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Two existence results for the vortex-wave system

Abstract. The vortex-wave system is a coupling of the two-dimensional Euler
equations for the vorticity together with the point vortex system. It was introduced
by C. Marchioro and M. Pulvirenti [7, 8] to modelize the evolution of a finite number
of concentrated vortices moving in a bounded vorticity background. The purpose of
this paper is to provide global existence of a solution in two cases where the back-
ground vorticity is not bounded. Part of this work is joint with M. C. Lopes Filho and
H. J. Nussenzveig Lopes.
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1 - Introduction

The purpose of this paper is to present results of [4], joint with M. C. Lopes Filho
and H. J. Nussenzveig Lopes, and [9], for the two-dimensional incompressible Euler
equations on the full plane

(1) ogw+u-Vo=0, dvu=0,

where u = u(t, ) : R, x R? — R¥is the transporting divergence-free velocity of the
fluid, and w = w(t,x) = curlu : R, x R? — R is the vorticity. In the case of the full
plane, the velocity is determined by the vorticity by means of the Biot-Savart law
J (@ -y
2
x —
R o =l

(2) w(t,x) = i

wolt,y)dy = K * o(t, -)(x),
2n

where (a,b0)" = (— b, a).
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Our aim here is to investigate global existence of special measure-valued solu-
tions to (1). In the setting of weak solutions to the Euler equations, a classical result
by V. I. Yudovich [13] provides global existence and uniqueness of a solution with
bounded vorticity w € L*(L' N L>®). When the vorticity is bounded, the corre-
sponding velocity field is almost-Lipschitz (see (12) below), so that one may define its

ﬂOW ¢ = ¢(t7 x):
@ % =t 400, 40,0 =

and, since (1) is a transport equation with field u, one has
(4) (t, ¢, ) = (0, x).

In addition, the divergence-free condition on % implies that for all ¢, ¢(¢, -) preserves
Lebesgue measure, so that all the norms ||w(®)||;,,1 < p < +oco are preserved. The
formulation (3)-(4) is called Lagrangian point of view.

One can also deal with weaker solutions, solving (1) in the sense of distributions
(Eulerian approach) but for which no Lagrangian description is available. For ex-
ample, global existence in the space of bounded Radon measures M under sign and
kinetic energy restrictions (i.e., > 0 and w € L>*(M N H™1)) is due to J.-M. Delort
[1] (see also [5, 3, 11]); but nothing is known about uniqueness in this class. These
solutions are called vortex sheets.

Another kind of special solution, referred to as point vortex dynamsics, is ob-
tained assuming the vorticity is the superposition of Dirac masses centered at points
called point vortices

¢
(5) w= Z 00y, o € R.

i=1
Actually, point vortex dynamics is too singular to include in the usual weak for-
mulations, see [11]. Indeed, according to the Biot-Savart law (2), the corresponding
velocity field writes

4
U = ZociK(- — Zi),
=1

it becomes singular at the point vortices and is not, even locally, square integrable.
One way to treat such solutions is to assume that each vortex moves with the speed
induced by the other vortices. Then (1) reduces formally to an Hamiltonian system of
ordinary differential equations for the vortex trajectories, known as point vortex
system in the literature
(6) %:Z%K(zi_@), i=1,...,0

J#
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Finally, in order to handle weaker solutions (including, for instance, point vortex
dynamics), F. Poupaud [10] proposed a generalized form of the Euler equations (see
(10)), taking into account an additional defect measure due to nonlinearity defects,
and obtained global existence of a solution belonging to L*°(M) under sign re-
strictions.

Here we will be interested in special measure-valued solutions x to (1) behaving
like the superposition of a finite number of point vortices and a non atomic, compactly

supported vorticity background
¢

(7) p=w+Y %0,

i=1
More precisely, we will study separately the following situations:

I) wis afunction belonging to L*°(LP), p > 2, without sign conditions, and o;; > 0
for all 1;

II) wis a positive measure belonging to L>*(H 1), as in J.-M. Delort’s Theorem,
and o; > 0 for all <.

For any vorticity 1, given by (7), the existence result by F. Poupaud [10] provides
at least one global solution wu(f) to the generalized Euler equations such that
1(0) = uy. However, nothing more is known about the defect measure and about the
structure of u(f) at positive times. Here we will construct a global weak solution s(t),
without defect measure, and such that u(tf) satisfies (7) for ¢ > 0.

The situation I) was introduced and formulated by C. Marchioro and M.
Pulvirenti [7, 8] in the early 90s. The resulting system, called vortex-wave system,
was obtained by separating the evolution for the continuous component w, evolved
using the Euler equations, and the evolution for the atomic part on the other hand,
evolved through the point vortex system, coupling these equations by means of the
Biot-Savart law:

‘
O + <U+ZociK(-—z1;)> -Vo=0, v=Kxw,
i=1
(8) i
d—’:v(t,zi)—i-ZaJ-K(zi —z), 1=1,...,0
t J#

In particular one retrieves the point vortex system (6) whenever w = 0.

In [7], C. Marchioro and M. Pulvirenti proved a global existence result for the
vortex-wave system (8) for p = + oo and for single signed vortices. Uniqueness for
(8) in the general case is still an open issue, but was achieved under additional as-
sumptions on the behavior of wy near the point vortices [12, 2, 7].
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The purpose of Section 3 below is to extend the global existence result of [7] to the
case where 2<p < + oo (see Theorem 3.1 or Theorem 1 in [4]).

In the second situation II), the transport equation for w in the vortex-wave
system does not make sense anymore, because the velocity v = K * wis too singular.
Therefore we have to go back to the generalized formulation introduced in [11, 10] for
the full vorticity u(t) = w(t) + >_; #i0,,¢). This formulation relies on the following
basic observation: assume that w is bounded. Then we have, using the Biot-Savart
law and the symmetry properties of K,

(9) J(u Vpwdr = ”[W(oc) V)] - K@ - po@ty) de dy

for all test function ¢, where we have set
K(x) = K(x) for  £0 and K(0) = 0.

Now, introducing
1 ~
Hy(we,y) = 5[Vo@) — Vo) - Kx —y),

we realize that H, is defined and bounded on R? x R?, vanishes at infinity, and is
continuous outside the diagonal {(x, ), € R%}. In particular, the right-hand side of
(9) is well-defined whenever w € M(R?) is a bounded Radon measure. This moti-
vates the following definition:

Let y, € M(R?). We say that u € L (R, M(R2)> is a global solution of the

loc
Euler equations with initial condition g if for all function ¢ € C°(R X RZ), we have

J J Op(t, x) u(t, ) dec dt + J J JH,,(ac, y) u(t, )ut,y) do dy dt
(10)
=— Jgo(07 ) (e) dee.

Section 4 will be devoted to the proof of global existence of a solution to (10)
behaving like (7) (see Theorem 4.1 or Théoréme 4.1 in [9]).
Before stating Theorems 3.1 and 4.1 we will present in Section 2 some basic
properties of the Euler equations for later use.
Notations. We will set
In"(r) = max (0, —In(r)), In"(r) = max(0,In(»)), for r > 0.

We will use the smooth, cut-off function y, : R* — R defined by
(11) 20=1on B0,1), x, =0 on B(0,2° 0<y,<1.
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2 - Some useful properties of the Euler equations

First we collect some useful properties of the Biot-Savart Kernel:

1
K(—x)=—-K(x) (antisymmetry), [K(x)|< =k
1w —y| . . .
|K(x) — K(y)| = 27 ol (regularity away from the origin).

Next we present some preserved quantities by the flow of the Euler equations.
Assume that (o, 4 = K * w), with o € L*(L°), is a solution to (1). Then

lo®|l;p = |w©)||;, forall 1<p<oo, Jw(t, x)de = Jw(O, x) da.

Moreover we have the conservation of the momentum of inertia
T(@)t) = j (@f2eott, ) die = T(e)(0),

and of the pseudo-energy
H(@O) = [ | mfe - ylott,zyoxt,y) da dy = H(@)O)

In Section 3 and 4, where we assume that o + ), o;0;,, with @ € L>(L°), is a
solution to the vortex-wave system (8), the previous properties translate into

Z(o, {2 )(O) = J|x|2w<t, wyde + Y oilzi® = I(w, {2:)00),
H(w, {z:;})®) = len\x — Ylo@, x)w(t,y) de dy + Z aioyln|z;(t) — 2;(0)]
i#

+2 Z o; Jln|x — zi(®)|w(t, x) dx = H(w, {z;})(0).

3 - The vortex-wave system (with M. C. Lopes Filho and H. J. Nussenzveig Lopes)

3.1 - Presentation and main result

This section is devoted to the vortex-wave system (8). As already mentionned,
there are two kinds of solutions to (1) or (8), namely the Lagrangian and the Eulerian
solutions.
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Let p > 1 and wy € LE. We say that (w, {2;}) is a Lagrangian solution to (8) on
[0, 7'] with initial condition (wy, {zi}) if
we L™ ([0, T],Lé’(RZ)), 2 € C'([0,TD, ¢(,x) € CY(0,T]) Ve # zj,
where for ¢t € [0, T
o, ¢, x)) = wp(x), v=K*o,

dz;

d—zt =vt2) + Y 4K (s —7), 20 =z,
(ODE) 7

¢

ot
¢0,x) = x, x # 2.

!
—E (@) = ot §(t,2) + > oK ((t, ) — 2(1)),
j=1

Additionally, for all ¢, ¢,( - ) = ¢(t, ) is a homeomorphism from R%\ {210, ..., 20} into
R? \ {z1(®),...,zi(t)} preserving Lebesgue’s measure. Of course, due to the diver-
gence of K at the origin, the ordinary differential equations make sense only if the
fluid particles ¢(¢, x) do not intersect the vortex trajectories z;(¢) and if there is no
collapse among the vortex trajectories on [0, T'].

In order to allow the singular fields to become infinite, one can also define another
notion of solution without involving the flow ¢: solutions to the PDE in the sense of
distributions. More precisely, we say that (o, {#;}) is an Eulerian solution if

v =K xwandZ; = v(t,2)+ Y o;K(2; — zj); moreover for all p € C*([0,T) x RR?)
J#

T
¢
J J o (B + (w+ ZaiK( - —2;))- Vo) dedt
0 i1

(PDE) R?

=— J wo(@)p(0, ) da.

R?

Such a formulation requires to give sense to the products wv and wK( - —z;). Since K
belongs to L{ . for all ¢ <2, then wK( - —z;) belongs to LllOC provided p > 2. On the
other hand, the velocity v = K * wis uniformly bounded for all p > 2 (see (14) below);
hence wv belongs to Lj .. It is therefore natural to focus on the case where p > 2.
In [7], C. Marchioro and M. Pulvirenti obtained a global existence result for the
vortex-wave system (8), in Lagrangian formulation, for p = +oco and for single
signed vortices. The single sign assumption on the o; implies that the vortices cannot
collide in finite time. Since w is bounded, the velocity v = K * w is almost-Lipschitz

[7, 8]: for all x,y € IR?,
(12) [ot, ) — v, y)| < C(|lo@|| 11, |lo®|lz) € —y|A +1In" e —y)).
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In particular, for fixed v all ordinary differential equations involved in (ODE) are
locally well-posed. Using again the almost-Lipschitz regularity for the velocity and
the single sign assumption enables to establish a priori positive lower bounds on the
distances

(13) lo(t, ) — 2;)| > Flx — 2, 0)), i=1,....¢

for a positive function F vanishing only at the origin. It follows that there is no
collapse among the fluid trajectories and the vortex trajectories, so that the solution
is global in time.

Finally, for p = +oo it has been established in [2] that both Lagrangian and
Eulerian formulations are equivalent.

Assume now that 2<p<oo and w € L>(LF). Then the corresponding velocity
v = K x w is bounded

(14) [o®)] . < CO)®] ;" @I,
where p’ denotes the conjugate exponent of p. Furthermore, v is Holder continuous:
(¢, @) — vt )| < C(®|| 1, |l v =y, Va,y € RE.

Thus for fixed w € L>(L), there exist local in time solutions (z;(t), ¢,(x)) to the or-
dinary differential equations in (ODE). However, in the present case the lower
bound (13) translates into

8(t,0) — 2O > |o — 2,0 — Ct.

Hence one cannot exclude the possibility of collapse in finite time between the fluid
trajectories and the vortices. Nevertheless, as already mentionned all terms in-
volved in the weak formulation (PDE) are well-defined. The main result of this
section is the following

Theorem 3.1. Let p>2 and let wy € LP(R?) have compact support. Let
{zi},i=1,...,¢ be { distinct points in RZ and let o;,i=1,...,0 be positive
numbers. Then there exists a global weak solution of the vortex-wave system with
this wnitial data.

Remark 3.2. Without the sign restriction on the intensities o; we cannot hope
for a global existence theorem, since, even in the absence of the continuous vorticity,
collisions in finite time are known to exist (see [8]). However, for «; € R one can
prove local existence of a solution to the vortex-wave system [4].



138 EVELYNE MIOT [8]

3.2 - Some elements for the proof of Theorem 3.1

We sketch now the proof of Theorem 3.1. First, we regularize the initial vorticity
by introducing w) = p; * wo € LE(R?), where {p;},_;_, is a standard mollifier, and
we consider a resulting global solution (, {zg},cjf;) of the vortex-wave system
provided by C. Marchioro and M. Pulvirenti’s result. We then establish uniform
estimates with respect to J to obtain compactness and a weak limit (w, {z;}), and
finally we show that (w, {#;}) is a weak solution to (8).

We set

14 l
V¥ =Kxao, Ktw) =Y oK(@x-20)=> oK.
i=1 1=1

Uniform estimates and compactness. By Section 2 and (14), {«’} is
uniformly bounded in L>*(L! N L?) and {v°} is uniformly bounded in L>°. Moreover,
the following bounds hold

Proposition 3.3. We have

max |20 < CA+1), |4 <CA+1), Vaesupplewp), V>0,
1

Proof. We consider the momentum of inertia

¢
P =Y wlz®F.
i—1
For the point vortex system (6) it is constant in time. For the vortex-wave system this
quantity is no longer conserved, but we can obtain some control of its growth.
Indeed, symmetry properties of the kernel K and the sign assumption on the o; yield

: , é
%I: ®) =2 ; 0;2](1) - (8, 22(t) < C ; 5|20 < CVIQ),

whence the control on the vortex trajectories. To control the support of w’, we
consider & # z; € supp (wg). Then, if the flow gbf(ac) is close to one of the point vor-
tices, it liesin B(C(1 + t)) in view of the previous bounds. Otherwise it is far from all of
them; but then its total velocity v° + K is bounded. One can then conclude. O

Proposition 3.4. There exists a positive and continuous function t — d(t) > 0
such that

min 22 — 2)) > dt),  VE>0.
1#j
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Proof. Set

H(t) =) oioyln™ [22(t) — 2)(2)],
i

so that
Ht) < — H@', {221)0) + U iz -yt 00t do dy‘
14

+220€i

i=1

Jln|x — 22()| 0’ x) dac

+ > ooyIn[20(1) — 2)(8)].
i#j
Using various uniform bounds for {«°} and the estimates of Proposition 3.3 we infer

that
H(t) < C(1+1In(1 +1))

and the conclusion follows, since all the «; are positive. O

Passing to the limit'. Invoking the previous estimates and standard com-
pactness arguments, we are in position to find (w, {z;}) such that, up to a sub-
sequence still denoted by ¢, we have

1) w’(t) — w(t) weakly in LP for all t > 0.

2) v = K x 0’ — v = K = o locally uniformly on R, x RZ
3) zf — z; locally uniformly on R, Vi, therefore

4) K — K; = K(- —#;) locally uniformly away from z;, Vi.

It remains to show that (w, {#;}) is a weak solution to the vortex-wave system. In
view of 2), 3) and 4), and using Proposition 3.4 it is straightforward to establish the
ordinary differential equations satisfied by the {z;}, since {v°(2)) + 3 o;K?(2))}
converge locally uniformly. Next we want to prove that 7

O+ div (v + K)w) =0 in D'(R,. x R?),

where K = > o;K;. In fact, given 1) and 2) we only have to worry about the con-

1 N
vergence of the non linear term w’k?, given in the following

Proposition 3.5. We have o’K° — oK in D'(R, x R).

1 14] presents a slightly different proof, based on the symmetry properties of K.
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Proof. As amatter of fact, by 1) it suffices to show that
(15) (K> —K)— 0 in D'(R, x R?).

By virtue of 1), 3) and 4) we already know that (15) holds away from the vortices. Let
¢ be a test function such that supp (p) C [0, 7] x R?. We introduce a parameter
0<e<1 and we set

) 2z —2z;(t) £
Xﬁ(t7 Z) = XO( FZ )7 XAe = ZX;
i=1

where y, is defined in (11). By Proposition 3.4, one can choose ¢ small enough so that
%i(t, ) and #(t, -) have disjoint supports on [0, T] for i # j and

2LE)=1 on OB(zi(t),%).
i=1

Then, we set

4
p=00— 1)+ ox

i=1

Fixing ¢ and letting 6 — 0, we readily obtain by definition of y, and 1), 4)

(16) Jjw‘;

On the other hand, Cauchy-Schwarz inequality yields for all ¢

4
(K= K)ol = 7) + Y (K~ K;) - wci] dudt — 0.
i=1 j#i

Ujaﬁ(Kf —K) -y dmdt‘ <

1

- - +
e — 22(0)]

LV (B(zi(1),2¢))

‘ 1
e — 2;(®)]

t€[0,77]

LY (B (zi(t),Ze))>

One may chose 6 sufficiently small so that sup;cp q[2i(t) — 20(t)| < e. Therefore

Cllwolizsllollz~ sup (

(17) ijﬁ(Kf —K)) - gy da dt‘ < Clllel ™Mo gz < CEP
In conclusion, (16) and (17) yield

lim sup
0—0

”w"‘(/@ —-K)- q;dacdt‘ < CP1,

and (15) follows by letting finally ¢ — 0. O
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4 - Vortex sheets and point vortices

4.1 - Presentation and main result

The main result of this section is the following

Theorem 4.1. Let wy be a positive, compactly supported Radon measure
belonging to HX(R?). Let zy € R% not belonging to the support of wg. Let o > 0 and
set iy = wg + ad,,. There exists a global solution of the Euler equations 1, in the
sense of Definition (10), such that u >0, t— [o x)ut, x)dr is continuous
Vo € CS(RZ), and 1(0) = u,. Moreover, we have

U@ = o) + adyy, V>0,

where z € CYA(R ., K and o € L (R H(R)).

Remark 4.2. Using suitable test functions in the formulation (10), one can
show that if 4 = w + ad, is a solution of (10) and if moreover w € L>®(LY) for some
p > 2, then z € W' and (o, z) is a solution of the vortex-wave system (8).

Remark 4.3. Theorem 4.1 easily extends to the case of several point vortices
having all positive intensities. Moreover, the same conclusion holds replacing the
assumption zo ¢ supp (wp) by the assumption In|zg — -|wy € M(R?).

Without loss of generality, we will further assume that o = 1.

4.2 - Sketch of the proof of Theorem 4.1

In order to establish Theorem 4.1, we will adapt the result obtained by A. J.
Majda [5] for vorticites without atomic part (« = 0) to the present case (z = 1). In
particular, we will exploit as in [5] the notion of pseudo-energy, which has been al-
ready defined in Section 2 for bounded vorticities:

H(w) = JJlnpc — Ylo@)w(y) dx dy.

In fact, this definition extends to positive, compactly supported measures belonging
to H1; one has (see e.g. [5] or [6]):

(18) H(w)| < C,

where C depends only on [ o, ||| and supp (w).
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One has also the converse estimate
(19) o]+ < C,

where C’ depends only on [, |H(w)| and [ |[*e. Tt should be mentionned that, in
contrary to estimate (18), estimate (19) does not involve the size of the support of w.

We proceed as in the proof of Theorem 3.1, considering a sequence of global
solutions (w°,2°), with @’ € L, to the vortex-wave system (8). Introducing the full
vorticity x4’ = @’ + J,5, we obtain a sequence of global solutions to (10). We then
establish uniform estimates and pass to the limit in (10).

Uniform estimates and compactness. For ¢t >0 and 0<d<1, «’t) is
positive, bounded and compactly supported. By assumption on x, we get uniform
bounds on the full momentum of inertia and on the full pseudo-energy

(20) (e, 2°)(t) = T(a’,2°)(0) < C
and
(21) [H(e’,2°)(®)| = [H(@’,2°)0)| < C.

We next establish some compactness for {°}. It is uniformly bounded in L>(M).
Moreover, since 10 satisfies (10) we have for all ¢ € C>*ands,t >0

(22) J ()’ (¢, ) dew — J o)’ (s, x) d| < C||D%p||p |t — s|,
R? R

hence t — j(p(m)ué(t7 x) dx is uniformly bounded and equicontinuous. By a standard
density argument and Ascoli’s Theorem we conclude that there exists u > 0 such
that, up to a subsequence, 1°(t) converges to u(t) and u(t) @ u°(t) to u®) @ ut)
vaguely, locally uniformly with respect to ¢ > 0.

The next step is to show that «° does not concentrate in the limit 6 — 0. For this
the sign assumption on g plays a crucial role.

Lemma 4.4. There exists a constant C depending only on u, such that for
0<r<1/2 we have

sup sup sup @, ) de < C\lnr\fl/z.
>0 0<do<1 gieR?
B(xo,r)
Proof. Recall that @’ > 0; therefore, by virtue of a result of [5] (page 932), in
order to prove Lemma 4.4 it suffices to obtain a uniform bound for the pseudo-energy
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H(?)(t) associated to w’. We have by direct computations
[H(@)(®)| < [H(®,20)(@)|
+ c( J Jlnﬂx Y|t ) ¢, ) de dy + J1n+\z5(t) ~ 2|t ) dac) .

Using the basic inequality In* |z — y| < ||* 4 |y|* for x,y € R? and the estimates
(20) and (21) we obtain a uniform bound on |H(w‘5)(t)|, as we wanted. O

Lemma 4.5. There exists z € CY2(R .., R?) such that, up to a subsequence, z°
converges to z uniformly on compact sets of R ..

Proof. The sequence {z°} is uniformly bounded on R, by (20). It is also uni-
formly equicontinuous. Indeed, let ¢ € CSO(R2). By (22) we have
|0p®) — p(’(s)|
< C||ID?0p|| |t — s| + J @’ (t, )| p(x)| doe + J (s, x)|px)| de.
IR? R?

Let 0<n<1and K > 1 be two constants, depending only on y,, to be determined
later. For ¢, s satisfying |t — s| < #, we assume by contradiction that

|2°(t) — 2°(s)| > K|t — s|"/2.
Set

K|t —s['?
=2

decreasing 7 if necessary, we may assume that » <1/4. Next, we choose
J
x — 2°(s)
() = xo (77” ) :

where , is the cut-off function defined by (11). Clearly we have p(z°(t)) = 0, while
¢(2°(s)) = 1. On the other hand, Lemma 4.4 implies that

Jw‘s(sm)go(x)dx = J (s, x) dac < C|lnr| V2,
R? B((s).2r)
and the same estimate holds true for «°(t). Finally, using the fact that ||D?¢|| <

Cr—2 we find

(23) 1 < Cllny| Y2 +£2\t —s| < C(/nr| 2+ K2),
r
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where C depends only on y,. One may choose K large enough, then 5 sufficiently
small, so that the right-hand side of (23) is smaller than 1. We are led to a contra-
diction, therefore {z°} is uniformly equicontinuous on R . The existence of z € C1/2
such that z° converges to z (up to a subsequence) uniformly on compact sets follows
from Ascoli’s Theorem.

Lemma4.6. There exists a positive o € L™ (R, M N H Y (R?)) such that, up
to a subsequence, o’ (t) converges to w(t) vaguely, locally uniformly with respect to
t > 0. The estimate of Lemma 4.4 holds for w.

Proof. Setting w(t) = u(t) — d.r), the only point to check is the fact that
w € L>*(H1). We already know that |H(«°)(#)| is uniformly bounded. Thanks to (19)
and (20), we obtain that {°} is uniformly bounded in L>(H'). The conclusion
follows. |

Passing to the limit. We finally show that x satisfies the formulation (10). As
amatter of fact, in view of the weak convergence of 1 to u, we only have to prove that
forall T > 0, for all y € C*([0,T)) and ¢ € CgC(RZ) the non linear term

J J J Wt H ,(ac, )’ (t, )l (¢, ) doe dy dit
passes to the limit as J tends to zero. Observe that, since H,(-,-) vanishes on the
diagonal, we have
H (@, )i’ @)’ (y) = Hy(@, o’ @)’ (y) + Hy(w,2°)0’ @) + Hy @, )’ ).
Hence it suffices to establish that

(24) J J J wH (2, )’ (¢, )’ (¢, ) de dy dt — J J J wH ,(x, ), v)(t, y) du dy dt
and

(25) J J wH (0, 2° ()’ (¢, ) dac dt — J J wH (0, 2)eo(t, ) dac it

In doing this, the major difficulty is due to the discontinuity of H, on the di-
agonal, therefore the weak convergences of o’ and v’ ® @’ to w and @ ® w do
not allow to pass to the limit in (24) and (25). However, the crucial observation
in [1, 5, 11] is the fact that, since @’ does not concentrate on the diagonal (see
Lemma 4.4), the contribution of H,(x,y)o’ ®«’ on {(x,y):|x—y| <e} or
H,(x,2%)0’ on {x : |x — 2°| < ¢}, for a small parameter ¢, is small uniformly with
respect to .
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So, (24) directly follows from the by now standard arguments of [1, 5, 11], since
{w°} satisfies all required assumptions.

We next establish (25) by similar arguments. We introduce a small ¢ > 0 and the
cut-off function y, (¢, x) = y,((x — 2(t))/¢), where y, is defined in (11).

We will first show that for fixed ¢ we have as 6 — 0

(26) J J w) (A — y)H ,(x,2°)0° doe dt — J Ja//(t)(l — 1)H (@, 2) o da dt.
Indeed, in view of the definition of H, we have

J J wt)A — x)H (v, 20)’ dedt = I° + J° + K°,
where

= |y®A - z)H,(x,2)0’ da dt,

7= [ [w0a — 203 [Vo@ — Vo] - K@ — 20/ dadt,

K= |wa - ;{8)% [Vo@) — Vo) - [K@w - 2°) — K@ — 2)|o’ da dt.

First, using the regularity of K away from zero, the fact that 1 — y, vanishes in a
neighborhood of z(t) and Lemma 4.5 we obtain

lim sup(|J‘5| + |K(5|) < lim sup (C(e, @) sup |z(t) — z‘s(t)|> =0.
50 5—0 te[0,71

On the other hand, since y(1 — y,)H (-, z) belongs to L' (C)) we have, using the
convergence of w’ to m,

yné r= JJy/(t)(l — 1) H ,(%,2) wdax dt.

Hence we obtain (26).
Finally, invoking Lemma 4.4 we can estimate the remaining contribution to the
integral as follows

(27) sup

0<o<1

J J wOyH, (¢, 2"’ dedt| < C|lng| "2,

and the same estimate holds replacing o’ by .
Letting eventually ¢ go to zero, (26) and (27) lead to (25) and the proof of
Theorem 4.1 is complete.
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