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Smooth and discontinuous junctions in the p-system

and in the 3 x 3 Euler system

Abstract. Consider the p-system describing the subsonic flow of a fluid in a pipe
with section @ = a(x). We analyze the mathematical problem related to a junction,
i.e., a sharp discontinuity in the pipe’s geometry, we consider the case of a picewise
constant pipe’s section and then, the smooth case. In particular, through a limit
procedure, we prove the well posedness of the smooth case from the discontinuous
one and also the opposite case for the full 3 x 3 Euler system. Then, all the basic
analytical properties of the equations governing a fluid flowing in a duct with
varying section are extended to the Euler system. In both cases of the p-system and
the Euler system, a key assumption is the boundedness of the total variation of the
pipe’s section. We provide explicit examples to show that this bound is necessary.

Keywords. Conservation laws at junctions, nozzle flow, coupling conditions at
Jjunections.
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1 - Introduction

Consider a gas pipe with smoothly varying section. In the isentropic or iso-
thermal approximation, the dynamies of the fluid in the pipe are described by the p-
system:

oap) + 0x(aq) =0

(1) ¢
o(aq) + 0, |a " +p(p) || = p(p) O,
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where, as usual, p is the fluid density, q is the linear momentum density, p = p(p) is
the pressure and a = a(x) is cross-sectional area of the tube.

Here, the source term takes into account the inhomogeneities in the tube geo-
metry, see for instance [13]. In this case, the regularity of the pipe automatically
selects the appropriate definition of weak solution.

The problem related to a junction has been widely considered in the recent lit-
erature, see [3, 6, 9] and the references therein. Analytically, it consists of a sharp
discontinuity in the pipe’s geometry, say sited at x = 0. More precisely, it corre-
sponds to the section a(x) = ¢~ for x <0 and a(x) = a* for x > 0. Thus, in each of the
two pipes, the model reads

Op+0,9=0
(2) &
Oq + 390(; + p(ﬂ)) =0
where the coupling condition

(3) Y ,(p,QE0-)a", (p,E0+)) =0

imposes suitable physical requirements, such as the conservation of mass and the
equality of the hydrostatic pressure, see [3], or the partial conservation of mo-
mentum, see [6].

In Section 2 we study the proprerties of the coupling condition and we introduce
a choice of ¥ motivated as limit of the smooth case, see Figure 1.
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Fig. 1. The unique concept of solution in the case of a smooth section induces a definition
of solution in the case of the junction.

With this particular definition of the coupling condition, we prove the well po-
sedness of the resulting model first for a single junction, than also in the case of a
piecewise constant pipe’s section. The bounds on the total variation obtained in this
construction allow to pass, through a suitable limit, to the case of a pipe’s section a of
class Wb1, see Figure 2. In particular, by means of this latter limit, we also prove the
well posedness of the smooth case.
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Fig. 2. The construction for a single jump is first extended to general piecewise constant
sections and then, through an approximating procedure, to a section function a of class Wh!.

Above, as usual in the theory of conservation laws, by well posedness we mean
that we construct an L' Lipschitz semigroup whose orbits are solutions to the
Cauchy problem. Moreover, the formal convergence of the problem with piecewise
constant section to that one with W'! section is completed by the rigorous proof of
the convergence of the corresponding semigroups.

A careful estimate on the total variation of the solution shows that, at lower fluid
speeds, higher total variations of the pipe’s section are acceptable for the solution to
exist. On the contrary, an explicit example computed in the case of the isothermal
pressure law shows that, if the fluid speed is sufficiently close to the sound speed, a
shock entering a pipe may have its strength arbitrarily magnified due to its inter-
action with the pipe’s walls. In other words, near to the sonie speed and with a having
large total variation, the total variation of the solution may grow arbitrarily in finite
time.

In Section 3, with reference to the results in [14], we study the limit illustrated in
Figure 1. To this aim, we consider the Cauchy problem for an n x n strictly hy-
perbolic system of balance laws
@ { O + Onf () = glae, )

w(0, ) = u,(x)
withu € R", u, € L' N BV(R; R") and with each characteristic field being genuinely
nonlinear or linearly degenerate. Under the nonresonance assumption

|2i(w)| > ¢ > 0forallie {1,...,n} and for all u,
and the boundedness condition
lg(@, )l < M(x) with M € L*(R; R),

we prove the global existence, uniqueness and regularity of entropy solutions with
bounded total variation provided, as usual, that the L! norm of ||g(z, N and TV (u,)
are small enough. In [1] an analogous result was proved, but under the stronger
condition M € (L*(R; R) N L}(R; R)).
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This general result allows to compute the limit illustrated in Figure 1, also in the
case of the full 3 x 3 Euler system. Indeed, in Section 3, we derive existence and
uniqueness of solutions in the case of a discontinuous pipe’s section as limit of so-
lutions corresponding to smooth pipe’s section.

In Section 4, the basic analytical properties of the equations governing a fluid
flowing in a pipe with varying section, proved in Section 2 for the case of the p-
system, are extended to the full 3 x 3 Euler system.

In particular, we consider Euler equations for the evolution of a fluid flowing in a
pipe with varying section a = a(x), see [16, Section 8.1] or [13, 15]:

O(ap) + Ox(aq) =0

(5) oi(aq) + 0:[aP(p,q, E)] = p(p,e) Ora
O(aE) + 0y[aF (p,q, E)] =0

where, as usual, p is the fluid density, g is the linear momentum density and £ is the
total energy density. Moreover

1¢* 7 q

with e being the internal energy density, P the flow of the linear momentum density
and F the flow of the energy density.

The case of a sharp discontinuous change in the pipe’s section due to a junction
sited at, say, x = 0, corresponds to a(x) = a~ for x <0 and a(x) = a* for x > 0. Then,
the motion of the fluid can be described by

Op+0,9=0
OE + 0,F(p,q, E) =0,

for x # 0, together with a coupling condition at the junction of the form:
®) ¥(a”,(p,q, EN¢0—-);a", (p,q, EN¢,0+)) = 0.

This framework comprises various choices of the coupling condition found in the
literature, such as for instance in [2, 3, 6, 12], once they are extended to the 3 x 3 case
and [12] for the full 3 x 3 system. We also extend the condition inherited from the
smooth case introduced for the p-system in Section 2.

Within this setting, we prove the well posedness of the Cauchy problem for (7)-(8)
and, then, the extension to pipes with several junctions and to pipes with a W'-! section.

Asinthe 2 x 2 case of the p-system, here a key assumption is the boundedness of
the total variation of the pipe section. We provide explicit examples to show that this
bound is necessary for each of the different coupling conditions considered.
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2 - The p-System

This section is devoted to the study of (1). We refer to [11, Section 2] for the
notations. In particular the pressure law p in (1) is assumed to satisfy the following
requirement:

P) p € C3(RT;R") is such that for all p > 0, p'(p) > 0 and p”(p) > 0,

and, throughout this section, we will refer to the subsonic region, given by
9) AO:{uGEVw<RJmm<0<Axm}.

As atool in the study of (1) we use the system (2) recently proposed for the case of a
sharp discontinuous change in the pipe’s section between the values ¢~ and at,
equipped with the coupling condition (3), whose role is essentially that of selecting
stationary solutions. The introduction of this condition is necessary as soon as the
section of the pipe is not smooth.

We specify the choice of (3) writing

atqt —a g

- Z(CL—, CL+; /M_) )
atPut) —a " Pu™)

(10) Y ,u;a",ut) = [

where 2 = X(a~,a";u") describes the effects of the junction when the section
changes from o~ to a™ and the state to the left of the junction is »~. We fix the section
a > A, with 4 > 0 and the state # € Ay and we pose the following assumptions on X:

@mzecﬁm—4a+mmeQyW)
(X1) 2(a,a;u")=0foralla € [a — 4,a + 4] and all u~ € B(u; ).
(X2) 2@ ,a’%u)+2(a’ 0 Tla,a%u)) = 2, a*;u).

For the definition of T see [11, Lemma 2.1]. Condition (X0) is a natural regularity
condition. Condition (X1) is aimed to comprehend the standard “no junction” si-
tuation: if a= = a™, then the junction has no effects and X vanishes. Finally con-
dition (X2) says that if the two Riemann problems with initial states (o=, %), (a°, u°)
and (a°, «°), (@™, ") both yield the stationary solution, then also the Riemann pro-
blem with initial state (a—, %) and (a*, ") is solved by the stationary solution.

Conditions (X0)—(X1) ensure the existence of stationary solutions to pro-
blem (2)-(3).

With this definition of coupling condition, we prove the well posedness for
system (2)-(3), see [11, Theorem 2.3], also in the case of picewise constant pipe’s
section, see [11, Theorem 2.4]. In this case, at each junction x;, we require con-
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dition (3), namely

(11) ?’(aj,l,uj*; aj,uj*) =0 forallj=1,...,n, where uf = xli%iuj(x).
A key role in the result above is played by wave front tracking solutions to con-
servation laws and by the operator splitting method. In the present case, the stan-
dard wave front tracking procedure [4, Chapter 7] needs to be adapted to the pre-
sence of the junction.

Next we consider the case of a section a smooth, in particular we assume that
a € WH, In general, if @ is smooth, the product in the right hand side of the second
equation in (1) is well defined and system (1) is equivalent to the 2 x 2 system of
conservation laws

O+ 0xq = —% Opt
(12) & ¢
4 + 0 <; + p(p)) ~-Loa

See [11, Lemma 2.6] for the equivalence between (1) and (12). In this case the sec-
tion of the pipe is sufficiently regular to select stationary solutions as solutions of the
system:

Be(a(@) @) =0 0pq = _g 0,

(13) 2

2 or 9
o (a(x) (q—+ <p>)> — () dsa (q_ ) ¢
o P p e 7 + p(p) o 0,0t

Hence, the smoothness of @ also single out a specific choice of 2. Thus we introduce:

0

X
(14) 2,0t u) = J p(R(w;u"))d' () de,
-X

where we call p = R%(x;u~) the p-component of the corresponding solution to the
Cauchy problem (13). The function (14) satisfies (£0)-(X2), see [11, Proposition 2.7].

With the particular coupling condition in (14) and thanks to [11, Theorem 2.4] we
prove the well posedness for the smooth case, when the section a € W',

Theorem 2.1. Let p satisfy (P). For any a > 0 and any u € A there exist
positive M, A, 6, L such that for any profile a satisfying:
a € WH(R;la — 4,a + Al) for suitable 4 >0, @ > A4
(AD) TV(a)<M
a'(x) =0 for a.e. x € R\ [ — X, X] for a suitable X >0,
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there exists a stationary solution 4 to (1) satisfying
w € Ay with ||ux) —ul|<d for all x € R
and a semigroup S®: R* x D* — D such that
1. D*D {u e+ L' (R;Ap): TV (u — ’ZL)<5};
2. S is the identity and for all t,s > 0, S{S§ = S, ,;;
3. for all w,u’' € D* and for all t,t’ > 0,
1872 = Sgu'llpy < L+ (e — ol o + [t = E);

4. for all w € D% the orbit t — Sfu is a weak entropy solution to (2); (see [11,
Definition 2.5)).

5. Let /. be an upper bound for the moduli of the characteristic speeds in
B(i(R), 6). For all w € D, the orbit u(t) = Syu satisfies the integral conditions

e Forallt<0and & € R,

Eth,
.1
(15) tims [ e+ o) - b e+ b do = 0.
E=hi.

o There exists a C > 0 such that, for all t > 0, a,b € R and ¢ € Ja, b,

b—hJ.
1
(16) E J ”u(‘[ +h,x) - U(bu:,ni)H(thc)dx

a+hi.

< C[TV{u(2); 1a, b[} + TV{a;la, b[}.

6. If a Lipschitz map w: R — D solves (1), then it coincides with the semigroup
orbit: wt) = S¢(w(0)).

Above U}, . and U}, .
Definition 1, Definition 2]. The proof is obtained approximating a with a piecewise
constant function a,. The corresponding problems (2)-(11) generate semigroups
defined on domains characterized by uniform bounds on the total variation and with a
uniformly bounded Lipschitz constants for their time dependence. Then, we pass to
the limit, see [11, Theorem 2.8] for the proof, and we get the well posedness for the
smooth case.

) are defined following [4, Theorem 9.2]; see also [14,

Moreover we show that, in the case of 2 as in (14) and with the isothermal
pressure law p(p) = ¢2p, the total variation of the solution to (2)-(11) may grow un-
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boundedly if 7V (a) is large. For computations releted to this part, in particular
related on the explicit estimate on the bound on the total variation of the section, see
[11, Section 2.2].
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Fig. 3. A wave o, hits a junction, giving rise to o5 which hits a second junction.

Consider the case in Figure 3. A wave o;; hits a junction where the pipe’s section
increases by da > 0. From this interaction, the wave g of the second family arises,
which hits the second junction where the section diminishes by 4a. At the leading
term in da, we have the estimate

2
(17 log*| < (1 + K®/c) (%) ) log | where

~1+8& -7 4268
20 -2 +¢?

(18) K@) =

Observe that £(0) = —1/2 whereas élir{l K (&) = +oo. Therefore, for any fixed 4a, if v

is sufficiently near to c, that is the fluid speed is sufficiently near to the sound speed,
repeating the interactions in Figure 3 a sufficient number of times makes the 2 shock
waves arbitrarily large (see [11, Section 3.2] for the proof). This example shows the
necessity of a bound on the total variation of the pipe section in any well posedness
theorem for (1).
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3 - The n x n Balance Law

Throughout this section, we study the limit illustrated in Figure 1. At first, we
consider the Cauchy problem related to the system of balance laws in (4) and con-
cerning the source term g, we assume that it satisfies the following Caratheodory—
type conditions:

(P1) g : R x Q — R"is measurable with respect to (w.r.t.) , for any € Q, and is
C? w.r.t. u, for any x € R;
(Py) there exists a L! function M(x) such that llgCe, | < M(x);

(Ps) there exists a function w € L1(R) such that llg(@, o < o).

Moreover, we assume that a nonresonance condition holds, that is the char-
acteristic speeds of the system (4) are bounded away from zero:

(19) A> )| >e>0, Yue® ie{l,...,n}

for some 1 > ¢ > 0.
We refer to [14, Section 1] for the notations and we recall the following result, see
[14, Theorem 1], which extends the result in [1] to unbounded (in L°°) sources:

Theorem 3.1. Assume (P1)-(Ps) and (19). If the norm of @ in L1(R) is suf-
ficiently small, there exist a constant L > 0, a closed domain D of integrable
Sfunctions with small total variation and a unique semigroup P : [0, +00) x D — D
satisfying

1. Pou =u, Py su=PioPsuforalluecDandt,s>0;
2. ||Psu — Pl pagy < L(ls — t| + [[u — vllyag)) for all u,v € Dand t,s > 0;

3. for all u, € D the function u(t,-) = P, 1s a weak entropy solution of the
Cauchy problem (4) with initial data

ue Y x<wg
uy Y x> a0

(20) w(o,x) = {

and for all T > 0 satisfies the following integral estimates (see [14, Definition 1,
Definition 2]):
e Forevery & one has
E+0,
(21) lim% J e +0,0) = U010, )| do = 0.

0—0
=
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o There exists a constant C such that, for every a <E<band 0<0< — a’ one

has 2z
) b—07
5 J e+ 0,0) = U0, 0)| do

(22) a+04 )

b
<C |:TV{M(‘L’); (@,b)} + Jw(w) dac] .

Conversely let u : [0, T] — D be Lipschitz continuous as a map with values in
LY(R, R") and assume that u(t,x) satisfies the integral conditions (21), (22). Then
u(t, -) coincides with a trajectory of the semigroup P.

Here, the technique is again based on the wave front tracking algorithm but,
differently from the results in Section 2, we do not use the operator splitting pro-
cedure. On the contrary, as in [1] here the source is approximated by a sequence of
Dirac deltas; careful estimates allow us to use the L! norm on the bound on M instead
of its L°° norm.

Our aim is to apply this result to the fluid flow in a pipe with discontinuous cross
sectional area, showing existence and uniqueness of the underlying semigroup. We
consider the equations governing the gas flow in a pipe with a smooth varying cross
section a = a(x), given by:

O+ 0pq = — %axa

2 2
ag+ oL ip=-TLoa
p a

<9 (e+ p))
o + Oy <q (e + p)) =— piaxa.
p a

One way to obtain coupling conditions at the point of discontinuity of the cross
section a is to take the limit of a sequence of Lipschitz continuous cross sec-
tions a* converging to @ in L!. Unfortunately the results in [1] require L*
bounds on the source term and well posedness is proved on a domain de-
pending on this L* bound. Since in the previous equations the source term
contains the derivative of the cross sectional area one cannot hope to take the
limit a* — a. Indeed when @ is discontinuous, the L>® norm of (af) goes to
infinity. Therefore Theorem 3.1 establishes the result in [1] without requiring
the L bound.
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In particular Theorem 3.1 provides an existence and uniqueness result for pipes
with Lipschitz continuous cross section where the equations governing the gas flow
are given by (23), while the case of discontinuous cross sections does not fulfil the
requirements of Theorem 3.1. Nevertheless, we can use this result to derive the
existence of solutions to the discontinuous problem by a limit procedure. To this end,
we approximate the discontinuous function

a, x<0
(24) a(x) = {

at, x>0

by a sequence a; € C®1(R, R") with the following properties

a- 90<—£
’ 2
25 () = (x), xe€ L
(25) (@) = ¢ (@), 55
+ _
a’, ac>2

where ¢, is any smooth monotone function which connects the two strictly positive
constants a~, a. One possible choice of the approximations a; as well as the dis-
continuous pipe with cross section @ are shown in Figure 1.

With the help of Theorem 3.1 we derive the existence of solutions to the
discontinuous problem by a limit procedure and we get the following result, see
[14, Theorem 2]:

Theorem 3.2. Let % a non sonic state. If |a™ — a™| is sufficiently small, the
semigroups P' (defined on a domain of functions which take value in a small
neighborhood of %) related with the smooth section a; converge to a unique semi-
group P.

4 - The Euler System

This section is devoted to the study of (5) and the properties of the equations
governing a fluid flowing in a pipe with varying section, proved in Section 2 for the
case of the p-system, are extended to the full 3 x 3 Euler system.

We refer to [10, Section 2] for the notations. In particular, concerning the pres-
sure law p in (5), we will often refer to the standard case of the ideal gas, char-
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acterized by the relations
(26) p=@—1pe, S=Ine—(—1lnp,

for a suitable y > 1, and, throughout this section, we will refer to the subsonic region,
given by

27) Ay ={ue R* x R* x 1(3{*:/11(@0)<0<)L2(u)}.

Concerning the case of the sharp discontinuous change in the pipe’s section, we refer
to system (7) and, extending the 2 x 2 case of the p-system, we consider some
properties of the coupling condition (8), which we rewrite here as

(28) Y ,u ;0 ,ut)=0.

(‘W0) Regularity: ¥ € C! ((Jfé+ x Ag; RY).
(Y1) No-junction case: for all @ > 0 and all u~,u* € Ay, then

Ya,u;a,u)=0=u =u".

0

(¥2) Consistency: for all positive ¢, a’, o™ and all u—, u°, u* € A,,

Y ,u;a’,u’) =0
= Y@ ,u;a",ut)=0.
(@ uat,ut) =0

As in the 2 x 2 case of the p-system, we prove the well posedness of the Cauchy
problem for (7)-(8), by using the techniques in [7, 8]. Then, the extension to pipes
with several junctions and to pipes with a W'! section is achieved by the same
analytical techniques used in Section 2.

Here, we consider the case of a general coupling condition which comprises all the
cases found in the literature.

(S)-Solutions We consider first the coupling condition inherited from the
smooth case. For smooth solutions and pipes’ sections, system (7) is equivalent to the
3 x 3 balance law in (23) and the stationary solutions to (7) are characterized as
solutions to

I(a®)q) =0
29) 1§ 0.(0@) Plp.q. ) = plp. . or { P, B) =~ dea
9 (a(@) F(p,q.B)) = 0
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Asin the 2 x 2 case of the p-system, the smoothness of the sections induces a unique
choice for condition (8), which reads

atqt —aq

(30) (S) ¥=|a"Pu")—a Pu )+ J P(Rx), E(x))a’ (x)dex
R - aFr)

where a = a(x) is a smooth monotone function satisfying a(—X)=a" and
a(X) = a™, for a suitable X > 0. R, £" are the p and e component in the solution
to (29) with initial datum «~ assigned at —X.

(P)-Solutions The particular choice of the coupling condition in [12, Section 3]
can be recovered in the present setting. Indeed:
atqt —aq
(31) (P) Y@ ,u,a"u")=| Pu")-Pu) |,
atFu™) —a Flu)

where a™ and a~ are the pipe’s sections.

(L)-Solutions We can extend the construction in [2, 3, 5] to the 3 x 3
case (7). Indeed, the conservation of the mass and linear momentum in [5] with the
conservation of the total energy for the third component lead to the choice

atqt —a q”
(32) (L) Y ,u,at,u")= | a*Put) —a Pu) |,
atFu™) —a Flu)

where ¢ and o~ are the pipe’s sections.

(p)-Solutions Following [2, 3], we consider a coupling condition with the

conservation of the pressure p(p) in the second component of ¥. Thus
atqt—a q
(33) (p) Pl u,atu")=|plpte)—ppe) |,
atFut) —a Flu)

where a* and o~ are the pipe’s sections.

Asin Section 2, we show that in each of the cases (30), (31), (32), (33), it is possible
to choose an initial datum and a section @ € BV(R;[a~, at]) with a™ — a~ arbitrarily

small, such that the total variation of the corresponding solution to (7)-(8) becomes
arbitrarily large.
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Fig. 4. A wave o3 hits a junction where the pipe’s section increases by Aa. From this
interaction, the wave o7 arises, which hits a second junction, where the pipe section decreases
by 4a.

Consider the case in Figure 4, where a wave o5 hits a junction where the pipe’s
section increases by, say, 4a > 0. The fastest wave arising from this interactionis o,
which hits the second junction where the section diminishes by A4a.

At the second order in (4a)/a and at the first order in o3, we get the following
estimate:

2
(34) ot = (1 + 0 (%) >ag .

It is sufficient to compute the sign of y. If it is positive, then repeating the in-
teraction in Figure 4 a sufficient number of times leads to an arbitrarily high value of
the refracted wave g3 and, hence, of the total variation of the solution u.

See [10, Section 5] for the computations of y in the different cases (30), (31), (32)
and (33), where, to reduce the formal complexities of the explicit computations, we
consider the standard case of an ideal gas characterized by (26) with y = 5/3.
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