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Stability of scalar balance laws and

scalar non-local conservation laws

Abstract. We present here a stability result for the solutions of scalar balance
laws. The estimates we obtained are then used to study the continuity equation with
a non-local flow, which appears for example in a new model of pedestrian traffic and
in a model of supply-chain.
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1 - Introduction

We study here the Cauchy problem for scalar balance laws:

) {8tu+ Divf(t,@,u) = F(t,x,u) (t,x) € R, xRN

w(0, x) = up(x) x € RN,

where ug € (L' N L®)(RY; R) is the initial condition, f € Z2([0, T x RY x R; RY)is
the flow and F' € ?5‘1([0, T] x RY x R; R) is the source. This kind of equation often
appears in physics and their properties have already been intensively investigated,
see for example [17, 22, 27]. In particular, Kruzkov’s Theorem [22] states that this
kind of equation admits a unique weak entropy solution and describes the depen-
dence on the initial condition of the solution.
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In the first part, we want to describe the dependence of the solutions with respect
to flow and source in the case the flow f and the source F' depend and the three
variables t, © and %. Some cases were already studied: for example Lucier [23] or
Bouchut & Perthame [5] have considered the case in which the flow depends only on
« and in which there is no source. We treat here the general case, which includes the
preceding results. In this very general setting, under natural assumptions (see (K),
(H1%*)), we obtain an estimate on the total variation of the solution

TV(u(t) < TV(ug)e
¢
+ NWy J et=7) J Ve — div )z, 2, )|~ @qudedr.
0 RN
Assuming furthermore that (f — g, F' — G) satisfies (H2*), we obtain a stability es-
timate of the solution with respect to flow, source and initial condition:
Kot e

p «t
| — )1 < € Juo — UOHLIJFWTV(%)H Ou(f — 9l

t e](o(t—f) _ el((t—‘[) ‘
+ J\ﬁ J ||V’U(F - lef)(‘[, -%', ')”L%(du)dxdf
0 —

0 RY

x NWy | 0u(f — 9|l
t

n Je:«(t—ﬂ J [(F = @) — div(f — )z, 2, )|~ @udedr .

0 RY

These estimates are very satisfactory since we obtain the same results as the ones we
already knew, when we look at some particular case, for example the homogeneous
case without source. The results we present here come from a collaboration with R.
Colombo and M. Rosini and are more precisely described in [13].

The second part is devoted to the study of the continuity equation:
2) O + Div(u V(x,u())) =0, w©,-) = up € L' "L NBYV),
where V : RY x LI(RY R) — Z2(RN ; R) is a non-local averaging functional. Our
driving examples are, if p : R — R is a regular function:

e Viu)y=9¢ ( ju dx) for a supply-chain model [2, 3, 15]. Here, u is the density of

products at stage x of the production, at a time ¢. We scale « € [0,1] so that x =0
represents the beginning of the production line and # = 1 its end. The functional V'
describes the velocity for elaborating the products and it is assumed to depend on the
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total load on the production line. We assume furthermore that ¢ is a positive, de-
creasing function.

o V(x,u) = p(n *, u)w(x) for a pedestrian traffic model. It follows several other
macroscopic models [4, 7, 14, 18, 24, 26]. In this model, % stands for the density of
pedestrian at the place x € R? and at time ¢. The functional V describes the velocity
of the pedestrian after two rules: the first one is that the pedestrians have all the
same behavior. This behavior is described by the vector field w: for example, the
pedestrians all want to exit a room and follow some paths directed to the door. The
second rule is that the velocity at point « depends on the average density of pe-
destrians around this point, which means that the pedestrians react to their en-
vironment and to what they see, in average, around them.

We describe more deeply these two models at the beginning of Section 3.

In the study of equation (2) our goals are: first, prove existence and uniqueness of
a weak entropy solution, second find the extrema of a cost functional depending on
the initial condition.

Using the estimates we obtained in the first part, we show not only that this
model admits a unique weak entropy solution, but also that the linearized equation
admits a weak entropy solution. Furthermore, the non-linear local semi-group ob-
tained by solving the initial value problem is Gateaux-differentiable with respect to
the initial condition and the Gateaux-derivative is the solution of the linearized
equation. This fact allows us to characterize the minima or maxima of a given cost
functional depending on the initial condition. This is of interest in pedestrian traffic if
for example we want to minimize the time of exit out of a room, avoiding high density
in the crowd. These results come from a collaboration with R. Colombo and M. Herty
and are presented in [11].

2 - L! Stability for scalar balance laws

In this part, we are concerned by the Cauchy problem (1) when the flow f and the
source F' depend on the three variables ¢, x and u. We give here an estimate on the
total variation of the solution and a stability estimate with respect to flow and source
in a general setting. These results are described in the note [12] and in the articles
[13, 25].

2.1 - Previous Results

Let us first recall the Kruzkov Theorem:
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Theorem 2.1 [Kruzkov]. We denote 24 =1[0,T] x RY x[—A,A] for all
A > 0. Under the conditions f € Z%(Qx; RY), F € #°%(Qu; R) and

® f, F have continuous devivatives : 0,f, 0,Vf , V*f, 0,F, VF,
VA >0, 0,feL¥Q4), F—divfeL®Qu), 0,F —divf) e L>*(Qy)

there exists a unique weak entropy solution u € L>=([0, T]; LI(RN ;R)) of (1) that is
right-continuous in time.

Let vy € L'n L>)(RY ;R). Let u be the solution associated to the initial
condition ug and v be the solution associated to the initial condition vy. Let M be
such that M 2 sup ([[ullyx o ry.cx¥ ) [VllLxqo mxry r)- Then, for all t € 10, T1, with
Y = |0uF || 1> (g, we have

3) e — )Blp < € [leto — volls -

Some other results concerning the dependence of the solution with respect to flow
and source were already known. The following was first proved by Lucier [23], and
later improved by Bouchut & Perthame [5]. Their results are about the homogeneous
conservation laws: the flow depends only on % and there is no source. More precisely,
if f,g: R — RY are globally lipschitz, then for all uo, vy € (L} N L®)(RY; R) initial
conditions for

o+ Divf(u) =0, 0w + Divg(v) =0,
with furthermore vy € BV(RN : R) (see Definition 2.1 below), we have for all ¢ > 0,
[[(w — )D)|| 1< [luo — volly1+CtTV(vo) Lip (f — g).

A flow depending also on x was considered by Chen & Karlsen [9], in the
special case f(x,u) = A(®)l(u). There, under appropriate hypotheses, with
f@t, x,u) = Mx) l(u), g, x,v) = ulx)m(), and without source (¥ = G =0), they
obtained the estimate:

6 — 0O < llto — vollga+Ca (112 — pll 2 — pllgrat 1 = mllg 41— g

where C; =C Supyo.7) (TV(u(?)), TV(v(t))). However, this general settings contains
the following Cauchy problem:

o + Op(cos ) =0, up=0.

The solution of this problem is u(t,x) =tsinax for which TV(ug) =0 and
TV(u(t)) = +oo for any ¢t > 0. Hence, the coefficient C; is also +oco. This fact moti-
vated us for searching first an estimate on the total variation in the case the flow and
source depend on the three variables ¢, x and .
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2.2 - Estimate on the total variation
Let us recall here the definition of total variation.

Definition 2.1.  Foru € L. (RY;R) we denote the total variation of u:

TV(u) = sup{ J wdiv?; ¥e 7 RY;RY), ||¥|~< 1}.
RY

The space of function with bounded variation is then defined as
BV(RV;R) = {u e L. :TV() < oo} .

When f and F' depend only on % we already know that uy € (L N BV)(RN :R)
implies that for all ¢ > 0, u(t) € L™ N BV)(RY : R). Besides, we have TV(u(?)) <
TV(ug)e”, where y = [0, F ||y~ and U = |||y o 7y

Now we give a more general estimate on the total variation. Let Wy =
n/2

[ (cos®Ndo, 2 = Q. and
0

fe7%QRY), Fe 7 (2R),
Vo, f € LY@, RVMy 9,divf € L¥(2;R),
H1) : { 80.f € LY@ RY),  §F e L(R),

J J||V(F — diV)E, @, gy, A dE < oo
R® RV

Theorem 2.2 (see Theorem 2.5in [13]). Assume (f, F) satisfies (K) and (H1).
Let ug € (L NBV)(RY; R), then Jorallt €[0,T], u®) € LN BV)(RY; R). Fur-

thermore, denoting U = |ullyxq 7).gyy @nd ko = NWN(@N + D VeOuf|lL=@,)+
|OuF || 1>, we have

TV(u(t)) < TV(ug)e™
t

+ NWy Je'%“—f) J [VolF = divf )z, @, )|y opdedr.
0 RY

Remark 2.1. In some cases, we recover known estimates.
When f depends only onu and F = 0, we have a result similar to the one that was
already known : TV(u(t)) < TV (ug).

When f and F do not depend on u, the equation reduces in fact to the ODE
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Ou = (F — div f)(t, x), whose solution writes
t
u(t, x) = uo(e) + J(F — divf)(r,x)dr.
0
Meanwhile, the bound above reduces to

TV(u(t) < TV(uo) + NWy J ((F — divf)(z, )|de

TRN

O e

whach 1s essentially what we expected.

Remark 2.2. The set of hypotheses (H1) is in fact very strong. We expect it
can be relaxed to

fe?®@RY), Fer@R),
f, F have continuous derivatives : 0,Vf , Vf, 0,F, VF,
1) : JVA>0: Vo[ eLX@QquRYY), 9F € L¥(Qq;R),

T
J J IV = divf)E, @, Mpeqa,apey) < 00
0 R¥

whach is useful for example in [11]. Furthermore, we can replace ry by the better
coefficient

Ko = @N + DI VoOufllLx @yt 10uF 1>y -

This result is described in the paper [25].

Idea of the proof of Theorem 2.2. We state first a very useful proposition,
characterizing functions with bounded total variation:

Proposition 2.1. Let p € 2 °(Ry;R) be such that ||u|| =1 and 1/ <0 on
[ ]]

R We denote u;(x) = /%N u (T) If there exists Cy > 0 such that for all 1 > 0,

1
7 J J |u(e + y) — w(@)|pw,(y)de dy < Co,

RN RY
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then u € BV(RY :R) and

1
TV j ey iy = im - j j e+ ) — w@)| ;@) dy < Co

RY RY RV

Let us now give the idea of the proof of Theorem 2.2.

Proof. Let us introduce

T
ren=|| | ey - wwheidya
0 RN B(xo,R+M(Ty—1))

The doubling variables method introduced by Kruzkov [22] gives the estimate:

T
4) OF (T, 2) < pF0,2) + CLO,F(T, )+ C'F(T,7) + 4 JA(t)dt,

0
with A®) = [ |[VF — divf)E, @, )|lp~q_y.opde and U = [Juflpxqo 714 ey Then, we

RN
integrate in time and divide by CT'A to obtain:

T
LAJ-'(O7 A+ 0, F(T, A+ @f(T, A) + 1 JA(t)dt ,
Ca A C

0

0<

where a(T) = N + C'/C — 1/T satisfies o(T) — — cowhen T' — 0. We choose 7" small
enough so that o(7T) < —1 and we integrate on [4, +oc.
We obtain
; T
0

)\/
—o—1

F(T,0) <

Next, we can re-introduce this estimate in the line (4), divide by 4 and make 4 go to 0.
This gives us a first estimate ensuring that u(t) € BV(RN ; R) thanks to Proposition
2.1. This estimate can be then improved using that u(t) € BV(RY : R), which allows
us to use tools on BV(RY ; R) functions. O

2.3 - L! Stability of the solution

Now, we can study the dependence of the solution with respect to flow and source.
Let us introduce the set of hypotheses:
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fe? &RY), Fez'@R),
OF € LX(Q:R), 8,f € LX(Q;RY),

J J [(F = div f)E, @, )| gy e dE < 400

R RN

(H2) :

Theorem 2.3 (see Theorem 2.6in[13]). Assume (f,F),(g,G) satisfy (K), (f,F)
satisfies (H1) and (f — g, F — G) satisfies (H2). Let ugy, vy € L'NL®NBV)(RY i R).
Let u and v be the solutions associated to (f,F) and (g,G) respectively and with
initial conditions uo and vo. We denote M = max ([~ o 71r¥y» [Vl o 71x ) @10

K = 2N || Ve Ou f L@y 1 0uF =gy HIOulF = B>, -
Then for all t € [0, T]:

Kot —e

Kt
TV(uo)|| 0u(f — D1~

e
w— O 1< et ug — v
= X< ot —voll+ &

N ¢ el(()(t—‘[) _ eK(t—‘C)
Ky — K

J IV (F — div (e, 2, ) g aryded
RY

X NWNH au(f - g)HLoc
t

n Jez«t—r) J [(F = @) — div (f — )z, %, )|~ _parpdecde.

0 RY

Remark 2.3. As in Remark 2.1, we recover known estimates in some par-
ticular cases:

o In the standard case of a conservation law, i.e. when F = G =0 and f,g are
mdependent of x, we have kg = k = 0 and the result of Theorem 2.3 becomes

T = V(D) ey < 2t = vl ey
+ T TV(uo) [| 0u(f — Dy~ -

o If(f,F)and (g,G) are not dependent only on u, then iy = k = 0 and Theorem
2.3 now reads

([T — v(D) | v ) < [0 — Vol gy
T
+ [ = @)~ divs ~ IOl .
0
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Remark 2.4. As in Remark 2.2, we think the set of hypotheses (H2) can be
weakened (see [25]) into

(H2") : VA >0, J J |(F = divf)E, @, e aagr) dedt < +oo.

R RY

Furthermore, k can be replaced by

k' = ||0uF ”L“(QM;J[{)

where M = sup (||| ~, ||v]|x), which is more in agreement with the result (3) of
Kruzkov’s Theorem.

3 - The continuity equation with a non-local flow

This section is a short version of [11]. We study here the continuity equation (2)
where V : RY x Ll(RN :R) — Z’Z(RN ; R) is a non-local averaging functional.

Our goals are: first, prove existence and uniqueness of a weak entropy solution,
second find the extrema of a cost functional depending on the initial condition. The
second point leads us to differentiate the semi-group in the Gateaux sense with re-
spect to initial conditions.

Let us remind that our driving examples are a model of supply-chain and a model
of pedestrian traffic. We describe below these two models.

Pedestrian traffic. Macroscopic models for pedestrian movements are
based on the continuity equation, see [4, 7, 8, 10, 14, 18, 20], possibly together with a
second equation, as in [16]. In these models, pedestrians are assumed to in-
stantaneously adjust their (vector) speed according to the crowd density at their
position. The analytical construction here allows to consider the more realistic si-
tuation of pedestrians deciding their speed according to the local mean density at
their position. We are thus led to consider (2) with

(®) Vi, p) = v(p * ) ¥(x)
where
(6) n € 72(R?%[0,1]) has support Suppy C B(0,1) and |5|j.=1,

so that (p * #)(x) is an average of the values attained by p in B(x, 1). Here, ¥ = ¥(x) is
the given direction of the motion of the pedestrians at # € R?. Then, the presence of
boundaries, obstacles or other geometric constraint can be described through v,
see [10].
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This model can be especially interesting in the case of a erowd in panic. In some
event, indeed, the crowd does not behave rationally: we can think for example at rush
phenomena at the end of a football play, or at the pilgrim cramming the Jamarat
Bridge in Saudi Arabia on occasion of the pilgrimage to Mecca [19]. Other applications
of pedestrian modelling arise in transport, political or cultural demonstrations, panic
situations such as earthquakes or fire escapes. In such situations, it can happens that
the density takes higher value than usual: in standard situations, we want the density
to be less than a maximal density, say 5 people per square meter; however for such
events, the density can become much higher, say ten people per square meter.

With a usual model (without non-local flow), the maximum principle gives us a
maximal density at the beginning, say 1 by renormalization. With our model, the
density can possibly increase higher that the initial maximal density. For example
look at the following configuration: along a trajectory, let us assume there is a queue
in front of a given point xy, and assume there is nobody at the back of this same point
(see Figure 1). Assume furthermore the speed is given as usual by v(r) = 1 — 7, for
r € [0,1] and v = 0 for » > 1. Then neither the mean of the density on the ball of
center xy will be 0, neither the speed in xy ! This means precisely that, even with a

queue in front of him, a pedestrian in panic could still go on along his trajectory, and

consequently we expect the density to become higher than one.

A trajectory
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Fig. 1. Case in which the density is expected to become greater than one.

The problem is then naturally to control the increase in the density and to try to
find geometry of the trajectories such that the density remains under a given

threshold.

Supply-chain. D. Armbruster et al. [2, 3], introduced a continuum model to
simulate the average behavior of highly re-entrant production systems at an ag-
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gregate level appearing, for instance, in large volume semiconductor production line.

The factory is described by the density of products p(t, ) at stage x of the production

at a time ¢. Typically (see [1, 3, 15, 21]) the production velocity V is a given smooth
1

function of the total load [ p(t, x)dx, for example
0

1
(7 V() = Vmax /A +7) and V(p)=w < Jp(t, s) ds) .

0

3.1 - Existence and uniqueness of a solution

Let us introduce the following sets of hypotheses:
(V1) There exists C € Ly, (R ;R.) such that for all u € LY(RY; R)

Vi) e L™, VeV @[~ < C(luflp~) s
VeVl < Cllully=) . [[VEV@)||p< CClull~),

and or all uy,us € Ll(RN; R)

V1) = V)l < C([nly)l[un — uzlps

VoV (1) = Vu))[r < C(llanflp)lun — uzlgs -
(V2) There exists a positive function C € L, (R ; R ) such that
V2V, < OCull.
V3V @], < CQlauly).

Note in particular that through the assumption

V(1) = Vgl < Clun [[p)l[er =zl

we require V to be non-local.

Theorem 3.1 (see Theorem 2.2 in [11]). Let uy € (L™ N L'n BV)(RN; R). If
V satisfies (V1), then there exists a time To, > 0 and a unique entropy solution
e 2970, T..[; L* N L™ nBV) to (2) and we denote Syug = u(t, -). Besides, we have

T, > sup { Zlng?:;/l O)Cn) (o), Strict. increasing , oy = |/U/0||L>c},

where the function C is the one appearing in (V1).
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If furthermore, V satisfies (V2) then
uy € W NL® =Vt € [0, T, ut) € W',

Let us give below an idea of the proof.

Proof. We introduce the space X, = Ll(]RN ;[0, «]) and the application Q that
associates tow € X = Z”O([O, TT[, Xp) the solution u € X of the Cauchy problem

o + DiviuV(w)) =0, u0,) =uy € X,.
For w;,ws € X3, we obtain, thanks to the estimate of Theorem 2.3:
| Qwr) — Q(w2)||L°‘([0,T[7L1)§ J(D)|lwr — W2HL°<([0,T[.L1) )

where f is increasing, f(0) = 0 and f — oo when T' — oo. Then we apply the Banach
Fixed Point Theorem. |

Proposition 3.1. Let V be defined in (5) and n be as in (6) in the pedestrian
traffic model.
Ifve ¢%R;R) and ¥ € (2N WA)(R% SY) then V satisfies (V1) and (V2).

Proposition 3.2. Let ve Z'([0,1];R). Then, the functional V defined as
m (7) in the supply-chain model satisfies (V1) and (V2).

3.2 - Gdteaux derivative of the semi-group

Let us recall the standard (local situation): the semi-group generated by a con-
servation law is in general lipschitz continuous and not differentiable. To cope with this
issue, a new differential structure was introduced by Bressan et al. [6]. Here, the non-
local property implies more regularity and we are able to differentiate the semi-group
in the Gateaux sense. Let us first recall the definition of Gateaux differentiability.

Definition 3.1. The application S : LI(RN; R) — Ll(RN; R) s said to be L!
Gateaux-differentiable in o € L}(RY;R) in the direction 1y € L'(RY; R) if there
exists a linear continuous application DS(uy) : L! — L! such that

—0 when h — 0.
Ll

— DS(uo)(ro)

H S + ko) — S(up)
h

Formally, we expect the Gateaux derivative of the semi-group to be the solution
of the linearized problem:

or + DivirV(u) + uDVu)(r) =0, »0,-) =1ry.
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In order to give sense to this equation, we have first to require the differentiability of
V. Let us introduce stronger hypotheses:

(V3) V: L! — 7% is differentiable and there exists C € L;>.(R,; R, ) such that
for all u,r € L'(RY; R):

IV +7) = V() = DV@)@) e < C([[ullg~ -+l + 7l ) 7l

1DV @)(#)[lyze < C(llaal[pol7]lys -
(V4) There exists C € L, (R ; R.) such that for all u,u,r € LYRY; R):

|div(V @) — V) — DV @)@ — w)llg; < CClatlly + Jell )1 —
div(DV @) 5 < CClall el

Proposition 3.3. Let V be defined in (5) and n be as in (6) in the pedestrian
traffic model.

LIf ve Z3(R;R), e (Z®nWAH)R%ESY and ne Z3(R%R), then V
satisfies (V3).

2. If moreover ve Z*R;R), ¥e Z2R%RY) and ne Z2(R%R), then V
satisfies (V4) and (V5).

Proposition 3.4. Letwv e 7([0,1]; R). Then, the functional V defined as in
(7) in the supply chain model satisfies (V3). Moreover, if v € 2 2([0,1]; R) then the
Sfunctional V satisfies also (V4) and (V5).

With few hypotheses, we obtain the following weak result:

Proposition 3.5 (Weak Gateaux derivative). Let us assume that V satisfies
(VD) and (V3). Let uyp € W nW"HRY;R) and ry € X,. Then there exists
h. >0 and T, = T.(||uolly~) > 0 such that for all h € [0, h.] the solutions u and
uy, given by Theorem 3.1, associated to the initial conditions uy and vy + hrg are
defined for all t € [0,T,].

Furthermore, if there exists » € Ll([O, T] x RY : R) such that

up — U

h

—h—-0 7, m L1

then r is a distributional solution of the linearized equation.
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We now look for stronger results. We show first that the linearized problem
admits a unique entropy solution:

Theorem 3.2 (see Proposition 2.8 in [11]). Assume that V satisfies (V1),
(V3). Let u € 2°(0, Tool; WE A WEHRY; R)), 79 € (LY NLO)RY; R). Then the
linearized Cauchy problem

(8) o + Div(rV(u) + uDV(u)(r)) =0,  with »0,x) = 7y

admits a unique entropy solution r € Z”O([O, Tem[;Ll(RN :R)) and we denote
Zirg =7r(t,-).

If furthermore V satisfies (V2), and 7y e WhL then for all tel0, Tl
r(t) € WH(RY; R).

Now, we can prove that the solution of the linearized equation is really the de-
rivative of the semi-group.

Theorem 3.3 (see Theorem 2.10in [11]). Assume that V satisfies (V1), (V2),
(V3), (V4). Let ug € (W nWAH)(RY; R), 7y € (W' N L*)RY; R) and let T, be
the time of existence for the initial problem given by Theorem 3.1.

Then, for all t € [0, Tyl the local semi-group of the pedestrian traffic problem is
L!'-Gdteaux differentiable in the direction ry and

DSi(up)(ry) = ZZWO"”O .

The following is the idea of the proof.

Proof. Let u,u; be the solutions of the Cauchy problem
ou + DiviuV(u)) =0

with initial conditions ug, 1o + 7. Let r be the solution of the linearized equation (8),
with 7(0) = ry. We define then z;,, = u + hr that satisfies z,,(0) = uo + Ay and

Oz, + Div(z,(V(w) + hRDV (u)(r))) = 12 Div (rDV (u)(r)) .
Next, we use Theorem 2.3 to compare u; and z;,. We obtain
e — 2l qo sy < FCD [l = wll e+l = 2l
+ W2 CHTe P ||| oy 17l ey »

where F is increasing and F(0) = 0. With a good choice of 7" so that FI(T') < 1/2, we
can divide by &, make 7 — 0 and conclude. O
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