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Invariants of ample vector bundles on smooth projective varieties

Abstract. Let X be a smooth projective variety of dimension », let £ be an ample
vector bundle of rank » on X with 1 < » < n. Then we are going to introduce some
invariants of (X, £) which are considered to be a generalization of invariants of po-
larized manifolds we introduced before. Moreover we will study some properties of
these and some relationships between these.
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1 - Introduction

Let X be a projective variety of dimension % defined over the field of complex
numbers, and let L be an ample line bundle on X. Then the pair (X, L) is called a
polarized variety. Moreover if X is smooth, then (X, L) is called a polarized manifold.

When we study polarized varieties, it is useful to use their invariants. The sec-
tional genus g(X, L) of (X, L) is one of the well-known invariants of (X, L). In [3] (resp.
[5]) we defined the notion of the ith sectional geometric genus g;(X, L) (resp. the ith
sectional H-arithmetic genus x? (X, L)) of (X, L) for every integer ¢ with 0 <1 < n.
Here we explain the meaning of these invariants if X is smooth, L is base point free
and ¢ is an integer with 1 <7 <n — 1. Let Hy, ..., H,_; be general members of |L|.
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Weput X, ; :=Hin...NnH, ;. Then X, ; is smooth with dimX,,_; = 7, and we can
show that g;(X,L) = hi(Ox, ,) and y(X,L) = 7(Ox, ,). (Here we call y(Oy) the H-
arithmetic genus of a projective variety Y (see also [5, Definition 1.5]).

These induce the notion of the ith sectional invariant of (X, L) associated with an

mvariant.

Definition 1.1. Let (X, L) be a polarized manifold of dimension %. Let I(Y)
(or I) be an invariant of a smooth projective variety Y of dimension i, where 7 is an
integer with 0 < ¢ < n. Then an invariant F';(X, L) of (X, L) is called the ith sectional
mvariant of (X, L) associated with the invariant I if F;(X,L) = I(X,_;) under the
assumption that Bs|L| = (.

The ith sectional geometric genus (resp. the ith sectional H-arithmetic genus) is
the ith sectional invariant of (X, L) associated with the geometric genus (resp. the H-
arithmetic genus). By the definition of the ith sectional invariants, the ith sectional
invariants are expected to reflect properties of i-dimensional geometry. So we can
expect that we are able to find interesting properties of (X, L) by using its ith sec-
tional invariants.

In [6], we defined other ith sectional invariants, that is, the ith sectional
Euler number e;(X, L), the ith sectional Betti number b;(X,L), and the ith sec-
tional Hodge number h!" (X, L) of type (j,i—j) of (X,L) (see Definition 2.2.1
below) and we studied some properties of these. The meaning of these invariants
is the following. Assume that X is smooth, L is base point free and 7 is an integer
with 1<i<n-1. Let Hi,...,H,; be general members of |L|. We put
X,_i:=Hin...NnH,_;. Then X,,_; is smooth with dimX,,_; = 7, and we see that
ei(X,L) = e(X,, ), biX,L) = (X, _;,C) and k)" (X, L) = hHH(X, ).

The main purpose of this paper is to define a vector bundle version of these in-
variants as a generalization, and to give a frame of investigation of generalized po-
larized manifolds by using sectional invariants defined in this paper. In future, we
will give detailed investigations such as classification of (multi-)generalized polarized
manifolds by their sectional invariants.

Let X be a smooth projective variety with dimX = » and let £ be an ample vector
bundle on X with rank £ = . We assume that » < n. In Section 3, we will define the c,-
sectional H-arithmetic genus ){{Z X, &), the c,-sectional geometric genus g, (X, £),
the c,-sectional Euler number en',,. X, &), the c,-sectional Betti number by, (X, £) and
the c,-sectional Hodge number h'],:"f;/_r_j X, &) of type (j,m —r —7) of (X, &).

Moreover in Section 4 we will study fundamental properties of these, which will
be useful for investigations by these invariants. In Section 5, as a special case, we
consider the case where £ is a direct sum of ample line bundles. In 5.1, we will define
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the c,-sectional invariants of multi-polarized manifolds (see Definition 5.1.1). In 5.2,
we will show that some invariants defined before are special cases of these invariants
(see Propositions 5.2.1 and 5.2.2). In 5.3, we will study some properties of the sec-
tional Euler numbers, the sectional Betti numbers and the sectional Hodge numbers
of multi-polarized manifolds. In Section 6, we will propose some problems and con-
jectures.

Finally we note that in a forthcoming paper [10], we will make a study of
(multi-)polarized manifolds by using invariants which will be defined in this paper.

2 - Preliminaries

In this section, let X be a smooth projective variety of dimension # unless
otherwise mensioned.

2.1 - Some notation

In 2.1, we will give some notation which will be used later.

Definition 2.1.1. Let F be a vector bundle on X. Then for every integer j
with j > 0, the jth Segre class sj(F) of F is defined by the following equation:
ca(FV)sy(F) = 1, where F" := Homo, (F, Ox), c;(F") is the Chern polynomial of 7
and s;(F) = 3 sj(F)t.

J>0

Remark 2.1.1. (a) Let F be a vector bundle on X. Let 5;(F) be the jth Segre
class which is defined in [12, Chapter 3]. Then s;(F) = §;(F").

(b) For every integer ¢ with 1 < 1, s;(F) can be written by using the Chern classes
c;(F)with1 <j <. (Forexample, s1(F) = c1(F), s2(F) = c1(F)? — ¢2(F), and so on.)

Definition 2.1.2. Let & (resp. L) be an ample vector bundle (resp. an ample
line bundle) on X. Then the pair (X, £) (resp. (X, L)) is called a generalized polarized
manifold (resp. polarized manifold).

Definition 2.1.3. Let (X,&) be an n-dimensional generalized polarized
manifold with rank & =r. We assume that » <n. For every integer p with
0<p<n-—rweset

P
O (X&) = _ X5, 1(€").
k=0
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Remark 2.1.2. Let (X, &) be a generalized polarized manifold of dimension
n. Let 7 be the rank of £ with » <% — 1. Assume that there exists a section of
H%) whose zero locus Z is smooth and dimZ = n — ». Then there is an exact
sequence 0 — 7, — Tx|,; — &|; — 0 and we have ¢,(7 x|,) = c«(T z)ci(E|,), where
Tx (resp. Tz) is the tangent bundle of X (resp. Z). Hence we have c¢,(2)
= Ct((TX)Z)Ct(S|Z)_1 = ct((TX)Z)st(€V|Z). Therefore we get

i) = 605 (€N = Y X051 (E)en€) = C (X, E)en(E).
j=0 Jj=0
In particular, we have K; = (Kx + ¢1(E))c,(E).

2.2 - Sectional imvariants of polarized manifolds

In 2.2, we will review the sectional invariants of polarized manifolds.

Notation 2.2.1. (1) Let (X, L) be a polarized manifold of dimension %. Then
the Euler-Poincaré characteristic y(L®') of L*! is a polynomial in ¢ of degree n (see
[13, chapter I, § 1]), and we put

WL =3 4K, L) (t o 1).
J=0

(2) LetY be asmooth projective variety of dimension ¢ > 1,let 7y be the tangent
bundle of Y and let Qy be the dual bundle of 7y. For every integer j with 0 <j <7,
we put

hm@ﬂYL~wQ00%=xG¥J=JQMQ@TMTw-
Y

(Here ch(Q%) (resp. Td(7 y)) denotes the Chern character of Q{, (resp. the Todd class
of Ty). See [12, example 3.2.3 and example 3.2.4].)

(3) Let X be asmooth projective variety of dimension n. For every integers ¢ and
Jwith 0 <j <1 <m,we put

i—j—1 )
spsrody e
0 if j =1,
Jj-1 . o
(= D"'RA@QY) if j #0,
t=0
0 if j = 0.

Hy(X;1,5) =
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Definition 2.2.1. ([3], [5] and [6]) Let (X, L) be a polarized manifold of di-
mension n, and let 7 and j be integers with 0 < 5 < 7 < n. (Here we use Notation 2.2.1.)

(i) The ith sectional H-arithmetic genus ;{f (X,L) of (X, L) is defined as follows:
X, L) = g, (X, L).
(ii) The ith sectional geometric genus ¢;(X, L) of (X, L) is defined as follows:

9iX, L) = (= V(2 X, L) = 2(Ox)) + Z (= D" (Oy).
j=0

(iii) The ith sectional Euler number e;(X, L) of (X, L) is defined by the following:
ei(X,L) = C/""(X,L)L"".
(iv) The ith sectional Betti number b;(X, L) of (X, L) is defined by the following:
eoX,L) if 1 =0,

bi(X,L) := ) i-1 .

(- D' eX,.L) - > 2~ DX, 0| if1<i<n

7=0

(V) The ith sectional Hodge number k)" (X, L) of type (j,i —j) of (X, L) is de-
fined by the following:

R, L) = () {w5<X7L> — Hi(X;14,5) — Ha(X; m')},

where

. hi (CMNX L), -, CNX L)L, if >0,
wg(X,L) =
L, if i = 0.

Remark 2.2.1. Let (X, L) be a polarized manifold of dimension » and let 7 be
an integer with 1 <17 <mn — 1. Assume that there exists a sequence of smooth
projective varieties X =Xy > X; D--- D X,,_; such that dimX; =% —k and
Xy € |Lly, | for 1 <k <mn —i. Then

X, L) = 4(0x, ). giX.L) = 1(Ox, ) = W2 )

eiX,L) = eX,—),! biX,L)=hX, ;)
hf"ii" X,L)= hi‘j(Q)j(nii) for every integer j with 0 <j <1.

! e(X,_;) denotes the Euler number of X,,_; .
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3 - Sectional invariants of generalized polarized manifolds

In this section, we will define sectional invariants of generalized polarized
manifolds, which are thought to be a generalization of sectional invariants of po-
larized manifolds stated in 2.2. In this section we assume the following unless
otherwise mentioned.

Setting 3.1. Let (X, &) be an n-dimensional generalized polarized manifold
with rank € = r < n.

The following fact will be used later.

Fact 3.1. There exists a very ample line bundle A on X such that £ ® A% is
ample and spanned by any positive integer t. We set £(t) := £ @ A®'. Furthermore
there exists a general section of H°(£(t)) whose zero locus Z(t) is smooth with
dimZ@) =n —r.

3.1 - ¢,-sectional H-arithmetic genera and c.-sectional Euler numbers

In 3.1, we will define the c,-sectional H-arithmetic genus (resp. the c,-sectional
Euler number) which is a generalization of the sectional H-arithmetic genus (resp.
the sectional Euler number) of polarized manifolds.

Definition 3.1.1. The c,-sectional H-arithmetic genus xﬁy(X ,€) and the c,-
sectional Euler number e, (X, E) of (X, E) are defined by the followingz:

10X, 6) i=td, . (C} X, E), -, Ci" (X, 8))c,(E).
e (X, &) = O (X, E)c,(E).

Remark 3.1.1. If » =n, then we see that X’ZT(X, &) =cy(&) and e,,(X, &)
= ¢y ().

The following shows the geometric meaning of these invariants.

Proposition 3.1.1. Assume that » <n — 1 and there exists a smooth pro-
jective variety Z such that dim Z = n — » and Z is the zero locus of an element of

2 Here td,_, means the Todd polynomial of weight 1 — r (see [2, Definition 1.4 (1)]).
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HYE). Then
X =x02), e (X,E)=e).

Proof. First we consider X{ZT(X ,&). Then by Remark 2.1.2 we have
2 (X E) = td (C (X, &), -+, ChT (X, E))enl(E)
= tdy—r(c1(2), - -, Cn—r(2))
= x(O).
Next we consider e, (X, £). By Remark 2.1.2 we see that
eny(X,E) =C" (X, E)er(E) = cnr(Z) = e(2).

Hence we get the assertion. O
Proposition 3.1.2. )(Z,A(X, &) and e, (X, &) are integers.

Proof. By definition we see that e, (X, £) is an integer. Thus we will show that
xffm(X ,€) is an integer. If n = r, then by Remark 3.1.1 we get the assertion. So we
assume that » < n — 1. Here we use Fact 3.1 and notation in Fact 3.1. Then by [12,
Example 3.2.2], we see that for every integer k with 1 <k <n —r

k-1 o ) ]
SCORTICED 3] H CEr
=0

Therefore by Definition 3.1.1, we have 77 (X, £@®) — 7.(X,€) € Q[t]. We put
O =X, e0) - (X, 8).

Then there exists a positive integer ¢; such that f(;) is an integer. By Fact 3.1 and
Proposition 3.1.1 we infer that Xﬁr(X ,E(t1)) is an integer. Hence ;(%(X ,€) is an
integer. 0

3.2 - ¢,-sectional geometric genera and c,-sectional Betti numbers

Definition 3.2.1. The c,-sectional geometric genus g,,(X,E) and the c,-
sectional Betti number b, (X, E) of (X, E) are defined by the following:

gn X, €)= (= D" 7 X, &) + (= D" y(Ox) + > (= R Ox).
k=0

n—r—1
(—1)"—*<en,r(X,e>— > 2(—1)-%-7‘(X,<C>>, if r<mn,

J=0
en,n(X7 &), if » =n.

bpr(X,E) =
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Remark 3.2.1. (@) If » = n, then we see that g,,,(X, &) = ¢,(E) and b, (X, E)
= ¢y (E).

(i) The invariant g, (X, £) in Definition 3.2.1 is equal to the invariant g,,_,(X, £)
in [2, Definition 2.1].

By definition and Proposition 3.1.2, we get the following.
Proposition 3.2.1. ¢,,(X, &) and b, (X, E) are integers.

Moreover we see that g, (X, £) and b,, (X, £) have the following property.

Proposition 3.2.2. Assume that » <n — 1 and there exists a smooth pro-
jective variety Z such that dimZ = n — » and Z is the zero locus of an element of
HE). Then

InrX,E) =R"T(Og), b,,(X, &) =h"T"(Z,C).

Proof. First we consider the c,-sectional geometric genus. Then by [14, 1.3
Theorem], [15, Theorem 1.1 (1.1.3) and (1.1.4)] and Proposition 3.1.1 we have
n—r—1
GnrX,6) = (= D)" "X, = (=" Y (= 1D/hI(0x)
j=0

n—r—1

= (= 1""(O0n) = (= 1" > (= 1hi(0p)
Jj=0
— hn—r(oz).

Next we consider the c,-sectional Betti number. By Proposition 3.1.1 we get
enr(X,E) = e(Z). By [14, 1.3 Theorem], we obtain 1/(X, C) = hi(Z, C) for every in-
teger j with j <n —» — 1. Here we note that hi(Z,C) = h¥*"-(Z, C) by the
Poincaré duality. Hence

n—r—1
bur(X,6) = (— " (en,T(X,s)—z S (-, C))

=0

n—r—1
=(-1"" <e(Z) -2 )" (- 1hiz, C))

j=0
— (7, 0).

Hence the assertion is obtained. O

Remark 3.2.2. Ifr=mn—1,theng,, 1(X,€&)isthe curve genus of (X, &) (see
e.g. [1] and [16]).
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3.3 - ¢,-sectional Hodge numbers

Definition 3.3.1. The c,-sectional Hodge number hit"7(X,€) of type
(j,m —r —7) of (X, €) is defined by the following®:

I €) = (— 1) {wﬁ;m(X, &) — Hv(X;n —r,j) — Ho(X;m — 1, j)}.

Here we set

X.6) = { Ry JC (XL E), -, O (X, Eep(E),  if r<m,

Cn(g); if »= n,

J
wn,r

for every integer j with 0 <j <mn — 7.
Remark 3.3.1. If r = n, then we see that /)% (X, &) = ¢,(£).

Proposition 3.3.1. Assume that »r <n — 1 and there exists a smooth pro-
Jective variety Z such that dim Z = n — r and Z is the zero locus of an element of
HOE). Then

RITI(X,E) = BITT(Z)

for every integer j with 0 <j <mn —r.
Proof. First we note that H1(X;n — »,j) = H1(Z;n — r,j) and Hao(X;n — 7,7)
= Hy(Z;n —r,5) by [14, 1.3 Theore_m], [15, Theorem 1.1 (1.1.3) and (1.1.4)] since

0 <j<mn—r. We also note that Vw‘j,/_r,ﬂ(X, E) = hy_ j(CY"(X,E), -+, Cl" (X, E))er(E)
= hy_y j(c1(Z), -, Cnr(Z)) = ){(Q}). Hence by definition we get

B IX,0 = (= 1" ] (X, — HXim = r.j) — HoXim =) |

n,r n,r
= (=" @) — HGin—r.j) - HoZim — ) |
= W),

Therefore we get the assertion. O

Proposition 3.3.2. k1 "V(X,€) is an integer for every integer j with
0<j<n-—mr

3 See Notation 2.2.1 (2).
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Proof. If r =mn, then by Remark 3.3.1, we get the assertion. So we assume
that » < n — 1. Here we use Fact 3.1 and notation in Fact 3.1. Here we note that by
[12, Example 3.1.1] we have

J . 1 o
SED) =3 (- i (;"_ 1 ii) (e Ay
k=0

(see also Remark 2.1.1 (a)), the following equality holds.

w] (X, Et)

n—r

! Lyr

= Z { ( Z qllﬁ“'vln—hm/l7“‘7771/11—7‘61(X) P C”_T(X) "
k=1 (I, by sy o g ) €A ()

X 51(E™ 5, (EV" VA () + ] (X, ),

nr

where q;, .1, ,my-m,., € Qand

n—r n—r

Zulu—&-vav:n—r—k}.
u=1 1

V=

Alk) = {(Zl, oy, M, My—y) € Zggnf%

Then there exists a positive integer s such that
Sqlla'”-,l?z—r~7n1~,"'77n7z—r E Z

for every (l1,---,ly_r,m1, -, My_y). Therefore w,{m(X LE(s)) — w,ﬂ.ﬁ.(X ,€) is an in-
teger. Since £(s) is generated by its global sections, by Fact 3.1 and Proposition 3.3.1
we see that w;i,T(X ,E(s8)) is also an integer. Therefore wﬁ7T(X ,€) € 7, and we get the
assertion by the definition of h-f;‘;’f’uj X, &). O

4 - Fundamental properties of these invariants

In this section, we will study fundamental properties of invariants defined above.
In particular, we will consider some relations among them. First of all, we can prove
the following theorem in general.

Theorem 4.1. Let (X, &) be a generalized polarized manifold of dimension n
with rank & = r. Assume that r < n — 1. For every integer j with 0 <j <mn — 1, we
get the following.
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n—r
@) bn,r(Xa &= Z hi%ﬂlirik(X, ).
=0

(i) 2y E) =l X ).
(iff) k70X, €) = K1 T(X, €) = gur(X, ).

n,r n,r

(iv) If n — r s odd, then b, (X, E) is even.

Proof. We use Fact 3.1 and notation in Fact 3.1. Then by Propositions 3.1.1,
3.2.2 and 3.3.1 we have b, (X, £(t)) = k" "(Z(t), O), bt "7 (X, EXt)) = hi"~"I(Z(t)),
and gn,r(Xy E(t)) - hn_T(OZ(t))-

By the Hodge theory, we get

W) = BTIZ)

WUZW@) = ") = k" (Oga)

R Z®), C) = f WM T D).

j=0

Hence for any positive integer ¢, we see that

(1) BRI E®) = H XL E)
2) IO EW®) = BT (XL EW) = g (X, E)
(3) b (X, EB) = S hiTI(X, ).

=0

Since b,,,(X,E®), hiy "X, E®), ki 7 IX,EW®) and g,,(X,£@)) are poly-
nomials in ¢, we see that (1), (2) and (3) are true for any integer ¢. In particular, by
putting t = 0, we get the assertion (i), (ii) and (iii). Furthermore by (i) and (ii), we can
prove that b, (X, £) is even if n — r is odd. Hence we get the assertion. O

Remark 4.1. (1) In Theorem 4.1, we only assume that £ is ample (not ne-
cessarily generated by its global sections).

(2) Let Y be a smooth projective variety of dimension % — ». Then
n—r ) .
(2.1) (i) in Theorem 4.1 corresponds to 2" "(Y,C) = > b/ "(Y).
) . J=0 .
(2.2) (ii) in Theorem 4.1 corresponds to A/~ "7(Y) = h""7JI(Y) for every
integer j with 0 <j <m — 7.
(2.3) (iii) in Theorem 4.1 corresponds to A" "0(Y) = k%" "(Y) = h""(Oy).
(2.4) (iv) in Theorem 4.1 corresponds to the following fact: If n — ris odd, then
r"r(Y,C)is even.
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3) If » —r =1, then by (i) and (iii) in Theorem 4.1

bn,r(Xa &= hl’O(Xa &+ h%(X, &= 29%,7‘(X; E).

n,r

Next we prove some inequalities under a special assumption.

Proposition 4.1. Let (X, &) be a generalized polarized manifold of dimen-
ston n with 1 <r <n —1, where r = rank . Assume that there exist a smooth
projective variety Z of dimension n — r such that Z is the zero locus of an element of
HY(E). Then for every integer j with 1 < j < n — r the following hold.

@) by, (X, E) > 29,.(X,E).
(i) by, (X, &) > B (X, C).
(i) ki7" (X,E) > WX,
iv) If n — r = 2k, then h’f;ff.(X, E>1

Proof. (i) By Propositions 3.2.2, 3.3.1 and Theorem 4.1 (i), we obtain

n—r n—r
burX,€) = Y i TRX, &) = S K RZ)
k=0 k=0

> W NZ) + 1 Z) = 20" (Og) = 200,(X, ).

(ii) By Proposition 3.2.2 and [14, 1.3 Theorem], we obtain b,,,(X, ) = k" "(Z,C)
> (X, C).

(iii) For every integer j with 0 < j < 4, by Proposition 3.3.1 and [14, 1.3 Theorem],
we get by (X, £) = hI"r(Z) > hirri(X).

(iv) By Proposition 3.3.1, we have h’fb-f;(X L&) =h*(Z) > 1 and we get the
assertion. O

5 - Sectional invariants of multi-polarized manifolds

In this section, we consider the case where an ample vector bundle £ is a direct
sum of ample line bundles. First we define the following notion.

Definition 5.1. LetlLy,...,L,, (resp.&q,...,Ey) be ample line bundles (resp.
ample vector bundles with rank&; =) on X. Then (X,Li,...,L,) (resp.
(X, &1,...,Ep)) is called a multi-polarized manifold of type m (resp. multi-gen-
eralized polarized mamnifold of type m with rank (ry, ..., ry)).
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5.1 - Definition

Here we will define sectional invariants of multi-polarized manifolds.

Definition 5.1.1. Let (X,Lq,...,L,_;) be a generalized polarized manifold
of dimension %, where ¢ is an integer with 0 <7 <% — 1. Then we define the ith
sectional H-arithmetic genus ;QH X,Lq,...,Ly,_;), the ith sectional Euler number
e;(X,Ly,...,Ly,_;), the ith sectional geometric genus ¢;(X,L1,...,L,_;), the ith
sectional Betti number b;(X, L1, . .., L,_;) and for every integer j with 0 < j <1, the
ith sectional Hodge number "~ (X,Ly,...,L,_;) of type (j,i —j) are defined as
follows.

XZI'{(X7L17 s 7L1’L—i) = an77(XaL1 D @Ln_i),
gi(X,Ll, cee ;Lnfi) = gn,nfi(XaLl b D Lnfi)a
ei(X,Ly,...,Ly;) = en,nfi(X7L1 ®---®L,y),
biX,Ly,...,Ly_):= bn,nfi(X; Li®- @ Lyy),

WX Ly, L) = h (X Ly @ - @ L),

n,n—1

First we prove the following lemma.

Lemma 5.1.1. Let (X,&1,...,Ey) be a multi-generalized polarized manifold
of type m with rank (ry,...,ry) and let r = i 1. Assume that r <n — 1 and there
exists a sequence of smooth projective v(;;ileties ZyD 41D D Zy such that
dimZ; =n — Z 1, and Z; is the zero locus of an element of H(&;| 7 ) for every

=
nteger j with 1 <j < m, where Zy := X. Then

ZZT(X7 51 S D gm) = ngﬁmfﬁ(zl’ 52|Z1 D0 5m|Z1)
Xn T+Vm, 'Vm( m— 1’57"|Z"” 1
- X(Ozm)’
en,1~(X, gl DD g’m) = en—Vl,V—T“l(Zh 52|Z1 SRR gm‘Zl)

= Cpn—r+r,, Tn,(Z7VL 1, m‘z
=eZn),

m— 1
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gn,r(Xa E1®--®ER) = gn71~1,r71~1(Z1,<€2|Zl DD gm|Z1)

= In—r+ry,rm (Zm—h 8m|Z"171)
=h""(Oz,),

bnm(Xy gl b D gm) = bnfrl,rfﬁ(zlagﬂzl b D 5m|Z1)

= bnfwrm T “ m—1, Em | Zon1 )7
=h"Zn,O),

RIPTTIX EL B B Eyy) = RISz 52|Z1 DD gm|Z1)

n,r N—ry,r—7r1

_ B tr) =1 —j
- hn_"""rm;;z " (Zm_l’ 5m|Zm—1)

= h'j’niyij(zm)-
Proof. First we prove the following claim.

Claim 5.1.1. Let X be a smooth projective variety of dimension n and let F
and G be ample vector bundles on X with rank F = r and rank G = s. Assume that
there exists a smooth projective variety Z of dimension n — v such that Z is the zero
locus of an element of H'(F). Then for every integer j with 0 <j <mn —1r —s

CI (X, F @ G)ers(F @ §) = C'"(Z,G7)cs(Gr).

Proof. This can be proved by the following equality.

C" (X, F © G)crys(F © 9)

J
= { 3 sk (F @ g)V)}c,mcs(g)
k=0

J ks
= {Z (Z 0y XS, <fV>> <sjk2<gV>>}c,.<f>cs<g>

k=0 \k1=0

J
=3 et (Dsj-1,(G)es(Gz) = C' " (Z, G2)es(Gn).
ka=0 O
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By Definitions 3.1.1, 3.2.1, 3.3.1, Claim 5.1.1, Propositions 3.1.1, 3.2.2 and 3.3.1, we
get the assertion of Lemma 5.1.1. O

By Definition 5.1.1 and Lemma 5.1.1, we can prove the following.

Proposition 5.1.1. Let ¢ be an integer with 1<i<wm—1 and let
X,Lq,...,L,_;) be an n-dimensional multi-polarized manifold of type n —1.
Assume that there exists a sequence of smooth subvarieties X D X; D --- DX,
such that X; € |L]-|X7_71 | for every integer j with 1 <j <n — 1. Here we set Xy := X.
Then for every integer k with 0 <k <mn — 1 — 1 we have

XZH(kaLk+1|Xk> e aLTI,—’L'|Xk) = X'L(—I(Xk+17Lk+2|Xk+17 o 7L7L—’i‘Xk+1)7
9iXp, Ll - - - Lu—ilx,) = 9is1, Lieszlx, o - - - Luilx,., )
€i(Xk, Ll - - - Ln-ilx,) = €iXhs1, Liszly, s - -+ Lnilx, )
bi(kaLk+l|Xk7 s ;Lnf7',|XA_) = bi(Xk+1aLk+2 |Xk+1’ cee aLn7i|Xk+1)7

h'i} 7(Xk»Lk+1|Xk» s ,Ln—i|Xk) = hii 7(Xk+1»Lk+2|Xk‘la s »Ln—i‘xk‘l)-

In particular, we have
X, Ly,..., L, ) = y(Ox, ),
¢i(X, Ly, ..., L, ) = h'(Ox, ),
e;X,Ly,...,L,_;) = eX,_;),
biX, L1, ..., Ly_) = h'(X,_;,C),
RIX Ly L) = R, ).

5.2 - Relation between cp-sectional invariants and invariants defined before

The following proposition shows that the sectional invariants of polarized mani-
folds in 2.2 are special cases of invariants defined in Definition 5.1.1.

Proposition 5.2.1. Let © be an integer with 0<i<wmn—1 and let
X,Lq,...,L,_;) be a multi-polarized manifold of type n — 1. Assume that a line
bundle L is ample and Ly, = L for every integer k with 1 < k < n — 1. Then we have

X Ly, L) = 1 (X, L), 9iX, Ly, ..., Ly—) = ¢:(X, L),
eX,Ln,...,Ly) = e;(X, L), biX, Ly, ..., Ly3) = bi(X, L),
hij’i*j(X,Ll, cos Ly ) = hg’ifj(X,L) for every integer j with 0 <j <.
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Here Xfl X,L), 9;(X,L), e;(X,L), b;(X, L), hij‘i_j(X ,L) are sectional invariants de-
fined in Definition 2.2.1.

Proof. We will prove the first equality. Other equalities can be also proved
by the same argument as the following. Let H be an ample line bundle on X such
that L(t) := L ® H®' is ample and spanned for any positive integer ¢. Then there
exists a sequence of smooth projective varieties X > X; D --- D X,_; such that
X € L) Xk—1| for every integer k with 1 < k <mn — 1. Then by Proposition 5.1.1
and [5, Remark 2.1 (4)] we have

W X,L@),...,LEt) = 1(Ox, ) = 7 (X, L®)).
n—1i
Since y#(X, L(®), ..., L®)) and y# (X, L(t)) are polynomials in ¢, by the same argument
as in the proof of Theorem 4.1, we have

AX L, .. L) = X, 100), ..., L) = (X, L) = /X, L).

Therefore we get the assertion. O

Remark 5.2.1. Under the assumption that X is smooth, we see that
)gf(X, Ly, ...,Ly,_;) (resp. g;(X, Ly, ..., L, ;) in Definition 5.1.1 is equal to

XfI(X7L17 o 7Ln—i; OX) (resp' gi(X7L15 oo 7L’/L—1',; OX))

in [7, Definition 2.1]. We also note that ;(f(X, Ly,....L, ;)(resp.g;(X,Lq,..., Ly ;)
is defined for any smooth projective variety X, but in [7, Definition 2.1],
;{{I(X, Ly,...,L,_;;Ox) (resp.9;(X, L1, ..., L,_;; Ox)) was defined for any projective
varieties.

We also note the following.

Proposition 5.2.2. Let X be a smooth projective variety of dimension n.

(1) Let & be an ample vector bundle of rank e on X with e < n. Let £, = € and let
Co=-=Epin1=c(E) f 1<n—e—1 Then gn.,n—i(X7 E1D - D Epeit1) 18
equal to g;(X, ) which 1is the ith c.-sectional geometric genus of generalized polar-
1zed manifold (X, £) defined in [2, Definition 2.1].

(2) Let € be an ample vector bundle of rank e on X with e < n — 1 and let H be an
ample line bundle on X. Let &1 =Eand let Eo = --- =&, =H ife <n — 2. Then
Iun-1X,E1 P - - ® En—e) 18 equal to the tnvariant g(X, £, H) which was defined by
Fust and Lanteri in [11].
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Proof. We are going to prove the assertion (1). We use Fact 3.1.* Then by
Lemma 5.1.1 and Definition 5.1.1, we see that for every positive integer ¢

Inn—iX,EQ D c1(EQR) @ - -- B c1(E®)))
n—e—1
= Gn-en—e—ilZ4@),c1(E@)ze) ® - ® c1(ED)z0) )
n—e—1

= gi(Z®),c1(E@)zay, - -+, 1(EB)zp) )-

n—e—1

By Proposition 5.2.1 and [2, Theorem 2.2], we have

9i(Z@®), c1(EBzwy, - - -, c1ED)zw ) = 9:(Z(Q), c1(ER))ze) = 9:(X, EQ)).

n—e—1

Hence we get
Gna—iX,EQ) @ c1(ED) @ - -- D c1(EQ))) = 9:(X, ED))

for every positive integer ¢. By the same argument as in the proof of Theorem 4.1, we
see that
gz(Xa &= gn.nfi(Xa ERc©)® - P ().

So we get the assertion of (1). We can also prove (2) by the same argument as the
proof of (1). O

5.3 - Some properties of the sectional Euler numbers, the sectional Betti numbers and the
sectional Hodge numbers of multi-polarized manifolds

In [7] and [9], we studied the sectional H-arithmetic genus and the sectional
geometric genus of multi-polarized manifolds (see also Remark 5.2.1). So here, we
will study some properties of the sectional Euler numbers, the sectional Betti
numbers and the sectional Hodge numbers of multi-polarized manifolds. First we
will show Theorem 5.3.1 which is a generalization of [6, Theorem 4.4]. Before this, we
need the following.

Definition 5.3.1. Let k be a positive integer.

1) Let (X,Ly,---,L;) and (Y,A;q,---,A;) be n-dimensional multi-polarized
manifolds of type k. Then (X, L1, - -, L) is called a simple blowing up of a multi-

4 Here let ¢ = rank £.
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polarized manifold (Y, Ay, - - -, Ay) of type k if there exists a blowingupz : X — Y at
a point y € Y such that L; = n*(4;) — E and E|; = O..1(—1) for every integer j
with 1 <j < k, where E =~ P"! is the exceptional effective divisor.

(2) A multi-polarized manifold X ,ivl yoe ,fk) of type k is called a reduction of
(X,Ly,---,Ly) if there exists a birational morphism

n:(X,Ly,- L) — (X, Ly, L)

such that 7 is a composite of simple blowing ups and X , E e ,Z;) is not a simple
blowing up of another multi-polarized manifold of type k. This = is called the re-
duction map.

Remark 5.3.1. Let (X,Ly,...,L;) be a multi-polarized manifold of type ¥,
where k is an integer with 1 <k <mn — 1.

(i) If(X,Lq,...,L) is not a simple blowing up of another multi-polarized mani-
fold of type k, then we regard (X, Ly,...,L;) as a reduction of itself. Then there
always exists a reduction of (X, Ly, ..., Ly).

(ii)) Let (X,L1,...,Ly) be a simple blowing up of (Y,H;,...,H}). Let = be its
birational morphism and let £ be its exceptional divisor. Assume that there exists a
smooth projective variety X; € |L;|. Then Y; := n(X;) is also a smooth projective
variety of dimensionn — 1 and Y7 € |H;|. By the same argument as in [8, Proposition
2.1] we see that (K1, —E1|p,) = (P2, Opn2(1)) and (Ly)x, = (nXl)*(H,-|Y1) — FE4 for
every integer j with 2 < j < k, where £ := E N X;. Hence (Xl,Lg\Xl, e ,Lk|X1) isa
simple blowing up of (Yl,Hg\Y17 e ,Hk\yl) and n\Xl : X7 — Y7 is its birational
morphism. By repeating this process, we see that if there exists a smooth projective
variety X;,1 € |Li1]y,| of dimension n — [ — 1 for every integer [ with1 <1 <k — 2,
then Y;,1 := (n|y )(X;41) is also a smooth projective variety of dimension # — 1 —1

and Y, € |Hl+1|Yl\, and we infer that (Xl+1,Ll+2|XM,...,Lk|XM) is a simple
blowing up of (Yl+1»Hl+2\yM7 e 7H;C|YM) and 7r|Xl_1 : X;11 — Yy is its birational
morphism.

Proposition 5.3.1. Let (X,L1,---,L,_;) be a multi-polarized manifold of
type n — 1 with dimX =n, let (Y,Hy,---,H,_;) be a reduction of (X,Ly,---,L,_;)
and let n: X — Y be its reduction map. Let y be the number of points blown up
under the reduction map. Let i and j be integers with 0 <j <iand 0 <i<n — 1.
Then

(a)
e;(X, Ly, -, Ly) =e;(Y ,Hy, -+, Hy ) + (@ — Dy.



[19] INVARIANTS OF AMPLE VECTOR BUNDLES ON SMOOTH PROJECTIVE VARIETIES 291

(b) bl(Y7 H17 e aHn—i) ’Lf 2 7:8 Odd7

bi(X, Ly, L) =L b;(Y ,Hy,--- \H,_;)+v if ©1s even with i > 2,
boY,Hy,---,H,_))—y ifi=0.

(© jii—j
WY Hy, o Hy) i1 <dand 25 # 4,

WX Ly, L) = BIY Hy, - Hy )+ if 1< and 2j =i,
h'(Y Hy, - Hy ) —y  if i=0.

Proof. Firstwe note that it suffices to consider the case where (X, Ly, -+, L,,_;)
is a simple blowing up of (Y, H4,---,H,_;). Let 7 : X — Y be its morphism. Then
L; = n*(H;) — E holds for every integer j with 1 <j <n — ¢, where £ is the ex-
ceptional divisor. Let H;(t) := Hj@t and L;(?) := n*(H;(t)) — E. By the same argument
as in the proof of [8, Claim 2.1], there exists a positive integer p such that H;(t) and
Lj(t) are ample and spanned for every integersjand ¢ with1 <j <n —iand ¢ > p.
By Remark 5.3.1 (ii), for every integer k¥ with 1 <k <n — 1 — 2 there exists a
smooth projective variety Xy, 1(t) € |Li1(8)[x, (| of dimension n —k — 1 such that
Yi1(t) := (] Xk@)(XkH(t)) is also a smooth projective variety of dimensionn — k — 1
and Y1 (t) € |H k+1(t)|Yk(t)|’ and we see that (Xj,, 1 (t), Ly o)) X Ly @)] Xm(t))is
a simple blowing up of (Yy.1(#), H, k+2(t)|yk+1(t), . ,Hn_i(t)|YkH(t)) and 7| Xeu® X 1(t)
— Y}41(?) is its birational morphism. Therefore by Proposition 5.1.1, [6, Theorem 3.2]
and [8, Proposition 2.2], we see that the following hold for every integer ¢ with
t>p.

ei(X, L1@), - -+, Li—i(®) = €;(Xy i 1(®), LDy, . )

= ei(Ynfifl(t)a H”*i(t)‘Yn,i,l(t)) +@—-1)
= e;(Y,Hy(t), -, H, () + (i — 1),

bi(X; Ll(t)a e 7L’}’L7i(t))

= biXy i 1), LuiDly, . )
bi(Ynfifl(t)aani(t)|yniiil(t)) if 118 Odd,

=9 0V, i 1@, Hy i@y, ) +1 if iis even with 7 > 2,
bo(YVy—ia®), Hy i@y, ) —1 ifi=0,
bi(Y,H (), -, H,—t)) if 7 is odd,

=< (Y, Ht), -, H,_;@)+ 1 if 7is even with ¢ > 2,
bo(Y,H1(t), - H, ;@) —1 if i1 =0,



292 YOSHIAKI FUKUMA [20]

B @), Ly (D)

= 1" X1 @, L@y, )
WO iy, ) i 1<iand 244
= 3 W WO Hy iy, ) +1 i 1< iand2j =i,
hg’O(Ynfiq(t),H wi®ly, ) —1 ifi=0,
hg',i—j(K Hi@), - H, (@) if 1 <iand2j#1,
= ¢ R H @), Hy @)+ 1 if 1 <dand 2 =1,
WO Hy (), Hy i) — 1 if i = 0.

Here we note that e;(X,L1(0), - -,L,_(®), e, Hyit), -, H, ;@)
b, La(®), Ly i®), biY Hy®), -+ Hy @), X, La®), -+ Ly i(8)  and
RI'(Y, Hi(t), - ,H,_i(t)) are polynomials in ¢. Hence we see that the above
equalities hold for the case of t = 1, and we get the assertion. |

Next we consider a lower bound for the second sectional Euler numbers of multi-
polarized manifolds. First of all, we will give the formula for the sectional Euler
number of multi-polarized manifolds.

Remark 5.3.2. We note that

(4) sy @ oL))=(-1D" > @y L),
(p1,....pr)eH (k)

where we set
H(k) = {(pl,...7py) €75y | ij =k }
j=1

Hence, by Definition 5.1.1 and (4) we see that

(5) ei(Xale s 7L7L7i)

)
= Z (— l)Z_kck(X)< Z .. .Lgﬂ,;)Ll e L.
k=0

P1,-Pu—i)€H(—k)

Theorem 5.3.1. Let (X,Ly,...,L, 2) be a multi-polarized manifold of type
n — 2 with dimX =n > 3. Assume that «(X) > 0. Let (M,A;,...,A,_2) be a re-
duction of (X, Ly, ...,L,_2) and let y be the number of points blown up under the
reduction map. Then the following hold.
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@
1 n—2 2
e2(X,L1,...,Ly 2) > on (jzlL]) Ly Ly
n—2
. (ZL2>L1 s (U002,
>nZ Vo =2 0y,
n
(i)

bo(X, Ly, .., Lo 2) > 49X) +7 > ».

Proof. Since x(X) > 0,we seethat Ky, +A; +--- +A,_gisnefand (n — 2)-big
by [9, Theorem 5.2.1]. Hence by [4, Theorem 2.1] we have

n—2
02(M)A1 n 2 > __KM <Z ) n 2

j=1

S

(i) By Proposition 5.3.1, the equality (5) in Remark 5.3.2 and (6) above we have
eZ(XaLla oo aLn—Z)
= ez(M,Al, o ,An_g) +7y
2
=Y (- 1)2—’“ck<M)< S An.ar ;)A Ayt
k=0

(pl ‘‘‘‘‘ Pn— 2)6H(2 k)

n—2 n—2
E%KM (ZA]'>A1 A 2tg- <2A>

j7

n—2
<2A2>A1 Aoty
122 \° (n 2) L1 \
> % L7 Ll 'Ln—z + ZL o 'Lnfz
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Since
2 n—2
<ZL> M>2< 5 >+n—2 and (ZL?)leLn_an—z,
j=1
we have

n—2 n—2 _ _
(ZL> n 2+ (ZL2>L1 n 2 >W~

Hence we get the assertion of (i).

(ii) Next we will prove the inequality (ii). If n = 3, then this is true by the proof of
[6, Theorem 4.4]. So we assume that n > 4. First we note that by Definition 5.1.1,
Proposition 5.3.1 and the equality (5) in Remark 5.3.2 we have

n—2
@@LhuwwgMMmyw%4+m(ZMOm~A%2
j=1

+Z(AA)A1 Ao +4qM) —2+y.

i<j

(7)

(ii.a) Assume that KyA;A;---A,_2 =0 for some j. Then Ky =0 because
x(X) > 0 and each A; is ample. Hence c2(M)A; ---A,_2 > 0 by a Miyaoka’s result
([17, Theorem 6.6]). So by (7) we get

bo(X, Ly, ..., Ly 2) > Y (AidDAs -+ A, o +4qM) — 2+ .
i<j
Since we assume that n >4, we have ) (4;4)A;---A,_2>3. Hence
bo(M, Ay, Ay 5) > 4gD) + 14y > dg(M) + 7.~
(ii.b) Assume that Ky A;A; - - A,_2 > 1 for every j. Then by (6) and (7) we have

bZ(X le' .. n 2)
n—2 ’l’b-i—l n—2 )
> KM ;A Ay Ay g+ —— 5 ZA N
+= Z(AA)AI n-2 +4qM) —2+y

z<;

>4qM) + (n—4) +y > 4q(M) + y

n—2 n—2

because 1 > 4, (ZAJZ)AI---AH 220 =2 and 5 (AdDAL- Ay oz > ( 5 >
J=1 <J

So we get the assertion (ii) because (M) = q(X). O
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6 - Problems and Conjectures

In this section, we will provide some conjectures and problems. First we propose
the following.

Conjecture 6.1. Let X be a smooth projective variety of dimension n, £ an
ample vector bundle of rank r on X. Assume that r < n — 1. Then the following
mequality hold.

g?Z,T(X7 8) Z 07 b?b,’r'(Xa 8) Z O

The following problem is very interesting in view of classification theory.

Problem 6.1. Classify n-dimensional generalized polarized manifold (X, E)
with rank £ < n by the value of c,-sectional invariants defined in Section 3.

More strongly, we can propose the following conjecture by considering
Proposition 4.1.

Conjecture 6.2. Let X be a smooth projective variety of dimension n, £ an
ample vector bundle of rank r on X. Assume that v < n — 1. Then for every integerj
with 0 <j < mn — r the following hold.

@) by (X, &) > 29, ,(X, E). (i) by (X, E) > KX, C).
(iii) B2 "I, €) > himHX), (V) If n— r = 2k, then WEE(X, €) > 1.

If £ is an ample vector bundle of rank  with 0 < ? = n — 7, then ¢,-sectional in-
variants of (X, £) are thought to reflect some properties of i-dimensional manifolds
from Propositions 3.1.1, 3.2.2 and 3.3.1. In particular we can propose the following
problems for the case i = 2.

Problem 6.2. Let X be a smooth projective variety of dimension n, £ an
ample vector bundle of rank r on X. Assume that n —r = 2. Then generalize the
theory of surfaces in view of c,-sectional invariants of (X, E).

For example, the following is an answer for this problem. We can regard the
following theorem as an analogue of Noether’s equality.

Theorem 6.1. Let (X, ) be a generalized polarized manifold of dimension n
with rank € =n — 2. Then

12/, (X, 8) = (Kx + c1(E)Feu2(E) + yn2(X, ).
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Proof. We use Fact 3.1 and notation in Fact 3.1. Let
F(t) := (Kx + c1(E®)) en_2(ED) + ey 2(X, ERF)), Gt) = 12)({1{”,2()( ,EQ@)).

Then F'(t) and G(t) are polynomials in ¢. For every positive integer p, by Remark 2.1.2
and Proposition 3.1.1 we have F(p) = (Kx + c1(E(P)*cu—2(ED)) + €nn_2(X, E(p))
= (KZ(,,))2 + e(Z(p)). Since Z(p) is a smooth projective surface, by Noether’s equality
we have (Kz(p))z +e(Z(p)) = 127(Ozp). So by Proposition 3.1.1, for every positive
integer p, we have F(p) = (KZ(p))2 +e(Z(p)) = 124(Ozp) = 12;{5, noX,E@P)) = G(p).
Hence we see that this equality also holds for £ = 0 because F'(t) and G(t) are poly-
nomials in ¢. Therefore we get the assertion. O

Moreover, we can propose the following conjectures specifically.

Conjecture 6.3. Let X be a smooth projective variety of dimension n, £ an
ample vector bundle of rank n — 2 on X.

(i) (Analogue of Castelnuovo’s theorem) If k(Kx + ¢1(£)) > 0 (resp. > 2), then
A (X, E) >0 (resp. > 0).

(ii) (Analogue of Bogomolov-Miyaoka-Yau’s theorem) If x(Kx + c1(£)) > 2,
then
9, (X,6) > (Kx + c1(E)eu2(E).

(ili) (Analogue of Noether’s inequality) If Kx + c1(€) is nef and k(Kx + ¢1(E))
> 2, then
(Kx + c1(E)en2(E) > 2¢un-2X, E) — 4.
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