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Symmetric system of balance laws

for a micromorphic continuum model of dielectrics

Abstract. An electromechanical model for dielectric solids is formulated
within the microcontinuum field theory. Electric dipole and quadrupole den-
sities are introduced consistently with the microstructure and a set of non
linear balance equations for micromorphic electroelasticity are derived.
Constitutive assumptions are adopted accounting for additional internal vari-
ables compatibly with the second law of thermodynamics. It is shown that the
differential system of balance laws can be given in a symmetric hyperbolic
form. Stability conditions on wave motion superimposed to an undeformed
polarized state are obtained in the form of suitable inequalities on constitutive
parameters.

Keywords. Continuum theory of -electroelastic solids, continuum micro-
mechanics, wave stability.
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1 - Introduction

The growing interest in technological applications of materials manifesting

various types of electromechanical effects has motivated a noticeable theoretical
effort in developing continuum theories of mechanies, capable to account for
electro-elastic, magneto-elastic, thermo-electro-elastic and other couplings. In
the past few decades, fundamental contributions to these theories have been
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given concerning with the derivation of balance equations and boundary con-
ditions compatible with the lattice’s structure of the solid. A suitable set of
constitutive equations have been also introduced, general enough to account for
the desired electromechanical interactions (among the more relevant works, see
[3, 4, 12, 13, 14, 16]). A great part of these models can be reduced to linear
theories to be applied in various specific problems. Also, non linear theories
have been exploited to derive the governing equations for electromechanical
fields superimposed on an initially deformed configuration. In this respect,
some recent studies have been proposed on the basis of essential constitutive
assumptions in order to obtain definite results on incremental motions and
stability (see [5, 17]).

More refined theories of mechanics have been also proposed where a me-
chanical microstructure is attached to the continuum material element (see [6-
10]). Although this approach, in some sense, might be viewed as a bridge be-
tween the lattice’s theory of solids and the classical continuum mechanics, it has
been developed considering purely mechanical microfields. Electromagnetic
interactions have been accounted for via a suitable choice of constitutive
equations, beside the inclusion of Maxwell equations. This approach represents
a refined electromagnetoelastic theory with an increased number of degrees of
freedom but, ultimately, the microfields reflect a mechanical and not electro-
magnetic microstructure.

In the present paper we propose a micromorphic continuum model for
electroelastic solids which extends the Eringen’s approach of micromechanical
fields [6] to electric dipole and quadrupole due to charge microdensities. This
approach allows a definition of electromagnetic polarization and magnetization,
in a natural way, as macroscopic fields in the continuum. In the first part of the
paper we summarize some fundamental kinematical and dynamical concepts of
micromorphic continua giving a set of balance equations for non linear micro-
continuum dielectrics (Section 2) according to a previous work [19]. Constitutive
equations are introduced in Section 3 exploiting the second law of thermo-
dynamics and suitable internal variables which account for dissipative effects.
In Section 4 we show that balance equations, together with the entropy in-
equality, can be written in the form of a symmetric hyperbolic quasi-linear
differential system, from which, existence and uniqueness of the solution to the
Cauchy problem could be proved. Then, in Section 5, we study the stability of
wave motion about a mechanically undeformed configuration where a sponta-
neous electric polarization exists, as occurs in ferroelectric materials. The sta-
bility condition here derived applies to both linear and non linear waves pro-
vided a strict dissipative inequality hold.
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2 - Micromorphic polarizable dielectrics

According to the Eringen’s approach to microcontinuum mechanics [6], a con-
tinuum microstructure is given in the spatial configuration by the position of the
microelement center of mass x = X(X, ?) and the relative position in the microele-
ment & = &X, =, t) where X and = are the corresponding positions in the reference
(material) configuration. Gradients with respect to X and x will be denoted by Vx
and V respectively. We assume & = y(X, t)=, where y is the microdeformation tensor
and denote by F the deformation tensor (Vxx)’, letting both F and y to possess
continuous inverses F~! and X. We also pose J = detF.

A convenient choice of strain measures is given by the following material tensors
(see [6]),

2.1) C=F'%" c=4"7, T=%%%p"

which are called, respectively, deformation strain tensor, microdeformation strain
tensor and wryness tensor. Material time rates of microdeformation tensors are
given in terms of the microgyration tensor N, as y = Ny, X = —XN, whence

(2:2) E=Ng,

so that the velocity of a point in the microcontinuum is x + & = v + N& From the
previous definitions, we have

(2.3) C=[FL-NF", C¢=2"SymN)y, I =[XVN)yF,

where L = (Vv)’.

We consider here a dielectric elastic solid where free electric charges are absent
and summarize the main results obtained in [19] on forces, couples an power den-
sities in the micromorphic continuum, giving the corresponding balance equations.

If AV is the volume of a microelement and p'(x, &) denotes the mass density within
the microelement, the zeroth and second order (in &) quantities

1 / /. L / /.
(2.4) | P o = p, 7 | rxoeocar =100
AV AV

define, respectively, the (macroscopic) mass density and the microinertia tensor.
The corresponding first order quantity vanishes identically. The momentum and
moment of momentum in the continuum turn out to be

(2.5) v, X X pV + pwW,
where w has components

w; = &eNuZj.
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In a similar way, denoting by ¢’(x, &) the electric charge density in the microelement,
the first and second order quantities

1
= J Fx,OEW = p(x),

(2.6) v

1
= J o, DE®EQ = Q)

AV

are identified respectively with the electric dipole density and the electric quadrupole
density. The last quantities are microcontinuum counterparts of dipole and quadru-
pole densities introduced in lattice’s theory of polarizable crystals (see [12], ch.3 and
references therein). Mechanical and electromagnetic force densities are given by

2.7) £(x) = £'(x,0) + - IV(Vf’)(x 0).

f"x) =(p- V)€ (Q V)V5+ (N-L)p] xB
(2.8)

+1[(N —L)QV]x B +iB x [(Q.V)LT],
c 2c

where f'(x, &) is the microelement force density and £ = E —&—g x B. Here E and B

are the local electric field and the magnetic induction within the microelement and ¢
is the light’s speed. As a consequence, the mechanical and electromagnetic force’s
moments are

(2.9) x x pf + pe, x x £ 4 o™

where, in components,

(2.10) ¢i = ek fig Lits ;" = &Gy
with
(2.11) C"=pe&+EQ

Here we have introduced the tensor E with entries
1
(212) En = Ek,l + Egkpq(Npl - Up,l)Bq-

According to [6] the traction on the element of surface with normal n and the moment
of surface traction can be written in terms of an electromechanical Cauchy stress
tensor T and a third order tensor m as

(2.18) nT, x x (nT) + nM



[5] SYMMETRIC SYSTEM OF BALANCE LAWS FOR A MICROMORPHIC ETC. 259

where the second order tensor M is given by
Mij = gnemign-

The previous definitions allow us to evaluate the following mechanical and electro-
magnetic power of body and surface forces

(2.14) w™® = pf - v + ptr[Z(V)N],
(2.15) W =E-Np+p - (VE)V+tr[QVE)N]+v-(Q- - V)VE,
(2.16) w" = nT -v + tr(nmN7).

As a fundamental consequence of the previous results, equations (2.8), (2.11) and
(2.14) imply

(2.17) W™ — £ .y — tr(CE™N) = 0.

From equations (2.4); and (2.6) we obtain the following balance laws for microinertia,
dipole density and quadrupole density,

(2.18) 7 = 2Sym(N7),

(2.19) .
Q+ Q(V -v) = 2Sym(NQ).

From equations (2.8), (2.9), (2.13)-(2.16), we arrive at the following balance laws for
momentum, spin and energy,

(2.20) pv=pf +f"4+V-T,

(2.21) po=p(VH' T+ —S+V - m,

(2.22) pé = tr(SN) + tr[(¥ — C™)(L — N)] + mNji + ph — V - q,
where

(2.23) o = NZ + NNZ,

is the spin inertia tensor, & = T + C*" and S is a suitable second order symmetric
tensor arising from the derivation of the dual form (2.21) of the balance law for
moment of momentum (see [6]). In addition, e, / are, respectively, the internal en-
ergy per unit mass and the heat supply per unit mass, and q is the heat flux. A
comparison with the corresponding balance law given by Eringen in [6] shows that in
view of equation (2.17), electromagnetic contributions to the power are here im-
plicitly accounted for by the tensors S and T, via the balance law (2.22) (see [19]).
The previous equations must be complemented with the Maxwell equations for
the electromagnetic field. Assuming that the electric polarization can be approxi-
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mated by the electric dipole density, we write the electric displacement as

(2.24) D=E +p,

and, according to [12] and [19], we obtain the following expression for the magne-
tization vector M,

1
(2.25) M; = %ﬁljk(Nkp - vk,p)ij'
Denoting by H the magnetic field, we have B = H + M and, in Heaviside-Lorentz
units, the following Maxwell equations must be satisfied,

(2.26) V-D=0, V-B=0,

1. 1.
(2.27) VxE+ B=0, VxH--D=0.

3 - Constitutive assumptions

In order to formulate constitutive assumptions and require their compat-
ibility with the second law of thermodynamics it is convenient to rewrite the
governing equations of Section 2 in the material form. Concerning with the
balance equations for dipole and quadrupole densities, we introduce the material
quantities

P=JF'p, Q=JF'Q%",
and pose

L=FYL-N)F.
The balance equations (2.19) take, respectively, the following material form
(3.1) P+LP=0, Q+LO=0.

Then, introducing the first Piola-Kirchoff stress tensor T =.J F!¥, the second
Piola-Kirchoff tensors

Y =JF'%y, S=JXRX', M=JF'm¥'y,

and the material fields

f=fy, N=z'Ny, I=2%I%",

G =EF, E=FTE ,,
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the balance equations (2.20) and (2.21) become
(3.2) pov = pof +JE™ + V- [T — (P @ € + QETF],

3.3) poN = pol(xDF —Fr1€ T+ [€YTc — €S + Dx - M—2p, Sym(N\)C NI,
where p,J = p and where
(Dx - MDgr = Muqr.n + Mugk ! 'rkr — Mukr ! kou-

With a similar procedure, from equation (2.22) we obtain the material form of the
energy balance

. 1. . . .
(3.4) poe:EC:S+P~@+Q:E+@:\Y+FLKHMHLK+p0h—VX~q,

where
qg=JFq.

Equation (3.3) is equivalent to that obtained in [19] which was written in terms of the
spin inertia tensor. The present form is more convenient for the analysis of the next
section. The Maxwell equations can be given in the material form after the in-
troduction of the following fields,

B—JF B, D=JFD, H= (H _g X D)F.

Thus equations (2.26) and (2.27) are replaced by (see also [12]),
(3.5) Vx - D =0, Vx -8B =0,

(3.6) Vxx@—l—%%zo, va.@—%@:o.

Equations (3.6) can be rewritten in a form of balance law which will be useful in the
analysis of the next section. Owing to equations (2.24) and (2.25) we obtain

(3.7) D=%-X,
(3.8) B=Vx-Z
where

X = 580% 2D @ [F v+ LOC T,

7 = 7580(@ ~-P)-2(F'v)© 9.

Here ¢ is a third order tensor whose entries are the permutation symbols egxy..
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We denote by # the entropy density and introduce the free energy density
v = e — n0, where 0 is the thermodynamic temperature. Then, the second law of
thermodynamics can be written as

(3.9) pirzpG =V .

In view of equation (2.22) and accounting for the previous positions, we obtain the
following material form of (3.9),

. 1. . . . . 1
(3.10) po(y'/+;70)—§C:S—IP-@—@:E—@:Y—FLKHMHLKJrEq-GgO,

where
G = Vx 6.

We account for electromechanical dissipative effects introducing a set of internal
variables which satisfy suitable evolution equations (see [18]). Accordingly we as-
sume the following dependence of the free energy density,

(3.11) v=uylC,C I PQ,002k«K)
where 2 and k are, respectively, a second order symmetric tensor and a vector which

play the role of internal variables. They are supposed to satisfy the following evo-
lution equations,

(3.12) Q=QUA4N,  i=k441),
where
(3.13) A={C,P,Q}, A={C P0G}, A={Q«}.

For the sake of simplicity we consider evolution equations which are linear with
respect to the fields of the sets Aand 4, ie.,
Q=C+ AP+ BQ + 7,2

(3.14)
k=RG+y,x

where A, B, R are respectively third-order, fourth-order and second-order tensors
and y, 7, are real quantities. They are all functions of the variables in the set 4 and,
in view of the symmetry of €, their entries comply with the following conditions

Ankr, = AL Brxryv = Brurm.

Substituting equations (3.11) and (3.14) into (3.10) we obtain the following con-
stitutive equations
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Y = pows +va), € = py(yp + o), E = pwo + wab),
(3.15) S = 2pgye, M= poyr,

n=—vy, q=—pby,R
together with the dissipative inequality
(3.16) VoW o® + W,k < 0.

In equations (3.15), (3.16) and in the sequel, derivatives with respect to a field
variable are denoted by the pertinent subscript. In view of the identity € = L7, and
exploiting equations (3.1), equation (3.12); can be rewritten as

(3.17) Q=1"C - ALP — BLQ + y,9.

dp

Finally, assuming that R depends only on 6 and introducing R such that R = 0

we rewrite equation (3.12), in the form
(3.18) o=V - RT + k.

We observe that the choice of the sets of variables A and A is essential to account for
thermoelectromechanical dissipative effects. More general choices are possible
which include dependence on microdeformation strain and wryness (see [19]).

4 - Quasi-linear system of balance laws

In order to obtain a symmetric form of the system of balance laws, we reduce the
previous analysis to the case in which the non-local dependence on micro and macro
fields are neglected. To this end we introduce the quantity

1, 1 o1
(4.1) e=e+-1?P+=N:IN4+—(C-D+H-D),
2 2 Po

and replace the governing equations derived in Section 3 by a set of balance equa-
tions for the field

Z= (F7V7laN7£7 Pv@a @,%,Q’ K)»

assuming that these equations hold for null spatial gradients of z. We also discard the
body force density f and, owing to the material form of the microinertia balance
(2.18),

137" =0,

we pose I = J, where 3 is a constant tensor. Accordingly, equations (3.2) and (3.3)
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reduce to

(4.2) pov =V - [T =P eE+QENHF 1]+ g™,
(4.3) poN = Vx - (MSH + 2,

where

I =[CYTCc™ — €S — 2, Sym(N)CTINIY

Owing to (4.2) and (4.3) we can rewrite the energy equation (3.4) as a balance law for ¢
in the following form

(44)  pi=-VK-q+ IV LI N+ 2T+ (E-D+9-B)+ poh
where
2 =SymMN):S+LIC: Y -LP-G-LQ:E,
and where we exploited equations (3.7), (3.8) and the independence on the gradients
of z. The deformation tensor and the microdeformation tensor satisfy the equations

(4.5) F=mwv!, 7=\,

hence the whole set of balance equations for the field z is given by equations (4.1)-
4.4), 3.1), (8.7), (3.8), (3.17) and (3.18). It can be cast in the following form
(4.6) 9,K,(z) = h(z), «=0,1,2,3,

B B .
where 0 = 5, O = 5o, K =1,2,3, Ko = z.and (K, Kp, Ky) = I, with

vl
pi[T —(P®E+0QENHF]
0
0

1~
— M3,

Po

(47) K=- P
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0
I pem
Po
2N
1y
Po
4.8) h= | Liv 4 23 N4 24 D4 H B+ h
Po P
-LOQ
0
0
LIC — ALP — BLQ + 7,2

Vick

where [ has entries dyx. Again, it is understood that the components of K and h are
valued for null gradients of the fields z.

Using the last two equations in (3.15), the entropy inequality (3.9) can be re-
written as

h
-

Since the free energy introduced in the constitutive theory of Section 3 can be ex-

¢9 S —VX : (1/71ch) -

pressed as a function of z, we rewrite that inequality in the following form
(4.9) 0ymy(2) < 9(2),

where
Ty = Wy, ik = W, )aRyk, 9=-5

Equation (4.6) represents a system of first-order quasi-linear partial differential
equations for the fields z. Equation (4.9) is an additional scalar inequality which is
required to be satisfied by the solutions of system (4.6). This inequality can be
exploited to derive a symmetrizability condition by the use of the entropy theorem
(see[1, 11, 20, 23]). According to this theorem there exist a privileged field z’ and four
potentials 7/, such that

(4.10) dn, =7z - dK,, K, =(7),.

Substitution of (4.10), into (4.6) yields the equivalent system
(411) (ﬂ;)z/z/axll =h.
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If 7, is a strictly convex function of z’, equation (4.11) represents a symmetric hy-
perbolic system of balance laws. Well posedness of the local Cauchy problem with
smooth initial data can be proved for such a class of differential system. From
equations (4.10) we get

(4.12) =2 -K,—7,
whence, for o = 0,
! / !
g =12 - Z— T, z' = (m),-

This means that 7, is the Legendre transform of 7y and the convexity of 7y implies
the convexity of 7. From (4.1) we have

17 1 1 1
== |-+ +=N:IN+—(C-D+§-D)|,
0 2 "2 P
and accounting for the constitutive assumptions on y and the dependence of $ on

F.v,x,IN,;Q, D, 5, we obtain

- 1
xTV/G+p_O(@F’©+©F‘%)

v+ —9, -8
Po

- 1
IT‘//c+1//cI+p—0(@1'®+5§x'%)

N+ l@\ -B
Po
-1
(4.13) 21 wp + 1 Ep-D
0 Po

- 1
l//u+p_(@o'®+§?o'%)
0

—(C+H5-8B
/)0( Do -*B)

1

— (D + Oy - *B)

Po

- 1

Yo+—Co-D
Po

~ 1
Vet+—C- D
Po
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We observe that, substituting equation (4.12) into inequality (4.9) we obtain
7z -h<yg,

which, in view of equations (4.8) and (4.13), coincides with the dissipative inequality
(3.16). Denoting by H(z) the hessian matrix of the restriction of 7y to the field z, the
convexity requirement amounts to

HE, 7, P,0Q,D,8,2, k) is positive definite,
(4.14) -
Yoo <0,

and, in particular, this implies the condition

(4.15) lf!m V:QK is positive definite.
Ve Vix

Together with inequality (3.16), the constraint (4.15) yields

We note that the question about the existence of global solutions for the Cauchy
problem requires, in general, a more detailed analysis of system (4.11), in order to
check specific constraints on characteristic eigenvectors (a general view on this point
can be found, for example, in [22] and references therein). In the next section we
restrict the problem of smooth global solutions to a more specific setting.

5 - Wave stability with respect to an undeformed state

The symmetric system of balance laws derived in the previous section is exploited
here to derive a stability condition for wave propagation. The present derivation
parallels that performed in [18] concerning a continuum dielectric model where
polarization gradients are accounted for. The basic point underlying the present
derivation is that the asymptotic stability condition for non-linear waves, with re-
spect to a fixed configuration z, is equivalent to the stability condition of high fre-
quency linear waves propagating about z, (see [15, 21]).

Here we have in mind a ferroelectric solid, for example, of dipole type with 0,
below the Curie temperature. We assume in the following that the heat supply % be
zero and that an undeformed configuration exists at # = 6, in which macro and
microdeformations are absent and, possibly, a natural electric polarization is allowed
in such a way that system (4.6) be satisfied with h = 0. Incidentally, we observe that a
linearization of the governing system, and, in particular, of equations (3.1) implies
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the trivial vanishing of dipole and quadrupole densities if they are zero in the initial
unperturbed configuration. In this sense, the present model is a genuinely non linear
theory for polarizable electromagnetic solids.

In terms of the field z the unperturbed state is

(6.1) zo = (1,0,1,0,0,1P,0,0,0,0,0).
The corresponding privileged field z’' turns out to be

1 ~ —(0) ~(0) ~ ~ ~0) ~
(6:2) 7 =5 W0, 215", 0, Ly 50 U + Vg A 0.Wg )

where I has entries d;x and where all the derivatives of i are valued at C = € = 1,
I'=0,P =Py, Q=0,0=0) and 2 = x = 0. Posing z' = z’ — z{, we can linearize
system (4.11) about the undeformed state obtaining

(5.3) AVo7 + AVogz = BO7,
where the matrices

(54) ABO) = [(ni))z’z’]oa A;g) = [(n,[()z’z’]oy B(O) = [hZ’}O7

are valued at z' = z;,. Since the derivatives of h with respect to the second and the
ninth field in z’ are null at z;,, we reduce the previous system to a simpler one for the
corresponding nine fields variable 7/,

(5.5) APo7 + AQogz = BV7.
Accounting for (4.14), the matrix ABO) is positive definite. Introducing the matrix
U= [ABO)]I/ 2, system (5.5) can be rewritten in the form
(5.6) oW + AgOxw = Bw
where
w=U%, Ag=UT'AQU?!  B=U"'BOUL

Now we consider wave propagation along one coordinate axis, restricting equation
(5.6) to the single value K = 1. This hypothesis does not affect the generality of the
results. Denoting by w; an eigenvector of A; corresponding to the eigenvalue /;, the
stability condition for plane waves propagating along X; (at high frequencies) re-
quires (see [15])

(57) Wi - BW1 <0,

for any amplitude w; in the eigenspace of the phase speed ;. Owing to the last of
equations (6.4) the symmetric part of B is explicitly
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0 0 0 0 0 WE
~T 1 T 1 A T

0 0 Gf SPrel 0 SU-APy) @l

0 G 0 0 0 0
58) BY =0, ,
] %1{@1% R w2

0 0 0 0 0 wi

We %I[@(I[—APO) 0 Wy, Wy W

where zeroes represent null block matrices of suitable order and where

.~ - 1 1. - . 11 : -
G =0+ + 500 [0 + iy — 2052 — 5 [0 @ Po + TP AP,

1-1

-1
e A
Xv\vc = — . : . 0 B
7ol ['//fzg)z Vil [l//f;,?}
—0 ]! 01! o a1
W 1| 72 {1//139} T 1| 7e [WQQ} Yo [t//,[)!2 + Vg QA\}
W=y Ve =35
2 ]! B o - i
A 20| e[+ TA]
~ -1 1 ~ -1 - -1
voVin] 5 {79 AN }
VWV - 1 1 1
~0) ]~ N _ 3
A I A

In view of the previous positions,
wi-Bwi = (U 'wy) - BY (U wy),

then, from (5.7) we conclude that the condition for stability of linear waves as well as
for asymptotic stability of non linear waves is

(5.9) Bgo) is negative definite.

In particular, owing to (5.8), the expression of ¥ and equation (4.15), a necessary
condition for stability is that inequalities (4.16) hold strictly. This result is in ac-
cordance with a corresponding one obtained in [18]. In terms of the theory of weak
discontinuity waves in continuum mechanics, the condition (5.9) is also sufficient to
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say that waves propagating on the configuration zy admit a superior bound for the
initial amplitude above which no critical time occurs (see [2, 21]). Of course, the same
result holds for configurations in which a natural polarization is absent.

6 - Conclusions

In this paper we have considered some mathematical properties of a micro-
continuum model for a dielectric solid. The idea underlying this model is that, in
contrast to the standard approach, the continuum microstructure intrinsically ac-
counts for both mechanical and electromagnetic quantities via the mass and charge
microdensities. Polarization and quadrupole densities are then introduced in a
natural way and the balance equations for both mechanical and electromagnetic
fields are derived coherently. We have shown that the differential system of balance
laws can be written in a symmetric hyperbolic form for a set of field variables. To this
end, some inequalities are required by the thermodynamic constraints. This system
is then exploited to study the stability of linear and non linear waves about an un-
deformed configuration which involves a spontaneous polarization. The stability
condition is obtained in terms of definiteness of a suitable matrix of constitutive
quantities.
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