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Global regularity for some MHD-o systems

Abstract. The global existence of strong solutions (for arbitrarily large initial
data) to the incompressible Euler equations is a major open problem. This problem
is open as well for the ideal MHD system, that is to say in the inviscid irresistive
case, for both space dimension n = 2 or n = 3. We review some results, appeared in
previous papers, concerning the global existence of regularized models for in-
compressible magnetofluids. In particular, we observe that a partial viscous (i.e.,
with positive kinematic viscosity and no magnetic resistivity) o-regularization
(which yields a hyperbolic-parabolic system) is capable to provide strong global in
time solvability for the ideal MHD system of equations in the 2D framework. In the
more complex 3D case, we have strong global existence also for an ideal purely
hyperbolic system, known as MHD-Voight model, when both the velocity and the
magnetic fields are o-regularized, and when we regularize only the velocity, but the
magnetic resistivity is strictly positive. If, in the latter case, we consider a double
viscous model, we can get as well the existence of a unique compact global attractor
and give estimates for its Hausdorff and fractal dimension. We will introduce the
four different regularized magnetohydrodynamic models and motivate such a
choice. In all cases, we will state the strong global existence and uniqueness result
that we have obtained for the solution to the respective systems. Finally, we will give
an idea of some proofs, referring to the original related papers for more details.

Keywords. Magnetohydrodynamies, MHD-«, simplified Bardina, MHD-Voight,
regularizing MHD, turbulence, incompressible fluid, global existence, hyperbolic
system, parabolic system.
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1 - Introduction

It is well-known, in literature, that the flow of an incompressible homogeneous
magnetofluid subject to a forcing f is described by the following system (MHD),
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obtained by combining the Maxwell’s equations, which rule the magnetic field, with
the Navier—Stokes equations, which govern the fluid motion:

(1a) vi+@@-Vio—B-VIB+Vp=vav +f,

(1b) B;+@w-V)B—-(B-V)v =u4B,

(1e) V-v=V-B=0,

(1d) v,B)|,_y = o, By), xcR", n=23,

where the fluid velocity field v(x, t), the magnetic field B(x, t) and the pressure p(x, t)
are the unknowns, while v > 0 is the constant kinematic viscosity and x > 0 is the
constant magnetic diffusivity, or resistivity (the constant density is assumed to be
equal to 1), and f is a given forcing term.

This problem has been deeply studied. If v > 0 and x > 0, then there exists a
unique global solution in time when n = 2, while for » = 3 the problem is still open, as
discussed in [22], at least as to arbitrarily large initial data.

Whenn = 2,v = 0and u = 1, local existence and small datum B global existence
results have been established by Kozono [17] for bounded domains and by Casella-
Secchi-Trebeschi [6] for unbounded domains.

When n =2, v=1 and u = 0, there is a regularity criterion for the solution B
provided by Jiu-Niu [14]; but the problem in its generality is still open, even in the
case n = 2.

As to global existence for arbitrarily large data, the case n = 3 is completely open,
but there exist several regularity criteria (see for instance Zhou-Gala [25] and the
references therein).

As pointed out in [20], at the moment, there is no possibility to compute the
turbulent behavior of fluids neither analytically nor via direct numerical simulation
(this task is prohibitively expensive and disputable as well due to sensitivity of
perturbation errors in the initial data). Hence, one can try to focus only on certain
statistical features of the physical phenomenon through the employment of suitable
models. This is sufficient in many practical applications and, indeed, in the case of
turbulence it makes more sense than pointwise evaluation. Actually, turbulent flows
present a random character, which is filtered by averages.

Averaging is obtained through a filter ¢, i.e. a smoothing kernel; in a-models, one
special kernel is considered, the one associated to the Helmholtz operator:

v=~1-dAu, a>0.

Then one can consider a regularized version of the previous equations, where the
nonlinearity is made milder. Typically, some occurrences of v in the nonlinear terms
are substituted by u = ¢, * v, so that u — v in a suitable sense as « \, 0, thus, for-
mally, the regularized system converges to the original standard one, up to a change
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in the pressure term. As a consequence, the solution becomes smoother. This phe-
nomenon is in contrast with other approaches to regularization, such as hy-
perviscosity or nonlinear viscosity, which seem to have a greater impact on altering
the properties of the solutions.

Moreover, this averaging suppresses any fluctuations in the flow data below O(«),
which cause randomness and chaotic behavior, while preserves those on scales larger
than O() (large eddy simulation), which possess a deterministic character.

Because of the remarkable success of the corresponding nonmagnetic models in
producing solutions in excellent agreement with empirical data for a wide range of
large Reynolds numbers (which correspond to a turbulent regime) and flow in in-
finite channels or pipes (see, for instance, [5, 19]), it is natural to consider such a kind
of regularization also for magnetohydrodynamic models (in this case, also the
magnetic field can be regularized, but this is in general not necessary). Several
MHD-« models have been suggested and studied, for instance, in [20, 13, 24].

In this paper, we are interested in the global regularity of some MHD-« models
that can be viewed as a method to approximate solutions to the ideal MHD model. We
will consider four different cases.

We begin by introducing the Simplified Bardina MHD model (SBMHD):

(2a) vi+Ww-Viu— (B-VB+Vp=vdav +f in [0,7] x Q
(2b) B+ (u-V)B— (B -V)u=uiB in[0,7] x Q
(20) v=(1-dAu, a>0 in [0,7] x 2,
(2d) V-u=V-B=0 in [0,7T] x Q
(2e) (v, B)|;_y = (vo, Bo) xeQ,

where o > 0, v,u >0, 2 =[0,2zL]", n = 2,3, L > 0, with periodic, zero-mean, di-
vergence free initial data and forcing term £ = f(x) (so that also the solutions have
the same properties with respect to the space variable x). The use of a periodic do-
main uncouples the difficulties arising from the boundary interaction from the ones
stemming from the flow itself.

The (nonmagnetic) Simplified Bardina model has been suggested by Layton-
Lewandowski in [19] and considered by Cao-Lunasin-Titi in [5]. The SBMHD has
been introduced in Catania-Secchi [10], where the following results and further
details can be found.

In the first case, we consider a 3D double-viscous model (v, u > 0, n = 3).

Theorem 1.1. If (vy,Bg) € LA(Q) x HY(Q) and f € LA(Q) then, for each
T > 0, there exists a unique solution (v, B) such that
v € L0, 00; L3(Q)) N L0, T; H'(Q)),
B € L>(0, 0o; HY(Q)) N L2(0, T; HA(Q)) .
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This result is particularly useful in order to obtain what follows. From now on, to
simplify notations, we set || - || = || - [| 2. The subseript o will be sometimes used to
put in evidence that we are considering divergence-free zero-spatial-mean space-
periodic (classes of ) functions.

Theorem 1.2 (Finite Dimensional Global Attractor). There is a (unique)
compact global attractor .72 C H(lr(Q) X Li(.Q) wn terms of the solution (u,B) to (2).
Moreover, we have an upper bound for the Hausdorff dimension dy(.7Z) and the
fractal dimension dp(.72) of the attractor .7, in particular, there is a positive
constant C such that

9

(I_J>‘J+G6/5 <I_J>'+G3/1o
o o

o LRI
-2

9

3
di(#) < dp(#) < CGY/° ({Zj)

where, set 1 = min{v, u},

18 the modified Grashof number.

We can interpret the estimate for the attractor dimension in term of the mean
rate of energy dissipation, defined by
T
__ 1 . 1 2 o 2 2
g¢=— sup limsup = [ (v|Va®|" + ve®||du®)|” + ul[ VB@®)|")dt .
(wo,By)e. 7 T—oo T 0
Moreover, in analogy with Kolmogorov dissipation length in the classical theory of
turbulence, we define the dissipation length as

b <§> 1/47

so that
. T
sup limsup TJ (v||Vu(1§)||2 + vl || du@®)||? + ,u||VB(t)||2)dt
(u(),Bo)G, 72 T—oo 0
(3) _ L37’]3

,%_
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Theorem 1.3. The unique compact global attractor ..% C H},(Q) X L(Q,(.Q) m
terms of the solution (u,B) to (2) has fractal dimension dg(.7) bounded by

oeems ()" (1))

where C 1s a positive constant.

Identifying the dimension of the global attractor with the number of degrees of
freedom of the long-time dynamics of the solution, this means that the number of
degrees of freedom of problem (2) is bounded from above by a quantity which scales
like D. This information is useful to establish the validity of the model as a large-eddy
simulation model of turbulence. Similar results are provided in Catania [8] for dif-
ferent MHD-o models. Moreover, in Catania [9], it is proved that, in the SBMHD
model, the modified Grashof number can be estimated from above by the square of
the modified Reynolds number, the quantity usually considered in turbulence the-
ory. Using this relation, an upper bound for dr(.#) and estimates for higher order
wave numbers (which take into account intermittency), both in terms of the
Reynolds number, are proved.

Now, let us consider the 3D SBMHD with magnetic diffusivity x4 > 0 but no
kinematic viscosity (and f =0 for simplicity); the equations for v; and B;
become:

(4a) vi+(w-Viu—(B-V)B+Vp=0 in [0,7T] x Q,
(4b) B+ (u-V)B—(B-V)u = uiB in[0,7] x Q.

We take Q = [0,22L]° and consider space-periodic and zero spatial-mean initial
data. Under the aforementioned conditions, we have the following result.

Theorem 1.4 (Strong Global Existence). As to the initial data, we assume
that they satisfy vy € L2(Q), By c H(Q) and V - vy = V - By = 0.

Then, problem (4) has a unique global solution (v,B) such that, for each time
T > 0, one has

v e L®0,T;LAQ)), B € L0, T; H(Q)) n L0, T; H3(Q))..

This result is shown in [11]. It says that we can get global existence for the
SBMHD even in the case v = 0 (but one can not obtain the global attractor existence
and related results).

In the third case, we study the irresistive 2D SBMHD (we can assume v = 1 with
no loss of generality, and f = 0 for simplicity), so that Q = [0,27zL]2 C R? and the
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equations for vy and B; become:

(5a) vi+(w-Viu—(B-V)B+Vp=4v in [0,7] x 2,
(5b) Bi+u-V)B—(B-Vu=0 in[0,7] x Q.

Theorem 1.5 (Local Existence). Assume that the initial data satisfy
vo € H"(Q), BocH"™*Q)

and V -vy =V - By = 0, where m > 2 is an integer number.
Then, there exists a positive time Ty such that problem (5) has a unique solution
(v, B) so that
v € L0, To; H"(2)) N L0, To; H"1(2)) N L0, To; H*(Q)) ,
B € L0, To; H"4(Q)).

Moreover, v; € L0, To; LA(Q)), the pressure p is uniquely defined up to an ad-
ditive function independent of space and Vp € L0, To; LA(Q)).

Proposition 1.1 (Energy Estimate). Assume that a solution (v,B) of
problem (5) is defined in the time interval [0, T'].
Then, the following energy estimate holds:

T

(6) ] + o2 Va|* + | B|]* + 2j<|\Vu<t>||2 + o Au@®)|?)dt < Co
0

where

(7) Co = [[u(O)|* + o*||Vu(©)|* + |BO)[* > 0

18 independent of time T.
Moreover, one has

T
) JM@W&SG@T+¥%
0

Theorem 1.6 (Global Existence). Assume that the initial data satisfy
voe H(@), ByeH(©@),

V'U(}ZV-B()ZO.
Then, problem (5) has a unique global solution (v,B) such that, for each time
T > 0, one has

v e L0, T; H'(Q)) N L20, T; H*Q)), B e L>®0,T;H}Q)).
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In other words, in two space-dimension, we can prove global existence and un-
iqueness for the SBMHD even if 4 = 0.

Remark 1.1. 1. These results are shown in [7], where the case Q = R? is
considered; nevertheless, all results can be obtained in the same (if not easier) way
for the torus, just resorting to results for bounded domains that we will cite when
needed during the proof for global existence (see, in particular, the estimates (14)
and (16)).

2. Actually, the proof for global existence shows as well that we can assume just
By € BX(Q) and conclude B € L>(0, T; HA(Q)).

3. The local existence and uniqueness result for v € LH' nL*H? and
B € L™H? (or B € L™H?) can be obtained from Theorem 1.5 by a density argu-
ment used to approximate the initial data in the required spaces.

4. Stmalar results can be proved for the inviscid resistive (dissipation for B but
not for v) 2D SBMHD, however we find that the case that we have considered
(trresistive) is the most interesting one, since for the 2D inviscid case we have the
results of Kozono [17] and Casella-Secchi-Trebeschi [6] (even if in those papers By is
small).

Eventually, we consider the case without viseosity nor diffusivity, but with reg-
ularizations both in the velocity v and the magnetic field B; the following model is
known as MHD-Voight:

(9a) vi+(w-Viu—(b-V)b+Vp=0 in[0,T] x Q,
(9b) B:+u-V)b—(b-Viu=0 in[0,7]x Q,
(9¢) v=01-Au,B=01-FAHb, o,f>0 in[0,T]xQ,
(9d) V-u=V-b=0 in[0,7]x Q,
(9e) (v,B)|,_y = (vo,By) xeQ.

Let us note that a pressure-gradient term can be included in the equation for B;
as well. We assume that Q = [0,27IL]3 c R? and consider space-periodic and zero
spatial-mean initial data. Under these conditions, we have the following global
existence results.

Theorem 1.7 (Weak Global Existence for the MHD-Voight). Let us set
up=Q0—-oNwg,  bo=1— N "By,
and asswme that ug, by € HY(Q) and V -ug = V - by = 0.
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Then, problem (9) has a unique global solution (u,b) such that
u,b e L>0,00; H(Q)).

The couple (u,b) is a weak solution of (9) in the sense of (21) (see next section).

Theorem 1.8 (Strong Global Existence for the MHD-Voight). If we assume
mitial data satisfying vy, By € L2Q)and V -vy =V - By = 0, then problem (9) has
a unique global solution (v,B) such that, for each time T > 0, one has

v,B e L>0,T;L4Q).

These results have been obtained in [11] ().
Let us note that this model is particularly interesting since it preserves
three physical quantities, that is to say the energy E*f = 1/2f(v(x)-u(x)

+B(x) - b(x))dx, the cross helicity HZ" =1/2 [ (u(x) - b(x) + MZVu(i) - Vb(x))dx
Q

(here we are assuming f = «, which is absolutely reasonable) and the magnetic
helicity H“Mﬁ =1/2 [ (atx) - blx) + fAVa(x) - Vb(x))dx, where a is a vector po-
Q

tential, so that b = V x a. Moreover, as «,f — 0, these quantities reduce to the
corresponding conserved ideal quadratic invariants of the MHD equations. Note
that the ideal version of the SBMHD (2) conserves the energy and the magnetic
helicity, but at the moment we are unable to find an invariant quantity corre-
sponding to cross helicity.

Moreover, system (9) is damped hyperbolic (with no viscosities), and it can be
considered as a first example of ideal model useful to approximate solutions to the
ideal MHD for o, f§ — 0 (this is different from large eddy simulation).

2 - Some proofs

In this section, we will prove the global existence result relative to the 2D irre-
sistive SBMHD (for the local existence and other details, see Catania [7]).
Afterwards, the proofs concerning the 3D MHD-Voight model are given in detail (as
done in [11]), while we will not give any information (besides what said in the in-
troduction) related to the 3D inviscid SBMHD (whose results are proved in [11] as
well) or to the 3D double viscous SBMHD (whose results are proved in [10]).

(%) After the submission of the paper [11], we were informed of the work by Larios-Titi [18],
whose preprint appeared just two days after ours, and that contains higher order regularity
results as well.
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We will make use of the following identities, which hold provided V - f = 0:

(10) J(f-V)g-hdx:—J(f-V)h-gdx,
(11) J(f-V)g-gdxzo.

2.1 - 2D irresistive SBMHD

In order to get global existence, we recall that, for each two-dimensional vector
w = (wy,ws), we can define the scalar quantity

rotw = 0y, Wz — Oy W1 .
Setting w = rotv and applying rot to equation (5a), we get
(12) w+@-V)rotu —(B-V)rotB = Adw.

Taking the scalar product with w and integrating in space, we obtain
(13) % %szdx + J [Vol?dx = J[(B - V) rot Blwdx — J[(u - V) rot uJwdx .

Let us recall the following estimates in [12] (see [1, 2] for the case of bounded do-
mains), where ! is the Hardy space, BMO denotes the bounded mean-oscillation
function space (dual to '), while V - £ = 0 and rotg = 0:

(14) IF- gl < ClifIl lgll,
(15) lollgmo < ClIVall;

from (6) and (13), we deduce

1d

3 &J ol +J [Vo*de < ([ - V) ot Bllys + [ - V) rotu )] gyo

< C(IB| |V rot Bl | Voo + ]| | ¥ votu] Ve
< C(|4B|| | Vo] + | 4u] [ Vo)

1
< IVol* + CUI4BI* + | 4ul®.

We combine this result with the estimate proved in [13]

1d

ia 2
201tJ|AB| dx

1
< C[IIUH In(e + ||| + | 4B) + [lo]”T + Hvllz/ﬂ 14B|* + 5| Vel
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Let us remark that this inequality relies in particular on the estimates due to Kato-
Ponce [15] and Kenig-Ponce-Vega [16]

(= A2 -g) —F-(— gl
< C(IVFllpn IC= D gl o + 1C— D*F1| e llg ||z )

IC= Y2 @)y < CUIF Il 1= Dglln + 10— D% |12 lglle ) -
1 1 1
_|_

for each a>0, —=—4—,
P P g

i=1,2,

and on the logarithmic Sobolev inequality due to Brézis-Gallouet [3] and Brézis-
Wainger [4] (see [21] for a remark on bounded domains)

(16) [l < Cllf{[g In (e + [[f]g2) -

Combining the two previous estimates, we have

1d

2 2 1 2
5 5@+ ol + 14B1P) + 3 Vo

< CA+ [Jul® + o) In (e + [[o] + | 4B]D[e + [lo]® + [ 4B]]
since [|4u | < 204(ul* + [[v]*).
The above inequality has form
(17) YO+ IVol* < O+ [lul + oy Iny ),
with y = e + ||||* + || 4B||*. This implies

Y

t
. ]
JA < CJ“ + lulf? + o]z,
ylny
Yo 0

that is to say
Inlny—Inlny, <Ct+1)

because of (6) and (8), and finally

C(T+1)

y(t) < e’®
for each t € [0, T']; thus we can conclude that
||w||Loc(07T;Lz) + HABHLOC(O’T;LZ) <Cc.

Now, using the Gagliardo-Nirenberg inequality ||VB| < C||B|"?||4B|"?, we
deduce immediately
”B”LOC(QT;H?) < C(T) .
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Moreover, from (17) we get ||Va)‘|Lz(07T;Lz) < C(T) and therefore
lolly~o.rz + lollizorm < €D,
which implies

(18) [0l rat + 1020 rae < O,
(19) ||u||L°°(O,T;H3) + ||u||L2(o7T;H4) <C@).

Again as in [13], we get the inequality

1d

5 g |"BIF < CCOUPBI* + (1 + | BI)|O°B| + [|0*ul 1°BI|]

where & denotes a generical partial derivative in space of order 3. Setting
2(t) = (1 + |®B®)||), we deduce

2 (t) < C(1)=(t)
thanks to (19). We obtain that

1+ |‘53B(t)\|)2 <1+ H8330||)29TC(T)

for each t € [0, T], thus
(20) 1B~ o 7y < CCT).

The completion of the proof of Theorem 1.6 follows by a standard argument based
on the Local Existence Theorem 1.5, the above a priori estimates, and the energy
inequality.

2.2 - 3D MHD-Voight

Asto the local existence and uniqueness of a weak solution, let us note that we can
restate system (9) in the form

1— ZA—l_.j: — %
@) g(z) :F(M)i(( 24 A B, b) ﬂ(u,u)]>,
d 1 — B 50, u) — Bu,b)]

where .#(f,g) = PIf - Vg], P denoting the Helmholtz-Leray projection over the
divergence free functions of L2 Then (u,b) will be a weak solution of (9) provided
that it is a solution of (21).

We want to prove that the operator F' is locally Lipschitz in H' equipped with the
scalar product

() (5)- 1-ava-eo),

+ (A=Fab.0 - pa)d)

I
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We have
F1=|.5(b1,b1) — Bur,uy) — . 5(bz, b2) + .5z, uz)|| g1
=[|.2(b1,b1 — b2) + Z(by — b2, b2) — F(uy,u; —uz) — LUy — uz,uz)|| g
and also

L 2F,g)llg- < sup
IVh]=1

< |IVR|| |fllsllgll s < CUVF gl 2Vl

J(f-Vg)~h‘ = sup
[Vh|=1

J(f-vmg‘

< CIVF|[ IVl

having used the Hélder inequality,
Wflls < CIVAIL. gl < Cllgl™*(vgll"*,
and the Poincaré inequality. Thus we easily get
Fy < C([Vuy || + [[Vaz|| + V1] + ([ V02 DAV (@y — up)]| + (| V(b1 — b2)]]).
Similarly,
Fo =[50, u1) — Z(u1,b1) — B(bz,uz) + Z(uz, ba)|| g
=[|.2(b1,uy —uz) + 2(by — bz, u2) — B(uy, by — bz) — LUy — uz,b2)||

< C(|[Vur|| + [[Vuz|l + Vb1 + [[ V2 D V@1 — u2)[| + [V (b1 — b2)|)) .
Hence F is locally Lipschitz, using that (1 — «24) " is an isomorphism from H™! onto
H!, and consequently we get the local existence and uniqueness of a weak solution
through the Cauchy-Lipschitz theorem.

Second, in order to get an energy identity, we take the scalar product in H'
(previously defined) of (21) with (u, b). Using (11), (10) and integrating by parts when
needed, we deduce the energy equality

d

= (el + o2Vl + ] + B B]2) =0,
or
(22) Jual + 22Vl + ]2 + B2 VBI* = Ci

where
Cr=luol* + o[ Vuo||* + [[Bo|* + £ Vbol[*

Now, using the bound for the H! norm of the solution provided by the energy
identity (22), we deduce that such a solution can be extended for all positive time
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(indeed, the time interval of local existence has a lower bound depending only on the
initial data).
Hence, we have the global existence of a unique weak solution

(23) u,b e L=(0,00; H(Q)).

This concludes the proof of Theorem 1.7.

In order to prove Theorem 1.8 for strong solutions, we can proceed similarly. We
only need an upper bound for higher derivatives. With this aim, we take the scalar
product with v and B, and integrate over (2, getting

1d, . -
(24) §£|IUII +J(u~V)u-v—J(b~V)b-v_0,
(25 li|192+ Ww-V)b-B— |- -Vu-B=0

) B+ @ [ v B=0.

Using Gagliardo-Nirenberg inequality
(26) Jatll < Cll o[ ju]| % + Clla
and Poincaré inequality ||u|| < C||du||, we have
e[ g < C1| Aua] ][]
and therefore

U(“ Vou o] < Jully~ |Vl o]

27) < C|lu | fue] ||| V]| [0
< Ol ]| Vu] .

Proceeding similarly for the other terms in (24) and (25), we deduce

1d

5 g P17+ IBIP < (el vul o™ + b1 V0| B o]

+ ]V 0P BI + 1]V BV
<C(lol|"* + IBIP*v|| + o> I1BI + |1B||""*),

having used (23). Applying Young’s inequality with exponents 7/3 and 7/4 to the
middle terms, we get

d
g L ol =+ IBI < C(lo | + |BI™™ < C(lo|* + 1B
< CA+ [Jof* + |IBI):
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the differential form of Gronwall lemma implies
L+ @) + IBOI* < A+ loo]* + | Bol e vt >0,

and finally

v,BeL>0,T;L3(Q) VT >0,
or

u,b e L0, T;HXQ) VI >0.

Remark 2.1. Let us note that the same estimates hold also in the case
Q = R3, with no need of periodicity hypotheses. The proof is indeed slightly sim-
plified, since Gagliardo-Nirenberg estimate (26) is straightforwardly

3/4 1/4
e < 1l du [P fae] 2

Nevertheless, in this case one needs a different approach to prove local existence.
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