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On the physical and the self-similar viscous approximation

of a boundary Riemann problem

Abstract. We deal with the viscous approximation of a system of conservation
laws in one space dimension and we focus on initial-boundary value problems. It is
known that, in general, different viscous approximations provide different limits
because of boundary layer phenomena. We focus on Riemann-type data and we
discuss a uniqueness criterion for distributional solutions which applies to both the
non characteristic and the boundary characteristic case. As an application, one gets
that the limits of the physical viscous approximation

O U* + 0,[F(U*)] = e0,[B(U*)0,U*]
and of the self-similar viscous approximation
O U* + 0,[F(U")] = et0,[B(U*)0,U*]

introduced by Dafermos et al. are expected to coincide.
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1 - Systems of conservation laws in one space dimension

We are interested in systems of conservation laws in one space dimension,
namely partial differential equations of the form

(1) oU + 0. [F()] =0,
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where the unknown U(¢, x) attains values in RY and the flux function ¥ : RY — RY is
of class C2. The time variable t € [0, + o[ and the space variable « is one-dimensional.
This class of equations has several and diverse physical applications, coming from
both physies and engineering. In particular, the Euler equations governing the
motion of an inviscous fluid take form (1) in the case when the space variable is
one-dimensional. For a wide discussion on both the physical motivations and the
analysis of (1) we refer to the by-now classical references provided in the books by
Dafermos [9] and Serre [26].

We first consider the Cauchy problem obtained by coupling (1) with the initial
datum

(2) U(0,2) = Up(w).

It is known that, even if the datum Uj is smooth, classical solutions of (1), (2) are in
general defined only on a finite time interval, and develop discontinuities in finite
time. It is thus natural to study distributional solutions. However, one cannot hope
for uniqueness: a given Cauchy problem may indeed admit infinitely many dis-
tributional solutions. In an attempt at selecting a unique solution, various admissi-
bility criteria have been introduced in the literature. We refer to Dafermos [9,
Chapters 4 and 8] for an extended discussion on this subject.

Existence and uniqueness results for global in time, admissible, distributional
solutions of (1), (2) have been achieved under the hypothesis that the total variation
of the initial datum U) is sufficiently small and that the system is strictly hyperbolic,
namely that, for every U € RY , the Jacobian matrix DF(U) admits N distinct and
real eigenvalues

(3) )»1(U)<;LQ(U)< s <}vN(U).

The proof of these results relies on the construction of suitable approximation pro-
cedures, like the Glimm scheme [13] or the wave front-tracking algorithm. For an
overview, we refer to the books by Dafermos [9] and by Bressan [5]. If the total
variation of the initial datum is finite, but large, then the admissible, distributional
solution may experience blow up in finite time: an example is discussed by Jenssen
[14]. If strict hyperbolicity is violated, then the existence of distributional solutions
may fail (see the examples in Dafermos [9, Sections 3.1 and 9.6]).

2 - Physical and self-similar viscous approximation of a Riemann problem

Here we are mostly interested in the physical viscous approximation

4) AU + 0, [F(U)] = 20, [BWUH0,UF),
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where U(t,x) € RY , the function F' is the same as in (1), ¢ is a small positive para-
meter and B denotes an N x N matrix which depends on the physical model under
consideration. In particular, if the limit system (1) is the Euler equations, then a
natural choice is taking in (4) the Navier-Stokes equations.

Bianchini and Bressan [3] established convergence results for (4) under the hy-
potheses that the total variation of the initial datum is sufficiently small and that the
matrix B is constantly equal to the identity. The proof of the convergence in the case
of a general matrix B still stands as a major and challenging open problem. We refer
again to Dafermos [9] for a wider discussion and a complete list of references on this
topie.

In the case of the so-called Riemann problem, an alternative approach was in-
troduced independently by Dafermos [8], Kalasnikov [17] and Tupciev [27]. The
Riemann problem is obtained by coupling the system of conservation laws (1) with an
initial datum in the form

U~ x<0

5) U,2) = { v

where U+ and U~ are two given constant values in RY. The study of the Riemann
problem is of key importance for the analysis of systems of conservation laws. This is
due to various reasons: first, in general one can find infinitely many solutions of (1),
(5) and hence the Riemann problem captures one of the main difficulties in the study
of systems of conservation laws. Also, the Riemann problem describes both the local
(in space-time) and the long-time behavior of solutions of more general Cauchy
problems and, moreover, it constitutes the building block for both the Glimm and the
wave front-tracking algorithm. Finally, the Riemann problem has a key role in de-
fining the so-called Standard Riemann Semigroup and hence in defining the class of
admissible solutions for which uniqueness results have been established (see
Bressan [5, Chapter 8]). As mentioned before, existence and uniqueness results for
the Cauchy problem (1), (2) hold under the hypothesis that the total variation of U is
sufficiently small. In the present exposition, we always assume that Ut and U~ are
sufficiently close and this reflects the fact that the goal is approximating data of small
total variation.

The approach introduced by Dafermos [8], Kalasnikov [17] and Tupciev [27] to
study the viscous approximation of a Riemann problem relies on the analysis of the
family of parabolic problems

(6) OU* + 0, [F(U")] = atd, [BWUHD,UF).

The advantage in introducing the coefficient ¢ in front of the second order term is
that (6) admits self-similar solutions of the form U*(t,x) = V.(x/t). Tzavaras [29]
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obtained compactness results for the family of functions U* satisfying (6) with the
Riemann datum
() U0, ) = { o w<0

Ut x>0.

The analysis in [29] relies on the assumptions that B(U) = I and that |U" — U~ | is
small enough. See also Tzavaras [28] and the discussion in Dafermos [9, Section 9.8]
for other results concerning the self-similar visecous approximation (6).

The results obtained in [29] imply, in particular, that one can construct a dis-
tributional solution U of the Riemann problem (1), (5) by taking the limit ¢ — 0" of
(6)-(7). This solution is self-similar, namely U(¢,x) = V(x/t) for a measurable func-
tion V. Also, V has bounded total variation and hence admits at most countably many
discontinuities, which correspond to either shocks or contact discontinuities of U.

We now focus on the uniqueness issue: first, we recall that in [23] Liu introduced a
celebrated admissibility condition which can be viewed as a generalization of another
condition named after Lax [20]. Roughly speaking, both Lax and Liu admissibility
conditions are irreversibility requirements imposed on the solution at points of
discontinuity. We refer to Dafermos [9, Chapters 8 and 9] for the rigorous defini-
tions. The existence of a distributional solution of the Riemann problem (1), (5) sa-
tisfying these admissibility conditions was established, at increasing levels of gen-
erality, in the pioneering works by Lax [20] and Liu [21, 22].

We conclude this section by mentioning a result due to Bianchini [2]: there exist
positive constants C and J, 6 small enough, such that, if |[UT — U~| < d, then there
exists a unique distributional solution U of the Riemann problem (1), (5) satisfying
the following requirements:

R1 U is self-similar, namely U(¢, x) = V(x/t) for some measurable function V.
R2 the function V has total variation bounded by C6.

R3 V is obtained by patching together at most countably many shocks, contact
discontinuities and rarefactions.

R4 any shock and any contact discontinuity is admissible in the sense of Liu [23].

The analysis in Bianchini and Bressan [3] ensures that, in the case when B = I,
the limit of the viscous approximation (4), (7) satisfies requirements R1,... R4
above and hence it coincides with the limit of the self-similar approximation (6). Also,
by taking into account the analysis by Majda and Pego [24] ensuring that shocks and
contact discontinuities obtained as limits of suitable viscous approximation satisfy
Liu’s admissibility condition, one expects that, if the family U* solving (4), (7) satisfy
stability conditions and converges for ¢ — 0%, then the limit satisfies requirements
R1,... R4 above.
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Consider now the limit of the self-similar viscous approximation (6) and (7).
The analysis in Tzavaras [29, Section 9], Dafermos [9, Chapter 9.8] and Majda
and Pego [24], suggests that, under reasonable assumptions, if the family V*
solving (6) and (7) converges, then the limit satisfies requirements R1,...,R4. In
particular, in view of the uniqueness result in [2], such a limit does not depend on
the choice of the viscosity matrix B and coincides with the limit of the physical
viscous approximation (4), (7).

3 - Viscous approximation of a boundary Riemann problem

We now assume that x € [0, +oo[ and we consider the initial-boundary value
problem associated with the system of conservation laws (1). The initial-boundary
value problems presents all the challenges of the Cauchy problem: classical solutions
may develop discontinuities in finite time, while distributional solutions are not
unique. Also, additional difficulties arise because of the presence of the boundary:
first, by coupling (1) with the Dirichlet and the Cauchy data

(8) Ut,00 =0t  UQ,x) = Up)

one obtains, in general, an ill-posed problem, namely a problem that posses no so-
lution. This can be easily seen by considering the linear, scalar case

ou— Opyu =0

and observing that the solution is constant along the lines in the (x, t) plane having
slope —1. Hence, the initial-boundary value problem is ill-posed unless the Dirichlet
datum matches with the Cauchy datum. A notion of admissible boundary condition
can then be introduced, see Dubois and LeFloch [10].

Other difficulties arise when studying the viscous approximation (4): the initial-
boudary value problem obtained by coupling (4) with the data

©) U't,00 =Up®)  U0,2) = Up(w)

may be also ill-posed if the matrix B is singular: note that this is actually the case of
the Navier-Stokes equation and of most of the physically relevant examples. To
simplify notations, in the present exposition we restrict to the case when B is in-
vertible, but the general case can be also treated, at the price of higher technicalities
(see Bianchini and Spinolo [4, Section 2.2.1]).

Roughly speaking, the problem concerning the viscous approximation is the
following: consider the family of initial-boundary value problems (4) and (9) and
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assume that as e — 0" it converges (in a suitable topology) to a limit function U such
that the trace xli% U(t,x) is well-defined. These assumptions can be rigorously es-
tablished in the case when the matrix B is the identity, see Ancona and Bianchini [1].
In general, one has that the limits # — 0" and ¢ — 0% do not commute, in other
words

Tli% U(t,x) # Uy(t).

Also, the limit U, in general, depends on B, namely if one fixes the flux function " and
the data Uy, and U, and let B vary, then the limit U varies. This was pointed out by
Gisclon and Serre in [11] and [12].

To figure out why the limit depends on B, let us focus on the case of the so-called
boundary Riemann problem and assume that the data imposed on the viscous ap-
proximation are

(10) Ut,0)=U,  U0,x) = Uy,

where Uy and U, are two given constant values in RY. Roughly speaking, the
boundary Riemann problem is important for the same reasons why the Riemann
problem is relevant: in particular, it constitutes the building block for the con-
struction of approximation schemes that are used to establish existence and un-
iqueness results for global in time, admissible distributional solutions. Unless one
imposes additional conditions on the flux function F, these results require that the
total variation of the data is sufficiently small. In the present exposition, we impose
on F only C? regularity and strict hyperbolicity (3) and we assume that the data U,
and U, are sufficiently close, |U, — Uy| < J for some small constant 6 > 0. Also, we
first focus on the so-called non characteristic boundary case i.e. all the eigenvalues
of the Jacobian matrix DF(U) are bounded away from 0.

Assume that the family of functions U* solving (4), (10) satisfies suitable stability
requirements and converges as ¢ — 0 to a limit U (see e.g. Bianchini and Spinolo
[4, Section 2.3] for the precise requirements). Then the following holds: first, U
satisfies R1,..., R4 above. Being U a self-similar function with bounded total
variation, then the trace U = ,}i% U(t,x) is well-defined and does not depend on £.

Second, there exists a function W (y) taking values in RY and solving the system

BW)YW' = F(W) — F(D)
(11) {

wWo) =U, lir+n Wy =U.
y—+ 00

The function W is a boundary layer for the visecous approximation (4) connecting
U, and U. Given U, and U, whether or not system (11) admits a solution depends
on both the function F and the matrix B. Since U is the trace of the hyperbolic
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limit U, this explains why in general the limit of (4), (10) depends on B. Explicit
examples of different viscosity matrices leading to different limits can be found
in Gisclon [11].

We now consider (4), (10) in the case when the boundary is characteristic, namely
an eigenvalue of the Jacobian matrix DF(U) can attain the value 0. One expects that,
if the family U? converges, then the limit U satisfies R1, ..., R4 above, so that in
particular the trace U is again well defined. Also, for some constant C' > 0 depending
only on Uy, F' and B the following holds:

R5 There exists avalue U, |Uy — U| < C9, such that the following conditions are
satisfied:
a. F(U)=FU);
b. the shock or the contact discontinuity between U (on the right) and U (on
the left) is admissible in the sense of Liu;
c. there is a boundary layer W(y) such that

{ BW)W' = F(W) — F(U)
W) = U, lim W(y) = U.
Y——+ o0

and |W'(y)| < Co, |W(y) — U| < Co for every y.

Some remarks are here in order: first, the equality F(U) =F) implies that U
and U are connected by a zero-speed shock (or contact discontinuity) because it
ensures that the so-called Rankine-Hugoniot conditions are satisfied (see
Dafermos [9, Chapter 3] for a discussion about these conditions). Hence condition
R5b makes sense. Second, in the non characteristic boundary case the equality
F(U) = F(U) implies via the local invertibility theorem that U = U and therefore
R5is equivalent to the existence of a boundary layer W satisfying (11). Hence, in the
following, we use the formulation R5 in both cases of a characteristic and a non
characteristic boundary.

The existence of a distributional solution of (1) defined on the domain ¢ € [0, + oo,
x € [0, 4+ ool and satisfying requirements R1, ..., R5 was established in Bianchini
and Spinolo [4] by relying on the hypotheses that |U;, — Uy| is sufficiently small, that
the system is strictly hyperbolic (3) and that the matrix B satisfies suitable condi-
tions. In particular, the case when the matrix B is singular is taken into account and
the analysis applies to the Navier-Stokes equation written in Lagrangian co-
ordinates.

The uniqueness of solutions satisfying R1, ..., R5 was obtained in Christoforou
and Spinolo [6] and is discussed in the next section.
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4 - A uniqueness criterion for viscous limits of boundary Riemann problems

Before introducing the precise statement, we recall that an entropy-entropy flux
pair for system (1) is a pair (7, q), with 7, q : RY - R satisfying

vi(U) - DF(U) = Vq(U) for every U € RY.

We can now state our theorem.

Theorem 4.1. Let F: RY — RY be a given C* function satisfying strict
hyperbolicity (3) and let Uy be a given state in RY. Also, assume that

(i) system (1) admits an entropy-entropy flux pair (i, q) with n strictly convex;
(i) for any given compact set K C R", there exists a constant ax > 0 such that, for
every U € K,

(13) D*y(U)5 - BUY > axldff V¥ e R"
(iii) the transversality condition provided by Hypothesis 4 in [6] is satisfied.

Then there exist constants C and 6, 6 small enough, such that, for every Uy such that
|Up — Up| < 6, the distributional solution of (1) satisfying the initial condition
U, x) = Uy and requirements R1, ... R5 is unique.

Some remarks are here in order: first, conditions (i) and (ii) in the statement of
Theorem 4.1 are quite classical in this context and they imply that the matrix B is
strictly stable in the sense of Majda and Pego [24]. Condition (i) implies that the
matrix B is invertible. The extension of Theorem 4.1 to the case of a singular viscosity
matrix, which is more interesting in view of physical applications, does not pose any
apparent difficulty provided that the assumptions introduced by Kawashima and
Shizuta in [19] and a condition of so-called block linear degeneracy defined in
Bianchini and Spinolo [4] are all satisfied.

Second, it should be noted that Theorem 4.1 covers both cases of characteristic
and non characteristic boundary. Also, the only assumption we impose on the flux
function F is strict hyperbolicity and neither genuine nonlinearity nor linear de-
generacy of the characteristic fields is required.

Third, conditions R1,...,R5 are not sharp, because one can impose slightly
weaker requirement and then use that U is a distributional solution of (1) having
bounded total variation. However, here for simplicity we employ conditions
R1,... R5. We refer to Theorem 1.1 in Christoforou and Spinolo [6] for a sharper
(and more technical) formulation.
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By comparing Theorem 4.1 with the uniqueness result by Bianchini [2] mentioned
at the end of Section 2, one immediately gets that the novelty is the presence of
requirement R5. It should be noted that in the case of initial-boundary value pro-
blems R1, ..., R4 are no more sufficient to single out a unique solution: this can be
seen by recalling that, under reasonable stability assumptions, the limit of any vis-
cous approximation (4), (10) satisfies R1, ..., R4, but the limit varies when B varies.

From the technical point of view, requirement R5 is taken into account by a
careful analysis of system (12) and by using some techniques coming from the study
of ordinary differential equations (ODEs), like center manifold techniques and
center-stable manifold techniques. In Section 6, we outline the proof of Theorem 4.1.

Finally, Theorem 4.1 has applications to the analysis of the self-similar viscous
approximation of a boundary Riemann problem. We discuss these in Section 5.

5 - Comparison between the physical and the self-similar viscous approximation of a
boundary Riemann problem

In [15], Joseph and LeFloch studied the self-similar viscous approximation of a
boundary Riemann problem. More precisely, they considered the family of equations
(6) defined on the domain ¢ € [0, 4 oo[, « € [0, + ool and coupled them with the initial
and boundary data

(14) Us@t,00=U,  U0,) = Uy,

with |U, — Uy| sufficiently small. They focused on the case B(U) = I and they ob-
tained compactness results. Also, they provided a careful analysis of the limit in both
cases of a non characteristic and (under some further technical assumptions) of a
characteristic boundary. The analysis was extended in Joseph and LeFloch [16] to
other classes of viscosity matrices B.

In the general case, one expects that, if U* converges to a limit U, then the limit
satisfies R1, ..., R4. However, as mentioned before, in the case of initial-boundary
value problems these requirements are no more sufficient to single out a unique
solution and hence it is not a priori clear that the limits of the self-similar and of the
physical viscous approximation, if any, coincide.

However, the analysis in Joseph and LeFloch [15] ensures that, if the total var-
iation of the family U* is uniformly bounded in ¢ (which is the case when B = I, see
[15]), then condition R5 is satisfied.

As a direct application of the uniqueness result provided by Theorem 4.1, one gets
that the limits of the physical and the self-similar viscous approximation are expected
to coincide. See also Christoforou and Spinolo [7] for further results is this direction.
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6 - Main ideas in the proof of Theorem 4.1

The main novelty of Theorem 4.1 is that it deals with the initial-boundary value
problem and hence one needs to take into account possible boundary layers by in-
troducing condition R5. In the following, we sketch how this requirement is handled,
and we refer to [6] for the technical analysis and for the complete proof.

The key point to take into account condition R5 is the analysis of system (12), for
which we use techniques coming from the study of ordinary differential equations,
like center manifold, stable manifold and center-stable manifold techniques.

In Section 6.1, we briefly go over the main results concerning these tools, and we
refer to the books by Perko [25] and by Katok and Hasselblatt [18] for extended dis-
cussions. In Section 6.2, we outline how these techniques can serve the analysis of (12).

6.1 - Invariant manifolds for ordinary differential equations

Consider the ordinary differential equation (ODE)

aw
(15) = 6O,

where W(y) € R%, y € R and G : R — R? is a smooth function attaining the value
zero at some point. With no loss of generality, we can assume that 0 is an equilibrium
for the ODE (15), i.e. G(@) = 0. Also, to avoid trivial cases we assume that the
Jacobian matrix DG(0) admits some eigenvalues with strictly negative real part and
other eingevalues with zero real part.

The Stable Manifold Theorem, the Center Manifold Theorem and the Center-
Stable Manifold Theorem respectively state the existence of manifolds M*® C Rd,
M C R? and M® C R? that satisfy the following properties:

1. the dimension of a center manifold M° is equal to the number of eigenvalues of
DG(0) having zero real part, the dimension of the stable manifold M? is equal
to the number of eigenvalues of DG(0) having strictly negative real part and
the dimension of a center-stable manifold M® is the sum of the previous two;

2. the three manifolds are all locally invariant for (15), meaning that, if Wy, € M°
(respectively Wy € M®, Wy € M%), then the solution of the Cauchy problem
aw /dy = G(W)
W) = W,

satisfies W(y) € M (respectively W(y) € M*, W(y) € M%) if |y| is small enough;

3. there exists a small enough ball, By(ﬁ), centered at 6, such that, if W(y) € BT(())
for every y, then W(y) € M€ for every y;
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4. there exists ¢ > 0 such that, if Wy € M?®, then the solution of the Cauchy
problem (16) satisfies
lil+n |[W(y)|e® = 0;
y—+oo

5. there exists a small enough ball, BV(G), centered at 6, such that, if W(y) € Br(ﬁ)
for every y > 0, then W(y) € M® for every y.

6.2 - A decomposition result for boundary layers with small amplitude

We now outline how condition R5 is taken into account. We first address the non
characteristic boundary case, which is technically easier and occurs when all the
eigenvalues of the Jacobian matrix DF(U) are bounded away from 0. In this case, R5
is equivalent to the requirement that there exists a function W satisfying (11). By
relying on some ODE analysis one can show that, being the Jacobian matrix DF(U) a
non singular matrix, any solution of the above system actually satisfies

lim [W(y) — Ule® =0 lim [W'(y)le” =0,
y—-+oo y—+oo

where ¢ > 0 is a suitable constant depending on DF(U). By applying the Stable
Manifold Theorem, one can then show that system (11) admits a solution if and only if
U, lies on a suitable manifold having dimension equal to the number of eigenvalues of
DF(U) with strictly negative real part. It turns out that, in the non characteristic
case, this is enough to conclude that the solution satisfying R1, .. ., R5 coincides with
the one described in [4].

The boundary characteristic case occurs when an eingenvalue of the Jacobian matrix
DF can attain the value zero. In this case the key point of the analysis is the following:
given a value U € RY, we want to determine all the values U, » such that the system

BW)W" = F(W) — F(U)
ol UO=U,  lim We)=U

admits a solution with
(18) Wy -U|<Co  [W(y)| <C9,

where C and 0 are the same constants as in R5. The difficulty in the analysis of (17) is
taking into account the possibility that W(y) converges to the equilibrium U, but
|W(y) — U| does not decay exponentially fast to U. This behavior is ruled out in the
non characteristic boundary case as a consequence of the fact that all the eigenvalues
of DF are bounded away from 0.

As a first step in the analysis, we write (17) as a system of 2N first order ODEs.
Then, we observe that without loss of generality we can focus on solutions lying on a
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suitable center-stable manifold because we look for solutions that both converge and
satisfy bounds (18).

Note that, in general, a center-stable manifold may contain orbits that do not
converge for y — +oc. On the other hand, in (17) we require the existence of the
limit U: to implement this condition we proceed as follows. In [1] and then [4] the
authors constructed a converging solution W, lying on the center-stable manifold
and having the following structure:

(19) W(y) = Ws(y) + We(y) + Wy(y),

where W is the stable component and is exponentially decaying, W, is the center
component and converges to U, but [W(y) — U], in general, does not decay expo-
nentially fast to 0. Finally, W, is a perturbation term, meaning that W), isidentically zero
if either W,(y) = 0 or W.(y) = U. Also, W, is small with respect to W, and W, namely

(W, ()| < CoPe /4.

Here, 6 is the same constant as in R5 and in (18) and C > 0 and ¢ > 0 are positive
constants independent of W, and W,.. By relying on (19), one can then show that
system (17) has a solution if U, lies on a suitable set, depending on U, which in the
following is denoted by D(U).

Lemma 3.1 in Christoforou and Spinolo [6] states that actually any converging so-
lution that satisfies (18) admits decomposition (19) and hence (17) has a solution if and
only if U, € D(U). By relying on this result, one can eventually prove with some addi-
tional work that any distributional solution of (1) satisfying requirements R1, ..., R5
coincides with the one described in [4]. This concludes the proof of Theorem 4.1.
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