfy (A), (B)
on Q. Then, for k large enough, property (D) holds for the approximating problems
with coefficients (SJ”, A%).

When an IBVP admits the solution % enjoying an a priori estimate of type (9) or
(10), with F = Lu, G = Mu, the IBVP is said to be weakly L?-well posed. This is the
case of problems that do not satisfy the uniform Kreiss-Lopatinskit condition.
More specifically, an energy inequality of type (9), (10) occurs when the Lopatinskii
determinant has one simple root in the hyperbolic region of the frequency domain,
see e.g. [2, 3] for the definitions. In [8], Coulombel and Gues show that the loss of
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regularity displayed in (9), (10) in such a case is optimal. They also prove that the
well posedness result with loss of regularity is independent of Lipschitzean zero
order terms B but is not independent of bounded zero order terms. This is a major
difference with the strongly L?>—uwell posed problems studied in [14], where there is
no loss of derivatives and one can treat lower order terms as source terms in en-
ergy estimates. Thus the stability of the problem under lower order perturbations
is no longer a trivial consequence of the well posedness itself, and it is assumed as
an additional hypothesis about the IBVP, see (D). Under an a priori estimate of
type (9), (10), Coulombel [7] has proven the well posedness of the problem, namely
the existence of the L? solution for all ' data. As for (E), hyperbolic IBVPs that do
not satisfy the uniform Kreiss-Lopatinskil condition in the hyperbolic region be-
long to the WR class defined by Benzoni-Gavage, Rousset, Serre and Zumbrun [2].
This class of problems is stable under small perturbations of the coefficients A;, B,
in agreement with (E). Examples of problems where the uniform Kreiss-
Lopatinskil condition breaks down are given by elastodynamics (with the Rayleigh
waves [19, 24]), shock waves or contact discontinuities in compressible fluids, see
e.g. [13, 10]. An a priori estimate similar to (9), (10) holds for linearized com-
pressible vortex sheets, see Coulombel and Secchi [9, 10, 11], provided that
So,A; € W2*(Q) and B € Wh*(Q).

Under the assumptions (A)-(D) it is not hard to get the L? solvability of the IBVP
(1)-(3) on [0, T'], with initial data f # 0, cf. [16, Theorem 1.1].

In this paper, we are mainly interested in the regularity of solutions to the IBVP
(1)-(3), for which some compatibility conditions on the data F, G, f are needed.
These conditions are defined in the usual way, see [18]. Given the equation (1), we
recursively define f by formally taking h — 1 t-derivatives of Lu = F, solving for
dw and evaluating it at ¢ = 0. For i = 0 we set f© := f. The compatibility condition
of order m > 0 for the IBVP (1)-(3) reads as

(11) Mf® = 9/Gjr—g, onR"', h=0,....m.

In [16] we have proved the following theorem. This note is devoted to the pre-
sentation of this result. For a detailed proof of Theorem 1.1, the reader is addressed
to [16].

Theorem 1.1. Let m >1 be an arbitrary integer and s =max{m + 1,
[((n+1)/2] +7}. Given T > 0, assume that Sy,A; € Cr(HS ), fori=1,...,m, and
Be CT(H":;;,I) (or B € CT(Hi,},) ifm+ 1 =s). Assume also that (A)-(E) are satisfied.
Then there exist constants Cy, > 0 and y,, > 1, depending only on A;, B, such that
forall y >y, F € H"'@Qr), G € H"™\(Xp), f € H"™Y(RY), satisfying the com-
patibility condition (11) of order m, the unique solution u to (1)-(3) belongs to
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Cr(H 'jffy) and u‘l sy € H '.f,”(Z 7). Moreover u satisfies the a priori estimate

2 2 I 2
70 i o+ s I, O+ 0], gy
(12) 1 ) 1, 1,
<Cn ﬁl\lflllmﬂ,*,y+;\|Fy||Hz?¢l<QT>+;HG~,’HH;:7+1(ZT) :

In [14], the regularity of weak solutions to the characteristic IBVP (1)-(3) is stu-
died, under the assumption that the problem is strongly L?-well posed, namely a
unique L?-solution exists for arbitrary L?-data, and the solution obeys an a priori
energy inequality without loss of reqularity with respect to the data; this means that
the L2-norms of the interior and boundary values of the solution are measured by the
L2-norms of the corresponding data F', G, f. The statement of Theorem 1.1 extends the
result of [14], to the case where only a weak well posedness property is satisfied by the
IBVP (1)-(3). Here, the L?-solvability of (1)-(3) requires an additional regularity of the
data F', G, f, cf. (D). Correspondingly, the regularity of the solution of order m is
achieved provided the data have a regularity of order m + 1. To prove the result of
[14], the solution u to (1)-(3) is regularized by a family of tangential mollifiers J.,
0<e<1, defined by Nishitani and Takayama in [17] as a suitable combination of the
operator f (see the next Section 3) and the standard Friedrichs’'mollifiers. The es-
sential point of the analysis performed in [14]is to notice that the mollified solution J,u
solves the same problem (1)-(3), as the original solution . The data of the problem for
J.u come from the regularization, by J,, of the data involved in the original problem for
u; furthermore, an additional term [/, L]u, where [J,, L] is the commutator between
the differential operator L and J,, appears into the equation satisfied by J.u. Because
the strong L2-well posedness is preserved under lower order perturbations, actually
this term can be incorporated into the source term of the equation satisfied by J.u. In
the case of Theorem 1.1, where the L? a priori estimate exhibits a finite loss of reg-
ularity with respect to the data, this technique seems to be unsuccesful, since [J,, L]u
cannot be absorbed into the right-hand side without losing derivatives on the solution
u; on the other hand it seems that the same term cannot be merely reduced to a lower
order term involving the smoothed solution J,u. These observations lead to develop
another technique, where the mollifier J, is replaced by the operator )L?_l’y (Z2)1in (30),
arising from the characterization of regularity given by Proposition 3.1 (see also (31)).
Instead of studying the problem satisfied by J.u, here we consider the problem sa-
tisfied by 43" "7(Z)u. As before, a new term [} "7(Z), Lu appears which takes ac-
count of the commutator between L and )Lgl_l"’(Z). Since we assume the weak well
posedness of the IBVP (1)-(3) to be preserved under lower order terms, the approach
is to treat the commutator [ig‘fl""(Z), Llu as a lower order term within the interior
equation for /lg”*l’y(Z Yu (see (39)); this is made possible by taking advantage from the
invertibility of the operator A?_l’}'(Z ).
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The paper is organized as follows. In Section 2 we introduce the function spaces
and some notations. In Section 3 we recall some technical results useful to prove the
tangential regularity of solutions. The last Section 4 contains a very short description
of the main steps of the proof of Theorem 1.1.

2 - Function spaces

In this Section, the function spaces to be used in the following are introduced.

2.1 - Weighted Sobolev spaces

Fory > 1and s € R, we set 1*7(¢) := ()% + |§|2)‘“’/2 and, in particular, /° := 21,

Forrealy > 1,H g(R") will denote the Sobolev space of order s, equipped with the
y—depending norm || - ||, , defined by
(13) Jul?, = e | 2oz,

R"

% being the Fourier transform of %. The norms defined by (13), with different values
of , are equivalent each other. For y = 1 we set for brevity || - ||, := || - [|;; and, ac-
cordingly, H*(R") := H5(R"). For s € I, (13) is equivalent, uniformly with respect
to v, to the norm

(14) [ b ] e

| <s

2.2 - Conormal and anisotropic Sobolev spaces

Let us introduce some classes of function spaces of Sobolev type, defined over the
half-space R,. Forj =1,2,...,n, we set

Z1 =210, Zj::@-, forj > 2.

For every o = (a1, ...,%,) € N, the conormal (or tangential) derivative Z* is
defined by Z* := Z7' ... Z}»; we also write 0* = 9[" ... 0% for the partial derivative
corresponding to a.

Given an integer m > 1 the conormal (or tangential) Sobolev space Hy, (R") is

defined as the set of functions u € LZ(RZ) such that Z*u € LZ(R’D, for all o« with

|lo| <m. Fory>1, Hy, (R") will denote the conormal space of order m equipped
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with the y—depending norm

2 — 2
(]_5) HMHH’” (R = Z y2(m laDHZau”L?(RD

tan.,y
|ee| <.

and H;Z?Z(Ri) = H;ZW,I(RK)
With the same notations as above, for an integer m > 1 the anisotropic Sobolev

space H'(R"}) is defined as
H™R") == {we LARY) :  Z*0fw € LARY), |o| +2k < m}.
Fory>1, HQ;(RK) is the same space equipped with the y-depending norm

2 .f (m—|o|—2k) ke, o112
(16) [0/l ey = D mh 1Z% Oy wlzeery -

o[ +2k<m

We have H]"(R")) = H,(R"). For an extensive study of the anisotropic spaces, we
refer the reader to [14, 16, 23] and references therein.

H{’;717},(R’1), HZZ,?/(RZLF), endowed with norms (15), (16) respectively, are Hilbert
spaces. In a similar way we define the spaces Hy, (Qr), HY" (Qr), equipped with
their natural norms.

For a Banach space X, let C’([0, T']; X) denote the space of all X-valued j-times
continuously differentiable functions of ¢ € [0, T'].

m . .
We define the space Cr(HY') := ([0, T1; H)",7(R")) provided with the norm
m . j=0 )
HMH%T(Hm y =2 sup ||8§u(t)||§{,,,fj(ﬁ,,); the space Cr(Hjy,, ) is defined in a completely
T =0 tel0,T] W ’
similar way, with the natural norm || - HCT(Htm )

For the initial data we set

A1

m m

2 2 : (2 2 2 : N2

M%) = ||f(])||HZ;'LT‘j(J[§7"') ’ || |f|Hm7tom,y = ||f<])|‘].[;::;7:‘(][g7‘1) :
=0 ‘ i=0 "

3 - Preliminaries and technical tools

In this Section, we collect several technical tools that will be used in the analysis of
the next Section 4. We start by recalling the definition of the operators # and g, in-
troduced by Nishitani and Takayama in [17]. The mappings £ : L*(R") — L3(R") and
g: L>*(R") — L®(R") are respectively defined by

0{)1/2
’

whx) = w(e™, x')e a*(x) = ale™, '), Va=(r,x)eR".
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They are both norm preserving bijections and it is easy to see (cf. [17]) that

(17 ) =y,
(18) Owh) = Gy, j=1,...,m,
(19) al(uﬁ):(zlu)u%ut, Wt = (Zu), j=2,...,n.

From (19) and the L?—boundedness of 4, it can be also proved that
(20) ¢ Hyy, (RY) — H'(R")

tan,y
is a topological isomorphism, for each integer m > 1 and real y > 1.
Let us denote by C@(Rﬁ) the set of restrictions to R, of functions of Cj°(R").
Then we observe that the operator # continuously maps the space C(OOO)(R’D into the
Schwartz space S(R") of rapidly decreasing functions in R”.

3.1 - Parameter depending norms on Sobolev spaces

In order to show the regularity result stated in Theorem 1.1, it is useful providing
the conormal Sobolev space H{g,;ly(Rz), m € N, y > 1, with a family of parameter-
depending norms satisfying the same properties of similar norms defined by
Hormander [12] in the framework of usual Sobolev spaces in R”. Following [17], for
y>1,6€10,1] and all u € Hj" '(R"}) we set

(21) T P O CIICT
R™

5 defines a norm in H7 '(R"}) and it is

For each fixed d € 10,1], [ - [lg2 y—1.4an.,

equivalent, uniformly with respect to y, to the norm || - || H(RY) defined in (15) (with
m — 1 instead of m). Starting from a result by Hormander [12], and exploiting the
boundedness of (20), we can prove (cf. [14, 17]).

Proposition 3.1. For me N and y>1, we Hy, (RY) if and only if

tan,y

w e Hj L(RY), and the set {lleell & 1 tany0to<o<1 U5 bounded. In this case

HuH]RK,mfl,tan,y,é‘ T ||uHH;:n_7(]R’D , asolO0.

3.2 - A class of conormal operators

The # operator can be also used to allow pseudo-differential operators in R"
acting conormally on functions only defined over the positive half-space R'}. Then
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the standard machinery of pseudo-differential calculus (in the parameter depending
version introduced in [1], [5]) can be re-arranged into a functional calculus properly
behaved on conormal Sobolev spaces described in Section 2, see [15, 16]. Let us in-
troduce the symbols, with a parameter, to be used later; here we closely follow the
terminology and notations of [6].

Definition 3.1. A parameter-depending pseudo-differential symbol of order
meR is a real (or complex)-valued wmeasurable function a(x,&,y) on
R"™ x R" x [1, 4+o0l, such that a is C* with respect to x and & and for all multi-
indices o, € N" there exists a positive constant C, p satisfying:

(22) 0200, &,7)] < Cop (@), Va,EeR", ¥y >1.

Actually Definition 3.1 straightforwardly extends to matrix-valued symbols. We
denote by I'"™ the set of y—depending symbols of order m € R (the same notation
being used either for scalar-valued or matrix-valued functions). For m < w/, the
continuous imbedding I™ ¢ I'™ can be easily proven.

For allm € R, /™7 is a (scalar-valued) symbol in 1. To perform the analysis of
Section 4, it is important to consider the behavior of the weight function )L ),
involved in the definition of the norms in (21), as a y-depending symbol. Henceforth
the following notations are used

(23) WTEIE) = A OATINGE) T T(E) = (;,g“”’(é))_1 :
forallm e R,y >1andd € ]0,1].
Lemma 3.1. Forevery m € R and all « € N" there exists Cy,, > 0 such that
VEeR", Vy>1Vde]0,1]
(24) 0225 O] < Cradiy ™70,
(25) 025" ] < Copady " 7).

After (24), /lgn_l’y(é) can be regarded as a y-depending symbol, in two different
ways. Combining (24) with the trivial inequality )fl’"’(éf) <1 gives at once that
{23}~ s1 1 a bounded subset of ™. Also, the left inequality in

(26) oI <AV < AMQ), VEER", Yoelo1],

together with (24), gives that lﬁ;@*l’y(f) e I ! for each fixed J; however,
{AZ’_I”}O ~s<1 18 no longer a bounded subset of I "-1 Even, the right inequality in
(26) and (25) yield that {4;""*"7},_ ., is a bounded subset of I+,
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Any symbol a = a(x, &, y) € I'™ defines a pseudo-differential operator Op’(a) =
a(x, D, ) on S(R™), by the standard formula

(27) VeeR", Op(@u) = @2m)™" J e a, & POdE,
R"

where u € S(R") and x - ¢ := Z x;¢;. Op’(a) is the pseudo-differential operator with

symbol @ and m is the order of Op (@). It is well-known that Op’(a) : S(R™) — S(R™)
is a linear bounded operator extending to a linear bounded operator on the space
S'(R™) of tempered distributions in R”. An exhaustive account of the symbolic cal-
culus for pseudo-differential operators with symbols in I can be found in [5] (see
also [15]). In particular, for arbitrary symbols @ € I™ and b € I'', with I, m € R, the
product Op’(a)Op’(b) and the commutator [Op’(a), Op’(b)] are again pseudo-differ-
ential operators, whose symbols belong to I+ and are explicitly computable for a
and b. If, in addition, one among a or b is scalar-valued, then the symbol of
[Op’(a), Op’(b)] has order m + 1 — 1.
We introduce now the class of conormal operators in R}, to be used later.

Definition 3.2. For a y—depending symbol alx,&,y) i I'™, m € R, the
conormal operator Opg’(a) (also denoted by a(x,Z,y)) is defined by

(28) Yu e CRY),  (Opl(am)’ = (0p'(@)@).

Since u! € S(R™) for u € C@(Rﬁ) formula (28) makes sense and gives that
Opu(a)u is a C*°-function in R .Also Opu(a) CE’()C)(R ) — C°°(R” )is alinear bounded
operator that extends to a hnear bounded operator from the space of distributions
u € D'(R"}) satisfying uf € S'(R™) into D’ (R?) itself. From (28), for given a € 1™,
b e I'', with m, [ € R, there holds

(29) vu e CRY),  Op/@Op/ b = (0P @O B)a)’

Then, a functional calculus of conormal operators can be borrowed from the
pseudo-differential calculus in R”; in particular, products and commutators of con-
ormal operators are operators of the same type, and their symbols are computed
according to the standard rules of symbolic calculus.

In Section 4, we will make use of the conormal operators

(30) 75 @) = 0Pl A2 = OplG ™).
The operators A?_l”(Z ) are involved in the characterization of conormal regularity

provided by Proposition 3.1. Indeed, Plancherel’s formula and the fact that the op-
erator # preserves the L?—norm yield the following identity

_ n—1,y
(31) ”quR'}r,mfl,tan,y,é‘ = ||'1:sw '}(Z)uHLZ(RZ)-
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Hence, Proposition 3.1 can be restated in terms of the boundedness, with respect to
0, of the L?-norms of functions ig’l_l‘y(Z)u. This is the key point that leads to the
analysis performed in Section 4. Also notice that from (29) and the rules of symbolic
calculus, I{}”‘H’y(Z ) is an inverse operator of A}’ L.

Eventually, from the Sobolev continuity of usual pseudo-differential operators
(see f.i. [5]) and the boundedness of (20), we derive that for m € Z and everya € I'™

the following
(32) Opi(a) : H,,,

tan,y

(R?—) - H?an,y(Rf—)

is a linear bounded operator, as long as s > 0 is an integer such that s +m > 0.
Moreover, its operator norm is uniformly bounded with respect to y.

4 - The scheme of the proof of Theorem 1.1

The proof of Theorem 1.1 is made of several steps.

In order to simplify the forthcoming analysis, we only consider the case when the
differential operator L has smooth coefficients. For the general case of coefficients
with the finite regularity prescribed in Theorem 1.1, we refer the reader to [16]:
roughly speaking, this case is treated by a reduction to the smooth coefficients case,
based upon the stability assumption (E). Thus, from now on, we assume that Sy, A;, B
are given functions in CG(Q). Just for simplicity, we even assume that the coeffi-
cients A; of L are symmetric matrices (in this case Sy reduces to the identity matrix
of size N).

We make the change of unknown u, := e 7"« and we set F, := ¢ "'F, G, = ¢ "'G.
Then the IBVP (1)-(3) becomes equivalent to

(V+L)uy:Fy in Qr,
(33) Mu, = G,, on Xy,

: n
Uyli—0 =1, in RY .

4.1 - The homogeneous IBVP. Conormal reqularity

We firstly consider the homogeneous IBVP
(y+Lwu,=F, inQr,
(34) Mu, =G, on Xr,

: n
Uy jt—0 = 0 in R,
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and we focus on the conormal regularity of its solution, when the data F',, G, fulfil the
compatibility conditions in a stronger form than the one in (11). Namely for a given
integer m > 1, we assume that

(35) NF)10=0, 9'Gy=0, h=0,...,m.

Actually (85) implies the compatibility conditions (11) of order m, for f = 0.
Theorem 4.1. Assume A;,B € Cfoo)(Q), for 1 <1i<mn and that (34) satisfies

assumptions (A)-(D); then for all T > 0 and integer m > 1 there exist C,, > 0 and

Yo > L withy,, > ,,_1, suchthat forally > y,,, F, € H"'\(Qr) and G, € H" N (2p)

tan,y
satisfying (35) the solution u, to (34) belongs to H, %7@}'(QT)’ ugl 5, € H ;?Z(Z r) and the
Sfollowing a priori estimate is satisfied

36) vl

Uy %1;:%_},<QT)+||M£\ zT||§{;.ﬂ<zT> <Cn <% I a/|\1211;3;_1(QT) + ylz ||Gy||1211;?l+1<zT>> :

To prove Theorem 4.1, we reduce the problem (34) into a stationary BVP, where
the time is allowed to span the whole real line and is treated, consequently, as an
additional tangential variable. To make this reduction, we extend the data F',, G, and
the unknown u, of (34) to all positive and negative times, following closely the lines of
[14]. In the sequel, for the sake of simplicity, we remove the subscript y from the
unknown u, and the data I, G,. Because of (35), we may extend F, G by setting them
equal to zero for all negative times and by “reflection” for ¢t > T, so that the extended
data (that we continue to denote by /" and ) vanish also for large ¢t > T, and we get
Fe H;Zj{}y(Q), G € H"'(2). Even the solution u to (34) is extended to negative
times, by setting it equal to zero. Then we extend u for ¢ > T, by following the ar-
guments of [14], based on the assumption (D). The extended solution, again denoted
by u, solves the BVP

@+Lu=F, inq,

37)
Mu =G, on X.

In (87), the time ¢ is involved with the same role of the tangential space variables, as it
spans the whole real line R. Therefore, (37) is now a stationary problem on @, with
dataF ¢ H ;’Z;ﬁ,(Q), GeH ?/”“(2 ). Furthermore, # enjoys the estimate (10) for ylarge

enough.

4.2 - Regularity of the BVP (37)

The proof of Theorem 4.1 is now derived as a consequence of the conormal reg-
ularity of solutions to the BVP (37). Let us argue by induction on m.
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We take arbitrary F € H"''(Q), G € H* 1(X). From the inductive hypothesis,

tan,y

we know the L2-solution u to (37) belongs to H-1(Q) and “|x o€ H'" 1(x), pro-

tan,y
vided that y is large enough; moreover u obeys the estimate

1
2 2 2
(38) VHMHH;’;;_}‘(Q) + ||“\111:o||H;;n71<2) = le( ||F||H;jm @ +ﬁ ||G|H;;n<2)>;

where C,, 1 depends on m, u, the coefficients A; (1 <17 < n) and B.

In order to increase the conormal regularity of the solution u to (37) by order one,
we apply to « the conormal operator ;' 17(Z) and consider the problem satisfied by
A L7(Zyu, following the strategy announced in Section 1. Since 43~ Ly e pm=1 (cf,
Lemma 3.1) and u € H}!, %,(Q) from the boundedness of (32) we know that
25V (Zyu € LA(Q). Applying 23" (Z) to (37) we find that 2" 7(Z)u must solve the
BVP

(39) O+ L) Zw) + 12y (2), Llw = F5, inQ,
(40) M@y (Zw) = Gs, on X,

where the operators L and M are the same as in the original problem for %, and the
data Fs, Gs are computed from F and G in such a way that

(41) 1Fsllz, @ < CullFllpaqs 196l < CullGllmoe

hold true with C,, > 0 independent of ¢ € ]0,1] and y > 1, cf. [15] for details.
Now the key point consists of restating the term [ig’l_l‘y(Z ), L1u, appearing in the
interior equation (39), as a lower order operator with respect to i?il'}’(Z)u: ex-
ploiting the invertibility of the matrix A{’I (see the assumption (B)) to express dyu! as
afunction of F' and conormal derivatives of %, on the one hand, and acting by the rules
of symbolic calculus for conormal operators (using in particular the invertibility of
/lmfl‘y(Z)) we manage to represent the commutator [ig”fl’}’(Z),L] as a conormal
operator with symbol in I'* applied to A ¥ L(Zu, see [15, 16] for details. Since
m 1, 7(Z)u is the unique L?-solution to (39) (40), in view of assumption (D) (estimate

(10)) we find 7,, > 1 and Cm > 0 such that for all y >7,, and ¢ € ]0,1]

y| ‘ igl_l’y(Z)’MH%Z(Q) + ||(im_lﬁy(Z)u1)\ 21=0 ”i2(2)

S C?W, (% ||F||Hm+1(Q) + z ||G||Hm+1(z))

tan,

(42)

Estimate (42) provides a 6—uniform bound for the L?—norms of ig’_l‘y(Z Yuin @ and
the trace on X of its noncharacteristic component. After Proposition 3.1 (and (31)),
this gives that v € H} (@) and u NS Hm(Z ); then estimate (38) of order m is

tan y
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recovered letting & — 0 into (42) and using again Proposition 3.1. Recalling that the
solution to (37) is the extension of the solution u, to (34), from the conormal regularity
of u we can now derive the conormal regularity of u,, namely that u, € Hy,, (Qr) and
ul |5 € H ;”(2 7). The inequality (36) follows from its “stationary” counterpart (38),
where m — 1 is replaced by m.

4.3 - The nonhomogeneous IBVP

We study the general IBVP (1)-(3), where the initial datum f is different from
zero. To show the anisotropic regularity of the solution stated by Theorem 1.1 we
argue again by induction on the anisotropic order m. Without entering in too many
details, we briefly describe the different steps of the proof, for the reader’s con-
venience, addressing to [16] for a more extensive discussion.

We firstly prove the statement for m = 1; thus let the problem (1)-(3) satisfy the
assumptions (A)-(E), where the data F' € Hf_y(QT), such that §;F,_y € H %*i(Ri) for
1=0,1,G € H%(Z r)and f € H%(Rﬁ) obey the compatibility conditions Mf = G|,
Mf® = §,G|,— on R™!. Here we refer to [16, Theorem 5.1], where actually the
result of Theorem 1.1, with m = 1, is proved under slightly more general assump-
tions about the regularity of the data and the coefficients of L. Firstly, we approx-
imate the original data (¥, G,f) by regularized functions (F};, Gy, f;;) satisfying the
same compatibility conditions; then we look for the solution uy, of the IBVP with data
(Fr, Gk, fr) in the form wu; = v, +wy, Where wy € H‘;)’,(QT) is chosen such that
Wi jt=0 = Sy OtWp|i—0 = f,gl), 8,52twk =0 = f,iz), while v, solves a homogeneous IBVP
(with zero initial data). Applying to the latter problem the result of Theorem 4.1 we
deduce that u; € H. (Qr) and uy,y, € H}(Z7); also, looking for the IBVPs solved by
the first-order conormal derivatives of u;, we prove that u;, € Cp(H }ﬁy) and it satisfies
the estimate (12). Eventually, applying (12) to a difference of two approximating
solutions uy — u;, (and taking y large enough), we find that {u;} and {ui‘ 5, ) are
respectively Cauchy sequences in Cy(H }f;,) and H 5(2 7), and passing to the limit as
k — +oogivesthatu € Cr(H ’lw) and satisfies (12). Now we assume that Theorem 1.1
holds up to m — 1. Given the data (¥, G,f) as in Theorem 1.1, by the inductive hy-
pothesis there exists a unique solution u of (1)-(3) such that u € Cp(H™ 1) and

M|IET € H"'(27). In order to show that u € Cp(H"), we have to increase ghe reg-
ularity of u by order one, that is by one more conormal derivative and, if m is even,
also by one more normal derivative. The idea is the same as in [20, 21], revisited as in
[4, 14, 22]. At every step we estimate some derivatives of u through equations where
in the right-hand side we can put other derivatives of u already estimated at previous
steps. The big difference is that now we have to deal with the loss of one derivative in

the right-hand side. To increase the regularity, we consider the system of equations
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for purely conormal derivatives, of the type of (1)-(3), where we can use the inductive
assumption; as for mixed conormal-normal derivatives, they solve a system where
the boundary matrix vanishes identically, so that no boundary condition is needed
and we can apply a standard energy method, under the assumption of the symme-
trizable system. When we consider the system for purely conormal derivatives, we
have the loss of one derivative in the right-hand side. However, the terms in the
right-hand side have order m — 1; after the loss of one derivative they become of
order m, and can be absorbed for y large by similar terms in the left-hand side.
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