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A remark on the Euler equations in dimension two

Abstract. We review some results concerning the global existence of weak so-
lutions to the Euler equations in a two dimensional open bounded set. These results
are obtained by means of a suitable vanishing viscosity approximation, through the
Navier-Stokes equations equipped with Navier-type boundary conditions. Next, we
prove a theorem of existence for weak solutions with a given non-zero normal ve-
locity, slightly relaxing with respect to the time variable the known assumptions on
the data of the problem.
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1 - Introduction

In this paper we recall an existence result for weak solutions to the Euler
equations in two space dimensions and we slightly relax the known conditions on the
time smoothness of the given normal velocity on the boundary of the domain. The
existence of weak solutions is obtained by a vanishing viscosity approximation. The
results have been announced in a seminar given from the first author during a
workshop taking place in Parma, February 2010.

To better introduce the problem and to explain some of the differences with re-
spect to the 3D case, we point out that the precise understanding of the behavior in
terms of the kinematic viscosity v > 0 of solutions to the three dimensional in-
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compressible Navier-Stokes equations (with constant density)

o’ —vau” + W' - Vyu' + Va' =f",
V-u =0,
u"(0, ) =ugy(x),

represents an outstanding open problem in presence of boundaries, while it is much
better understood in the whole space case (or in the periodic setting). When v — 0
the Navier-Stokes equations converge “formally” to the Euler equations:

o + W - VyuP + va' =fF,
V-uf =0,
uE(O,ac) :ug(x).

Proving that the convergence is not “only formal,” but that »” — u” in appropriate
(possibly strong) topologies has along history. For the Cauchy problem we recall the
results of Swann [51], Ebin and Marsden [20], Kato [27, 29], Beirao da Veiga [5, 6, 8],
and Masmoudi [45]. The sharp convergence results (i.e. results of convergence in
C(0,T; X), where uy € X and there exists a unique solution which is continuous in
time with values in X) are strictly linked with the continuous data dependence and
with the Hadamard well-posedness, as pointed out by Kato and Lai [29]. See Beirao
da Veiga [4, 5, 6, 7] for a very general approach to this problem, with a quite complete
solution also to the challenging problems of singular limits for compressible fluids.

In the case of a domain Q with smooth boundary I := 0Q the situation is even
more complex, due to the presence of the boundary layer [28] created from the slip
boundary conditions (u* - n);r = 0 which equip the Euler equations, versus the no-
slip conditions w =0 supplementing the Navier-Stokes equations. This fact pre-
vents from proving convergence unless a certain near to the boundary integral of the
dissipation vanishes. On the other hand, recent results in presence of Navier-type
boundary conditions show how the results can improve in presence of a different type
of boundary conditions, see Xiao and Xin [55], Beirdo da Veiga and Crispo [9, 10],
Masmoudi and Rousset [46], and Iftimie et al. [24, 25]. A review about some aspects
(especially linked with research themes of applied mathematics) of this problem can
be found in [11].

1.1 - Euler equations in two space dimensions

In this paper we study the 2D problem, which is less technical and for which the
understanding of the vanishing viscosity limit is much more complete. The first results
for the 2D Cauchy problem date back to Golovkin [21] and McGrath [47]. In bounded
domains there are the contributions of Yudovich [56], J. L. Lions [37], Bardos [1],
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Clopeau, Mikeli¢, and Robert [17], and in the stochastic context Bessaih and
Flandoli [14, 15]. Very recent results are those of Lopes & Lopes et al. [39, 40, 41]
and of Kelliher [30, 31, 32].

In addition, existence and uniqueness of smooth (say C*) solutions in two di-
mensions has been proved by means of a precise study of the vorticity by
Lichtenstein [36] and Wolibner [54]; see also Kato [26]. In the spirit of linking re-
sults with the Hadamard well-posedness, we wish also to mention the endpoint re-
sults by Beirao da Veiga [3], obtained in the space of functions with continuous
vorticity. We recalled these results because there is a very precise study of the
vorticity, whose role in two dimensions will be emphasized later on.

Here, we do not address the problem of the existence and behavior of classical
(smooth) solutions, but we want to study the existence of weak solutions, that is
solutions to the Kuler equations in the distributional sense, cf. (8), and at least with
space derivatives in L>*(0, T; L?(Q)), ¢f. (6). We also do not consider the case of non-
smooth vorticity as in Constantin and Wu [18] and Marchioro [43], which is as well
interesting.

We point out that one has to restrict to the 2D case since in three dimensions we
do not know existence of satisfactory enough weak solutions. The study of weak
solutions in the 3D case poses serious problems (see for instance the discussion in
P.L. Lions [38]) and their behavior may be very wild, as emphasized in the recent
work of De Lellis and Székelyhidi [19], which extends previous ones by Scheffer
and Shnirelman. In two dimensions it is possible to handle weak solutions in a
better way: One of the main tools making the 2D problem tractable is the fact that
the vorticity

o' = curlu’ := dyuy — Oy

is a scalar, which is transported by the velocity (and obviously there is also diffusion if
v # 0). This holds because the stretching term is not present and " satisfies the
following scalar equation

1) 8" + W' - V)’ — vde' = curl .

Moreover, the fact of having a scalar equation makes possible to use the maximum
principle to obtain suitable improved estimates and also to show uniqueness for weak
solutions with bounded vorticity, via the clever ordinary differential equations-type
tools introduced in [56].

On the other hand, the use of the vorticity equation requires ad hoc boundary
conditions, since in general the value of @" at the boundary is not known, and
“generation of vorticity” appears due to the differences between the tangential ve-
locity of the flow and that of the boundary. To this end, it is well-known that the use of
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slip-without-friction boundary conditions of Navier-type (also called free-boundary
or curl-free)
u' -n=0 on I" x 10, TT,
(2) _
o' =0

on I x 10, TT,

where 7 denotes the exterior normal unit vector on I, allows for a satisfactory
control of the vorticity generation and consequently of the behavior of solutions as
v—0F,

1.2 - Setting of the problem

We consider the 2D Euler equations in a smooth and bounded domain Q C R,
with non-homogeneous conditions on the normal component of the velocity

ol + Wf - Vyuf +vpf =f in Q x 10,71,
) V-ulf =0 in Q% 10,71,
uf n= g, x) on I" x 10, T1,

uP(0, ) = uo(x) in Q,

and we impose on g the compatibility condition (due to incompressibility)
(@) J gt x)dS=0  te[0,T].
T

We construct weak solutions by approximation through the Navier-Stokes with the
boundary conditions (2)

ou’ —vauw’ + ' - Vyu' + Vp' =f in Q x 10,71,

V-u'=0 in Q x 10,71,

(5) u' -n =g, x on I" x 10,71,
' =0 on I' x 10, T1,

u"(0, 2) = up(x) in Q,

with the same external force, and initial/boundary data.

The reasons for the study of a problem with non-zero normal velocity have been
explained in detail in the previous work [13], which was based on an approach similar
to the so-called “vorticity seeding” method for modeling turbulent flows. The pre-
sence of a non zero (hopefully fast time-oscillating) normal component of the velocity
has been proposed by Layton [34] to simulate triggering separation and detachment
from the boundary. The need for an understanding of these non-stationary phe-
nomena, which are out from the conventional time-averaged theory of boundary
layers (see e.g. Schlichting [49]), motivates the use of time-dependent quantities.
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In this respect one would like to identify the weakest (with respect to time)
conditions ensuring existence of weak solutions in the usual Leray-Hopf class. In
particular, observe that the equations (5) are not the standard Navier-Stokes
equations with Dirichlet boundary conditions, but the choice of the boundary con-
ditions makes possible to control the vorticity at the boundary.

To conclude this short introduction, we observe that the use of the vorticity
equation is in general troublesome in domains with boundary. This because we do not
know the boundary conditions for the vorticity itself, when Dirichlet conditions are
imposed on the velocity, see also the recent studies of Rautmann [48].

2 - On existence of weak solutions

In two space dimensions the theory of weak solutions is rather satisfactory. Some
available reviews (also on results for the 3D case) are those of Majda and
Bertozzi [42], Marchioro and Pulvirenti [44], and Bardos and Titi [2]. In particular
the 2D non-stationary case has been treated by Bardos [1] by means of a “viscous
approximation” with the system (5). Here, we briefly explain this technique and next
we will show how to combine it with the results obtained in [13], in order to relax
some of the assumptions on the time-derivative of g. In the sequel we will use the
classical Lebesgue spaces (LP(Q),].[|,), the Sobolev spaces (H*Q), || . || ge) for
k € N, and we do not distinguish between scalar and vector valued functions. As
usual in the study of the Navier-Stokes equations, we define

H:={vel*Q)y: V-v=0and (v -n) =0},
and
Vi={veHQ): V-v=0and (v-n)r = 0}.

Moreover A is the Stokes operator associated with curl-free functions at the
boundary and with domain

D) = {v e VNEHAQ)? : (curlv) = 0}.

We will denote by (H*(I), || . || S, ) the standard trace spaces on the boundary /" and
we will also use the usual spaces H*(0,T;X) employed in the study of evolution
equations. In some explicit calculations we will also use Einstein’s convention of
summation over repeated indices.

The main result we prove is the following modest improvement, concerned
with relaxing to g e HY?*(0,T;H**(I")), for any 0<e<1/2, the condition
g € HY(0, T; H*?(I")) required in the previous references, cf. [1, 50].
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Theorem 2.1. Assume that Q C R? is smooth and bounded, that f=0 and
that g € H%“(O, T;Hg(F ), for some ¢ <€ 10,1/2[. Assume that the compatibility
condition (4) is satisfied and let the divergence-free wuy<c HY(Q) satisfy
(uo - n);r = g(0). Then, there exists a weak solution

(6) u” € L0, T; H'(),

of the Euler system (3).

Remark 2.1.  The introduction of an external force f € L*(0, T; H'(Q)) can be
handled without difficulties and we leave it for the interested reader.

Remark 2.2. The same conclusions of Theorem 2.1 can be proved also if we
set the problem in a domain with flat boundary, as for instance @ = 1— 1,1 and
we 1mpose the Navier-type boundary conditions (2) on 0Q, where

0Q = {reR%: |p|<1,mp=—-1}U{r e R?: oy <1, 2 = 1},

while the problem is assumed periodic (with period 2) in the xi-direction. Some
mainor modifications of the functional setting (with restriction on the mean value in
the horizontal variable) are also required. In this setting the proof becomes simpler
since many of the boundary terms involved in the integration by parts are identi-
cally vanishing. For instance, under the boundary conditions ug = ve =0 and
curlu = curlv = 0 on 9Q, by direct calculation one obtains

—JAuvdac = JVqudac,
Q Q

wstead of the formula (7) below, involving a surface integral.

2.1 - A review about the existence result

We start by recalling the main lines of the existence result for the (boundary)
homogeneous problem, i.e. that with g =0 and with f € L0, T;V). We follow
Bardos [1] and the case of a smooth non-zero ¢ is also considered in [1], by con-
structing a suitable extension and by treating the non-homogeneous problem in a
standard way. The weak formulation for the homogeneous Euler equations is: Find
uP(t) € V a.e. such that (in the sense of 7'(]0, 7))

%JuE(t)vdac + J(uE(t) VuEtyvde = Jf(t)vdx YoeV.
Q Q Q
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We will also consider the viscous approximation and we observe that the initial-
boundary value problem can be studied by the usual variational techniques. To this
end we recall the following equality, which holds for two dimensional smooth vector
fields u, v, such that (u - n);r = (v- n);r = 0 and (curlu), = 0:

0 = v;0j(uin;) = vj(Qguin; + vj(Omu; = vi(Gupn; +vi(Omdu;  on I

Hence, under the same assumptions, the following formula for integration by parts
holds true
- Jduvdac =- J (8Fuj)v; doe
Q Q
= | Qu))(O)) dx — | ni(Ozuj)v; dS

= (8iuj)(aivj) dx + ui(ajni)vj dsS

—~
)
~
]
N — N ——

= | VuVodx + Jw(Vn)deS.
Q T

By defining the bilinear form

a,(u,v) == vJVqudac + vJu ()l - vds,
Q r

the weak formulation for the homogeneous Navier-Stokes equations with boundary
conditions (2) is then: Find u(t) € V a.e., such that

(8) % Ju"(t) vdx + a,(u'@),v) + J(u"(t) -V)u'@)vde = Jf(t) vde VveV.
Q Q Q

By using the trace inequality and the smoothness of I” it follows that for each ¢ > 0
there exists C, = C.(2) > 0 such that

9) <e|Vuls+Collullp  Vu e H(Q).

Ju~(Vn)T~udS

r

In particular, we are using the fact that the curvature of the domain is bounded and
this makes possible to formally write for the Navier-Stokes equations the following
energy balance (obtained by using «’ as test function)

L@l + IV 01 < Ca+ ol + FoE
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(Calculations are formal and can be justified for example by means of Galerkin ap-
proximate functions. The existence of a smooth basis of eigenfunctions of the Stokes
operator with the prescribed boundary conditions is proved for instance in [17].) The
above argument proves the following bounds, uniformly in v > 0,

u' e L=, T;H) and V' € LA0,T;V).

Next, by taking the curl of the Navier-Stokes equation one gets the scalar equation
(1), since the two dimensional equations do not have the vortex stretching term.
Multiplying (1) by @" and performing standard integrations by parts one obtains
(since co‘VF =0)

d 112 112 2 2
g 1@z + 20 Ve'lly < fleurl £z + floofly-

In this way it is possible to prove the following crucial estimate
o’ € L0, T; L*(Q)),

again with a bound independent of v > 0.
The next step is to show that the bound on " implies the same on Vu'. As ob-
served in [1, 56], the system
M =Vt  in Q,
u -n=0 on I
' =0 on I,

where V= := (0, —0y), is elliptic. If we multiply the above equation by %' and in-
tegrate by parts over 2 we obtain

IC=0@D>0:  [[Ve'l; < C(lw[3 + lle’|)-

This finally proves that (under the above assumptions on the data of the problem) the
bound on w', together with that on %" coming from the energy balance, imply

(10) w' e L0, T; V),

uniformly in v > 0.

By comparison it follows (again uniformly in v > 0) that d,u” € L2(0, T; V'), hence
we can extract (with the Aubin-Lions argument, see [37] or the Friederichs in-
equality, see Hopf [23]) a sub-sequence {v,}, ., With v, — 0", such that {u"}
converges weaklys in L>(0,T;V) and converges strongly in L2((0,7) x Q) to a
function that we call %%, in such a way that

T T
J J " - V)u" vy dxdt mge J J WF - VyuF o wdax dt,
00 0Q
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for all v € V and w € L?(0, T). Moreover, specifically from (10) we also obtain that
ay, (U, v) "0 YoeV,

hence the function u® € L>(0,T;V) turns out to be a (possibly non-unique) weak
solution of the 2D Euler equations. With a slightly more precise argument, one can
show indeed that u¥ € L>(0,T;V)NC(0,T;H), with convergence u" — u¥ in
CO,T;H), cf. [1, Rem. I ].

2.2 - Some remarks

In the case of a simply connected domain one can introduce (up to an additive
constant) a stream function @’ such that

0P _ Uy and 0P _ w;
oxy 2 ors VU
in such a way that " = —A®". The vorticity equation (1) becomes

(= AD") + R(P") + vA D" = curl f,

N o (0D
R@) =5 ( o Acbv) ~ (8—902 Aqsv>,

and with the boundary conditions

where

@' = const. on I" x 10, T[,
ADY =0 on I" x 10, TT[.

This approach has been used in Yudovich [56] and J. L. Lions [37, § 6.9 Jto study the
vanishing viscosity limit in simply connected domains.

Uniqueness of weak solutions can be proved if the initial datum and the external
force have bounded vorticity, see Yudovich [56]. Improved results in spaces with
unbounded vorticity are those obtained by Yudovich [57] and Vishik [53]. Related
results in Besov spaces are those by Vishik [52] and Hmidi and Keraani [22] and we
observe that there is big activity along this path, also to study the existence and
uniqueness of strong solutions in critical spaces.

The argument explained to obtain the a priori estimates is just formal and one
needs to justify the calculations, by means of suitable approximations. In particular,
in [1] this is not addressed by the Galerkin approach, but by considering the
“modified” Navier-Stokes equations

o, —vav] + (uy - V)v, + Vp, =f  in Qx 10,71,

(11) .
V-v,=0 in Q x 10,71,
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with the same initial and boundary data and where u} = (I + eA) " (In particular
also V - %, = 0). The weak formulation for the approximate velocity v} is then: Find
v)(¢) € V a.e. such that

%Jv}j(t)vdac + a,(v,®),v) + J(u;'(t) Vvl vde = Jf(t)vdac YoeV.
Q Q Q

The approximation is made by replacing the transport term by a smoother one. This
is the original idea of Leray [35] to solve the Navier-Stokes equations, even if he
employed it for the Cauchy problem, with mollification by a smooth and compactly
supported kernel. The role of Leray’s approach has been recently (re)-analyzed and
emphasized in the LES community by Cheskidov et al. [16]. The system (11) is
known nowadays as the Leray-« model (in this case since the regularization para-
meter is ¢, it should be called Leray-¢). For a link with filtering and classical LES
models see also [11, 12]. We also observe that this approach requires some care to
handle the curl of the convective term. In fact, in general, for 2D divergence-free
vector fields a and b

curl [(a - V)b] = (a - V) curlb + ((810:)(0;b2) — (920,)(9;b1)),

and the term between parentheses does not vanish if @ # b. This explains why
slightly different estimates are needed in [1] to handle the term

J curl [(u) - V)v)]curlv) da = — J(u; - V), ) de,
Q Q

where the boundary term in the formula of integration by parts vanishes since
curlv,=0on I

2.3 - Proof of the main result

We can give now the proof of the main result, which follows by a combination of
the above techniques with the a priori estimate for fractional time-derivative in-
troduced in [13].

Proof (of Theorem 2.1). To prove the existence of %, a solution of (3), we
consider the vanishing viscosity approximation. First, we have to prove the existence
of weak solutions for the initial-boundary value problem (5) and this will be done in
three steps, by using the same approach of [13]. Next, we prove the estimates for the
vorticity allowing to pass to the limit as v — 0*.
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a) Existence of weak solutions of Navier-Stokes equations

We can smoothly extend ¢ into a function defined on the domain Q by solving a
boundary value problem. We recall that g € Hz#(0, T; H¥2(I')) and satisfies the
compatibility condition (4). Let us consider the following problem, which is elliptic for
/. € R* large enough and depending on the curvature of I" (cf. [1, Prop. 1)

—AG+AG+VII =0 in Q x 10,71,
V-G=0 in 2x10,7T],
G-n=g(wx) on I' x 10, T1],

curlG =0 on I" x 0,71,

(12)

where the time-variable in system (12) is just a parameter. The standard theory
allows us to use Lax-Milgram’s lemma and show that there exists a unique solution to
(12) such that

G(t,x) € H/?0, T; H\(Q)).
Moreover, further regularity holds true (cf. [17]) and there is a constant Cy, de-
pending only on £, such that
”G”HI/ZH(O,T;HZ(Q)) + (|17 ||H1/2+L(O,T;H1(Q)) <Collg ||H1/2+c<o,T~,H3/2(r)>-

Since we will treat the nonlinear problem as a perturbation of the linear one, we need
to establish a quite precise existence theorem for the following time-dependent
linear Stokes system:
ol — v +Vpt =0  in Qx10,T1,
V-ub=0 inQx170,T,
(13) ul n=g on I' x 10,717,
curlu* =0  on I" x 10,71,
u(0,2) = G(0,x)  in Q.

To better treat the contribution of boundary terms we introduce the new unknown
Z(t,x) = uk(t,x) — G, x)
in such a way that Z(t, x) satisfies the following homogeneous problem

OZ —vAZ + Vgt = —9,G +vAG  in Qx10,T1,

V-Z=0 in Q x 10,71,
(14) Z-n=0 on I" x 10, T],
curlZ =0 on I" x 10,71,

Z(0,2) =0 in Q.
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In the right-hand side there is the term v4AG € L>(0, T; L*(Q)) which does not cause
any problem, while — 9;G has low regularity (it does not belong to any Lebesgue
space with respect to the time variable) and we cannot apply standard methods to
prove existence results. However, we are able to prove existence of weak solutions by
using a method employing both the Faedo-Galerkin approximation and the esti-
mates for fractional derivatives.

Since we know at least that 0,G € H ‘%”(O, T; H*(Q)), we introduce a sequence
{GN}yen C HY(R; H3(Q)) of approximate functions such that

(@ GV, — Gin H*(0, T; H(Q)), as N — oo,
(o) HatGN”LZ(O,T;LZ(Q)) =N.

Let now {¢, } .., be an Hilbert basis of the space V, made of smooth functions, such
that curl¢, =0 on I" and let Z, y(,x) = Z & ;)¢ (x) be the solution of the fol-

k=
lowing (finite-dimensional) linear system of ordlnary differential equations for Cﬂ i

d

d
% JZTZ’N ¢]~ dx + CLv(Zn,Na ¢]) = - % J GN ¢j de +v J AGN ¢j dﬁé’,

Q Q Q

fort € (0,7),j =1,...,n,and with [ Z, x(0, ) ¢j(9c) dx = 0. By using a very standard

Q
argument, this system of ordinary differential equations has a unique solution and by
using (n (O$;() as test function and summing over j one easily obtains the following
estimate

T
sup [ Zo x| + j V20 (@2 de
0<t<T 0

N2 N2
C(|G lmmoree + G ||L2(o,,T;H2))v

with a constant C, depending only on Q (for 0 < v < vy, with vy given). The derivation
of the energy balance follows the same lines of that for the Navier-Stokes equations
from Section 2.1.

Unfortunately, these estimates are not uniform in N, due to the property (b) of
the approximate sequence {G"} ~yex- To overcome this difficulty we estimate (after
multiplication by Z,, x) the first term from the right-hand side of (14) in this way:

T
n., 7 N
- j J AG" - Zux dwds| < 10V, g 1208l
0Q
N
<G HH’“(OTLZ)H ”N”H‘*F(OTLZ)
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We need now an uniform estimate (with respect to both n and N) of Z,, 5 in the space
H %‘8(07 T: L?(2)). We shall use the Fourier transform characterization of the norm in
fractional Sobolev spaces and if

~ ZuN for t € [0, T1,
ZnN =
' 0 elsewhere,

we can write the following equality:

d [ . d [~
A A

Q Q

4 [ 4G, dio+ 61t) | 6 (O)gudo — 0(t — 1) [(Zu(1) + 6¥(T)) gy

Q Q Q

foreachk =1,...,n,where d( - )is the usual Dirac’s delta function. By passing to the
Fourier variable &, (and Z, y denotes the Fourier transform of Z, y) the above
equation reads as follows:

@J Zun & dit + ay(Zuy, &) = ifJ@N¢kdx+ vJAéNqﬁkdx
Q Q Q

+ JGN(O)qbkdx _— J(Z,Z,N(T) +GN(T))$,d.

Q Q

Consequently, by multiplying by Zq ~ (the complex conjugate of Z@‘ ~N) we get — with
some integration by parts —

& Zun () P+ VIV Zun ()5 = iE J GN Zynda + v J AGN Z,, ydiw

+jGN<0> o do — et GY(T)) Zyy do.

Q

K‘J%

We take the imaginary part and multiply both sides of the previous formula by
|€[%*71, with 4 <1/2 so that (by using Young’s inequality) one gets

EFZ O3 < CIEPHIGN |3

+ CIEP 2@ AGN @)l + |GV D]y + [ Zun (D]l + |GV O)]1,)%.

In order to estimate the integral [ |& |2)*||Z,Z,N(f)||§ dé&, we split it into two parts: the
R
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“inner” integral and the “outer” one. By the above estimate, we can show that

j |¢\2’~||27L,N<é>||§dfgcjmﬁ*n@’néw j 2 4G |2 e

61 R jg>1
+ G + 12Dl + 16X O | 12
[¢>1
The first term on the right-hand side is controlled by C||GY ||Z% T Moreover, for

|€] > 1 we also have

| e naeigas < | i IAGY I3 de < CIGN 2y

[€>1 [¢]>1
while (15) implies that

1Z.n (D3 < CIGN| 1Znn |l

1 .
HE(0,T:L2) HE5(0.T-L2)

Next, ||GY(0)|, is bounded by [|G(0)||, and finally, by using the Morrey inequality
H2+0,T) c C([0, T]), we get
IGY D), < 1G™]

HE(0.T-L2Q)

Observe that: a) for the validity of the Morrey inequality it is essential that ¢ > 0; b)
the integral of |¢[**~% is finite due to 2 <1/2.

The inner part is estimated as follows, by using Parseval’s theorem, Poincaré
inequality (which is still valid in V), and estimate (15):

T
j P Z B e < j 1Zn|2 e = jnzn.N(t)né dt
0

[¢]<1 R

1%l

H%*“(O,T;LZ) H%’*’(O,T;LZ)'

T
<c[Ivz.xl3dr < 16N
0
In conclusion, by collecting the above estimates we get that, for each ¢ € (0,1/2),
there exists a constant C, depending only on Q and ¢, such that

< C|GY|

1203 v gy <

HE(0.T-HAQ)

which, together with (15), shows that {Z,, x} is bounded, uniformly in # and N, in
the spaces H%‘S(O,T; H), L>(0,T;H), and L?0,T;V). As usual, it is possible to
extract a (diagonal) sub-sequence converging weakly in L2(0, T; V), and weakly* in
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L>(0,T; H) to the unique solution Z of problem (14). Next, u” is obtained adding
together G and Z; this is the solution with the required estimates in terms of the
data, that is

L2 L2
10 w0 720 2-w00. 122000 TV 20 720020
2
< Cligllzrzo, 1.2y

Remark 2.3. We observe that under the same assumptions it can be proved
that the solution u” is smoother, but we postpone it to the last part, showing now

existence of weak solutions for the viscous problem.

We study now the nonlinear problem and to prove existence of weak solutions for
the Navier-Stokes equation we introduce two new unknowns. Let (uk, pL) be a so-
lution of the system (13) and define

U:=u —ul and P:=p" —p

Then, the couple (U, P) solves the following homogeneous problem

U —vAU + [(U 4+ u*) - VIU +u*) + VP =0 in Q x 10,71,
V-U=0 in Q x 10, T1,

(16) U-n=0 on I" x 10, T1,
curl U =0 on I" x 0,71,

U0, x) + G(0, ) =up(x) in Q,

with weak formulation: Find U(¢) € V a.e such that
d

pr J Ut vde + a,(U®),v) + J[(U(t) +ul) - VIU®) +uH)vde =0 VoveV.

Q Q

The proof of existence is quite standard since is again based on the Galerkin method.
We show only the a priori estimate, which can be turned into a rigorous proof
working with Galerkin approximate function {U,}. To this end we multiply the
momentum equation in (16) by U itself and integrating by parts we get

1d

U5 +vIIVU|3 <

J[(U+uL)-V](U+uL)U
Q

+vCJ|U|2dS.
r
We handle in the usual way the boundary integral with (9). It remains only to esti-

mate the nonlinear term and we observe that since V- U =0 and U - n = 0, then

J(U-V)UUdac:O and J(U-V)uLde:—J(U-V)UuLdac.
Q Q Q
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Hence, we have

J[(U +ul) - VI(U +u") U de

(18) “
= J(ul’ VU Udx — J(U V) u dae + J(uL -Vul) U de.
Q Q Q

We estimate the terms from the right-hand side by using the Holder inequality,
the Young inequality, and also the following Gagliardo-Nirenberg inequality
(cf. [1, Eq. 41 ])

Jullps < COulY?IVuly? Yue H'(Q).

Note that in the case of functions vanishing on I" one can find a constant C
not depending on @ for the same inequality: For any open set Q (cf.
LadyZhenskaya [33, §11) it holds [|ul|,: < 2Y/4]ju]|3/?||VullY?, for all u € HY(Q).

We then obtain

J[(Uﬂ#) VWU +u*) U dee
Q
< 2w MUV U Nl + [ V|1 U

1/2 1/2 1/2 3/2 1/2 3/2 1/2 2
< Ol 132 IVul 2N U1 IV U + Clld 12 v 1321 U115 2V Ul

and consequently

”[(U—FML)-V](U—kuL)de
)

C

C
2 2 2 2/3 2/3
ST BT + S IVU I + o [ 5 v 3015

V
<IvUlE+
We then get the v-dependent a priori estimate

a
LN+ IVUIE < 5 I BIVaHIZITIE + - I o vt 31013

Ve |

and since
ul € L0, T; L3(Q)) N LA(0, T; H(Q)),

by using the Gronwall lemma we can infer that, non uniformly in v > 0,

U e L>0,T; H) N L0, T; V).
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The passage to the limit (in the Galerkin parameter) can be done by employing
the usual compactness tools: By comparison and by using the same regularity of
L as above one can bound 6;U in L?(0, T;V’); then one can apply Aubin-Lions
compactness theorem to pass to the limit in the nonlinear term. This finally
proves that, under the assumptions on g of Theorem 2.1 there exists a solution "
to (5) such that

u

uw' e L=, T; L3(Q)) N L*0, T; H(Q)).

It is clear that the above result is enough to prove existence for each fixed positive v
but, contrary to the homogeneous case, some care is needed to prove estimates
uniform with respect to v.

The last part concerns in fact with the estimates independent on the viscosity and
needed to pass to the limit as v — 0.

b) Vorticity estimate and vanishing viscosity limit

As a preliminary step we observe that the same argument employed as before to
study the linear problem (14) can be also applied to the linear problem for curl Z,
which is obtained by taking the curl of (14):

OreurlZ —vAdcurl Z = -0, curl G + v4 curl G in Q x 10,71,
curlZ =0 on I" x 10,71,
curl Z(0,x2) =0 in Q.
In particular, observe that if we take the curl of (12) we get that
—Acurl G+ A curl G =0,
hence we can rewrite the equation satisfied by Z as follows:
oreurl Z —vd ceurl Z = — 9, curl G — va curl G.

Under the same assumptions as before on g, the elliptic regularity implies that
curlG € Héﬂ(o, T;: H'(Q)). Hence, we can apply the same argument as before to
show that the unique solution of the linear problem for curl Z satisfies

curl Z € H: 40, T; LA(Q)) N L>(0, T; L2(Q)) N L*(0, T; H)(Q)).
This proves that Z is more regular and consequently we have also
ul € HE40, T; H\(Q)) N L0, T; H(Q)) N L2(0, T; HX(Q)).

This allows us to estimate in a better way the integrals in (18). In fact,
(- V)ur € L*0,T; L*(Q)) and as in [1, Eq. 105] we obtain (with the same tools as
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before) the following estimate

J[(UJr%L) VI +u") U dae| < 20w || U1V U Iz + e[l [V [l 1Tl
Q

2 2 2
< C(lu" (701U + IV U3 + [ Va"|I3),

for some C = C(Q) depending also on the Sobolev embedding H?(Q)—L>*(Q). We
finally obtain

d
19 ZIUI+VIVUIS < Ct 3R IU1E + VU5 + V().

The quantities ||u”||%> and || V2|3 both belong to L(0, T), but to handle the term
IVU|| from the right-hand side — without absorbing it into the left-hand side — we
need another differential inequality for first order derivatives. To this end, let us
consider the initial-boundary value problem satisfied by the vorticity of solutions of
the Navier-Stokes equations (5)

o] —vdw' + W' - V)" =0 in Q x 10,71,
(20) o' =0 on I' x 10,717,
®"(0, ) = curlug in Q.
We multiply (20) by @' and we integrate by parts (calculations can be justified by a

suitable smoothing or approximation of the problem). By using the divergence-free
constraint and the fact that w“F = 0 we get that

2 2
J(u" Vo' o' de = J(u" -n) % as — J(V -u")% dx = 0.
Q T T
We have then
1 d n2 12
2200 V|12 <
(21) 5 gl +vIve'l; <0

and consequently, the following bound independent on v,
' e L=, T; LXQ)).

The last technical step is to show that the bound on the vorticity implies a bound
on the full gradient of ", in order to use the information contained in the esti-
mates for U. Differently from the homogeneous case (cf. the end of Section 2.1) we
have now the following system
M =Vt  in Q,
u-n=g on I,
=0 on [
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By multiplying this system by " and integrating by parts over Q we get
- Jmﬂ = || V|5 — Jn V' -’ dS = ||o'|[3.
Q r
By direct calculations and by using that @’ = 0 on /" we obtain
W' - V)g = uj‘@(u;nz)
= w;(Qupn; +u;(Omu; = w;(pu;)n; + w;(Omn)u; on I.

By using the above equality and the trace theorems, the boundary integral of
n - Vu' - u' can be estimated as follows

Jn V- u'dS| < J [’ (V)" '] + |u - Vg| dS
r r
< CJ w2 dsS + J lu'| |Vg|dS
r r
<C(II 1 + llglh,rlee'llo )

< el| V'3 + e (J1w']l5 + g7 )
We finally obtain the following estimate

(22) IVu(l3 < C(|leo"| 15+ llgll3e)-

Next, we add (19) together with (21) and by using repeatedly u’ =u"— u” + ul =
U + u* and also the inequality (22) we obtain

2 :
2+

d V V
g U1+ 1015) + v(IV U + Ve |2)

DO —

< C(|uFeIlU15 + VU5 + | Ve]3),

< C(|[u™(F=N U5 + V' |l5 + 1| Vau(13),

< C(I[u™F=NT15 + lleol3 + lee’l3 + llglzse + IVu>]13),

< C(I[u™F= U115 + o' ll5 + 1UN5 + ™[5 + lgllFse + 1 V213),

for some constant C depending on the domain but not on the viscosity. Gronwall’s
lemma and the known regularity of g and of u” give the uniform estimate

sup ||[w'@®||gp <C,
te]0,T[

which is sufficient to pass to the limit in the viscosity parameter. We finally ob-
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tained that (up to a sub-sequence) u’ converges, as v — 0", to a weak solution
uf € L>(0, T; H(Q)) of the Euler equations (3). O
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