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A brief history of the Poincaré conjecture

Abstract. In1904 H. Poincaré proposed the problem of deciding whether a closed
simply connected 3-manifold exists which is not homeomorphic to the 3-sphere. A
negative answer to the question was soon labeled as the Poincaré conjecture, al-
though Poincaré himself made no attempt to answer it. The question puzzled
mathematicians for over 100 years and finally a positive answer to the conjecture has
recently been obtained by G. Perelman. As many of the problems remained open for
along time, Poincaré conjecture or, better, the attempt at a deeper understanding of
the problem produced an incalculable amount of mathematics. The aim of this essay
is to give a report, short and incomplete of necessity, of some of those developments
as well as brief comments on still open problems.
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1 - Introduction

In the time elapsed between 1895 and 1904 Poincaré wrote a series of six papers
on the Foundations of Topology. He introduced homology and the fundamental
group. In his 1900 paper, he raised the problem of proving that a closed * connected 3-
manifold with a vanishing first homology group is homeomorphic to the 3-sphere. In
the 1904 paper though, published in the “Rendiconti del Circolo Matematico di
Palermo”, he described a counterexample to-day called the Poincaré sphere. This is
the quotient of the standard 3-sphere by the free action of a group of isometries of
order 120, which is a perfect group, i.e. it coincides with its commutator subgroup. In
the same paper he also proposed the problem of studying closed 3-manifolds with a
vanishing fundamental group. He did not elaborate on the problem, just commenting
that “.cette question nous entrainerait trop loin.” He probably did not completely
realize how hard the problem was and, consequently, did not have a clear idea of “
how far away it would have taken us”. In fact the question of whether a closed simply
connected 3-dimensional manifold is homeomorphic to the 3-sphere, known as the
Poincaré Conjecture® was officially solved only in 2006. The solution, due to G.
Perelman, appeared in a series of preprints posted on the Internet in the years 2002-

! i.e. compact with empty boundary.

2 Poincaré really asked if it was possible to find a simply connected closed 3-manifold non-
homeomorphic to the 3-sphere. He made no guess on the solution, i.e., he did not make any
conjecture.
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2003, which divided the mathematical community into two classes: the supporters of
the proof and the skeptics. Finally, the 2006 meeting of the International Union of
Mathematicians awarded Perelmann with the Fields medal for his work on the
problem, thus making the correctness of his proof official.

There is a basic principle in Mathematics:

If you can not solve a problem, generalize it!

The first natural generalization looks at the dimension of the manifold. It is clear that
simple connectedness is too weak a condition in higher dimensions. For example, the
product S? x S? and the complex projective plane CP? are closed, simply connected 4-
dimensional manifolds which are 7ot homeomorphic to the 4-sphere S*. With the devel-
opment of topology, it soon became clear that the natural generalization is the following:

Generalized Poincaré Conjecture (G.P.C. for short):

Let M" be a closed n-dimensional manifold, homotopy equivalent to the -
sphere S”. Then “M" = S"”.

Remark 1.1. It follows from general results of algebraic topology that a
simply connected closed 3-manifold is homotopy equivalent to S3. In fact, by duality
such a manifold has the same homology of S. It follows from the Theorems of
Whitehead and Hurewicz that a closed simply connected manifold with the same
homology of S" is homotopy equivalent to S™. Therefore the classical Poincaré
conjecture is equivalent to the G.P.C. for n = 3.

In the next section we will discuss some basic concepts in order to have a better
understanding of the statement of the G.P.C. In particular, we will explain what is
meant by the equality “M" = S"”.

2 - Basic concepts

We recall that two maps® f;, fi : X — Y are homotopic if they can be deformed
one into the other. More precisely, they are homotopie if there is a map:

H:[0,1]xX—Y, HQOx =fyx), Hl,z) =fi(x), Ve € X.

If the two maps are homotopic we will write f; ~ f1.

3 By a map we will always mean a continuous map.
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A mapf: X —Y is a homotopy equivalence if there is an inverse in the homo-
topy sense, i.e. a map ¢g: Y — X such that gof ~ 1y, fog~ ly. When such a
homotopy equivalence exists, we write X 2 Y, and say that X and Y are homotopy
equivalent.

If M is a closed manifold homotopy equivalent to the sphere, we say that M is a
homotopy sphere. Thus the hypothesis of the conjecture is that M is a homotopy
sphere.

We will now discuss what “M" = S"” could mean in the statement of the G.P.C. In
fact, in dimensions greater than three, there are several different meanings.

Let M be a Hausdorff, second countable topological space. An atlas for M is a
collection of maps ¢, : 2, C R"— M, « € A, such that ¢, is a homeomorphism of an
open set 2, C R" onto an open set U, = ¢,(Q,) C M and such that M = |J U,. The

acA
maps ¢/}1 o ¢, are called changes of coordinates. We have the following concepts:

o M isatopological manifold if it admits an atlas. In this case we write M € TOP.

e M is a piecewise linear manifold if it admits an atlas whose changes of co-
ordinates are piecewise linear*. Once such an atlas has been fixed, we will write
M € PL.

o M is a differentiable (or smooth) manifold if it admits an atlas whose changes
of coordinates are differentiable ®. Once such an atlas has been fixed we will write
M € DIFF.

Given M,N € PL andf : M — N, we say that f is PL if the y/;l ofo¢,are PL-
maps, where w, and y, run over the (fixed) PL atlas of N and M respectively.
Similarly, we can define differentiable functions between manifolds in DIF'F.

The natural equivalence relations are the following:

e My, My € TOP, M, ror M, if there exists a homeomorphism f : M; — M.

e My ,M> e PL, M, P:LMZ if there exists a PL-map f : M; — M, with a PL
inverse.

o M1, Ms c DIFF, My %" M, if there exists a differentiable map f : M1 — Mo
with a differentiable inverse.

Remark 2.1. Clearly M € DIFF = M € TOP and M € PL = M € TOP.
From the triangulation theorem for differentiable manifolds, we may say

4 A piecewice linear map between open sets of Euclidean spaces is a map whose graph is a
polyhedron, i.e a locally finite union of Euclidean simplexes.
® Differentiable will mean of class C*.
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M € DIFF = M € PL. In general there are a lot of manifolds in 7OP which are not
in PL or DIF'F, as we will see. Moreover, two manifolds in a given category may be
equivalent in a larger category but not in the original one.

For the moment, let us state the following facts:

e In dimension » < 3, the three categories “coincide”, as well as the corre-
sponding equivalences. In particular, any topological manifold of dimension < 3
admits a unique differentiable structure (see [38], [41]).

e The existence of a PL atlas on a TOP-manifold in dimension » > 5is equivalent
to the vanishing of a certain cohomology class

KS(M) € H*(M; 75),

known as the Kirby-Siebenmann invariant. In particular, if » >5 and
H*(M;72) = {0}, then: M € TOP < M < PL.

e Ifn < 6,then PL = DIFF, and a PL manifold admits a unique DIFF structure
compatible with the given PL structure.

These are very deep and difficult theorems, due to various outstanding mathe-
maticians, many of whom we will have the opportunity to quote in the course of this
article.

We may consider two versions of the G.P.C. Let M be a n-dimensional homotopy
sphere.

o Strong version: if M is in a given category, is M equivalent, in that category to
the standard sphere?

o Weak version: if M is in a given category, is M equivalent to the standard
sphere, possibly in a larger category?

We will mainly focus on the following (weak) version of the G.P.C.

MepiFF = M"Y
but first we will discuss differentiable structures on spheres.

The existence of different DIF'F equivalence classes on a manifold M" 9 S was
first investigated by J. Milnor, in his wonderful paper [31]. Differentiable structures
on M" that are TOP but not DIFF equivalent to the canonical structure of S" are
called exotic structures. The basic step is to give a procedure for constructing dif-
ferentiable manifolds homeomorphie to S”. This can be done as follows:

Consider two copies of the unit disk

D=D"={zeR": o] <1}

which we denote with the same symbol. Let ¢: 9D — 0D be an orientation
preserving diffeomorphism. In the disjoint union D [] D consider the equivalence
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relation generated by x € 9D ~ ¢(x) € OD. We will denote the quotient space by
D U¢ D.

For a better understanding of the structure of D Uy D, it is convenient to consider
the following equivalent construction: start with two copies of R" and identify a non

zero point x of the first copy with the point ¢( ﬁ )/||x|| of the second copy. From this

definition, it is clear that D Uy D has a well-defined DIFF structure. Moreover, by
assuming the orientation induced, say, by the first chart R", we obtain a well-defined
oriented smooth manifold.

Proposition2.2. DUz D 2P 5n. Moreover, if ¢ extends to a diffeomorphism
of D, then D Ug D PE" 5n,

Proof. LetS. bethe (closed)upper and lower hemispheres of the standard S”.
Identify, in the usual way, S, with one of the disks and map S_ onto the other disk by
a homeomorphism extending ¢. ¢ This map is obviously a homeomorphism. It can be
approximated by a diffeomorphism, if there exists a smooth extension of ¢ to a dif-
feomorphism of the disk (see [23], pg. 182 for details). O

Definition 2.3. Manifolds of the form D Uy D are called twisted spheres.

We have the following important result that we will prove at the end of the next
section (Theorem 3.20).

Theorem 2.4. Let M" be a differentiable manifold with M" TP on 1 fn 4,
M" is a twisted sphere.

Therefore, if n # 4, the problem of classifying exotic structures on the sphere is
equivalent to the problem of how to distinguish twisted spheres up to a DIFF
equivalence. For this purpose, we are naturally led to consider the groups
Diff *(S™1) and Diff +(D") of orientation preserving diffeomorphisms of the sphere
S" 1 and of the disk D" respectively, and the restriction homomorphism
r: Diff *(D") — Diff *(S™1). The image is a normal subgroup and we can consider

6 ¢ extends naturally to a homeomorphism of D by setting ¢(tx) = té(x),x € 9D, t € [0,1].
Observe that this extension is not differentiable at 0 € D, unless ¢ is the restriction of an
orthogonal transformation. Notice, however, that the above extension will be a PL home-
omorpfism if ¢ is PL. This is a particular case of the so called cone construction in PL
topology, which will be referred to later on.
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the quotient group:
I = Diff *(S"™1) /7(Diff (D).

We will shortly see that the number of oriented diffeomorphism classes of twisted
n-dimensional spheres is the cardinality of ™.

The first thing we have to do is to introduce a group operation in the set of or-
iented diffeomorphism classes of twisted spheres, which we denote with I for the
time being.

Let My, Ms be two smooth, connected, and oriented differentiable n-dimensional
manifolds. We define their connected sum as follows: choose two smooth embeddings
¢ D"—¢,(D")=D; CM;, i =1,2 with ¢, orientation preserving and ¢, or-
ientation reversing. In the disjoint union M; \51 11 M; \lo)g we may consider the
equivalence relation generated by x € 0D; ~ ¢y () and denote by M, § Ms the
quotient space. The following result belongs to classical differential topology:

Proposition 2.5. M;{ M, admits a structure of oriented differentiable
manifold which induces the original structures on M;\ lo)i,i =1,2. Moreover,
such a structure is unique up to orientation preserving diffeomorphisms, and does
not depend on the choice of embeddings ¢,.

The proof is based on the technique of smoothing corners and on the Palais-Cerf
Lemma that in our situation states that if ¢, is replaced with ¢; satisfying the same
assumptions, then there exists an orientation preserving diffeomorphism
h; : M; — M; such that ¢; = ¢; o h;,© = 1,2. The reader is referred to [23], ch. 8 for
all the details.

Definition 2.6. M; $ My is called the connected sum of My and M.

Let M,, be the set of oriented diffeomorphism classes of smooth, n-dimensional
closed manifolds. It is not difficult to show that, with the connected sum operation,
M,, is a commutative monoid with an identity element represented by the standard
sphere S".

Remark 2.7. The decomposition Theorems of Kneser and Milnor, of which
we discuss in the last section imply that Ms is a free monoid.

Returning to twisted spheres we have:

Proposition 2.8. T is a submonoid of M., in fact a commutative group.
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Proof (Sketch). Let @& :Diff *(S*1)—M, be the map given by D()
=D Uy D := M(¢). Clearly the image of @ is T". We claim that @ is a monoid
homomorphism, i.e. there is an orientation preserving diffeomorphism:

M(pod) = M) i M@).

The crucial point is that the Palais-Cerf Lemma allows a certain freedom in
choosing the disks to be removed in the construction of the connected sum. Relying
on this, in M(¢) = D Uz D we remove the interior of the second copy, while in M (¢’)
we remove the interior of the first copy. When the attachments are performed, the
resulting manifold will be exactly M(¢ o ¢), up to diffeomorphisms which preserve
the orientation. O

Theorem 2.9. @ induces a group isomorphism @ : I —T".

Proof (Sketch). Define @ as above. By Proposition 2.2, ®(r(Diff *(D")) = 0.
Hence @ induces a (surjective) homomorphism of 7™ onto T". On the other hand,
suppose that g : D U; D — S" is an orientation preserving diffeomorphism. Since
the group of orientation preserving diffeomorphisms is transitive on the closed disks
of a given connected manifold (by the Palais-Cerf Lemma quoted above), we can
assume that ¢ is the identity on the upper hemisphere. Then g is an orientation
preserving diffeomorphism of the lower disk, which carries S"~! onto itself and
extends ¢. Hence @ is 1-1. d

Remark 2.10. For low values of n we have:

o [ ={0}if n <3 (see Remark 2.1).
o I ={0}if n =4, 5 and 6 (see [9], [26]).
e [ is a finite group V n (see [26]).

For n =T, we have I'" = Zsg. In [15] the authors describe this group explicitly.
Consider the field of quaternions H = R*, and let S* = {p € 1 : ||p|| = 1}. Consider
the sphere:

S8 = {(p,w) € H x H : Real(p) = 0, |[p|* + [[w]* = 1}
Define the map:
b: SG \ {(p7 0)} _>S3, b(p,u)) = ||w||_2wexp (np)w

Here exp is the exponential map for the quaternions of norm one, i.e. expv is the
value of the geodesic y(t) of S® with 7(0) = 1, 7(0) = v, at t = 1. Setting b(p,0) = —1,
the map b extends to a real analytic map of S® onto S3. This map represents the
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generator of 75(S?) = Z15. Define maps:
¢, 8°— 8% ¢,(p,w) = (b(p,q)"pb(p,w)", b(p, ¢ wb(p, w)").

It results that ¢, generates I"". Observe that ¢,, is homotopic to the identity (since
76(S3) = 7Z,12), but not isotopic to it, and it represents a non trivial element in 7.

With a similar construction we can produce exotic structures on S'® using octo-
nions.

These considerations lead to the following (open) problem known as the differ-
entiable j-dimensional Poincaré conjecture:

e M* c DIFF, M* TOP g4 :; 4 PIEF g4
o Mt c DIFF. M* "2 §* % M4 is a twisted sphere.

Remark 2.11. Since I'* = {0}, the two statements are equivalent.

3 - The Smale solution of the G.P.C. in dimensions > 5

There are two basic tools in the study of the topology of high dimensional
manifolds, namely:

e surgery theory, used to prove existence of manifolds with certain topological
properties;

e the h-cobordism theorem, used to prove uniqueness of manifolds with certain
properties.

Surgery theory starts from the following basic observation:
S x D) = 9(DP x S171) = SP~1 x ST°1,

For a given n-dimensional manifold M", n = p + ¢ — 1, choose an embedding of
SP~1 x D%into M. Delete the interior of the image of SP~! x D and attach a copy of
DP x S9! along the boundary. The resulting manifold depends on the choice of the
embedding, and this construction can be used to simplify (or complicate) the topol-
ogy of M.

Remark 3.1. The classification Theorem for closed oriented surfaces states
that such a surface is obtained from the sphere S?, by performing the following
operation a suitable number of times: delete from S? the interior of two disjoint
closed disks (S° x D?) and glue a cylinder (S! x D') along the boundary. Therefore,
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any closed oriented surface is obtained from S? by performing surgeries. This result
was essentially known at the beginning of last century, although a full proof in-
cluding the non-orientable case would be dated around 1920.

It is also worthwhile observing that surgery is the basic technique used by
Kervaire and Milnor to compute the groups of h-cobordism classes of homotopy
spheres, which coincide with the groups I (see [26]).

The rest of this section will be devoted to discussion of the h-cobordism Theorem
and how we can deduce the generalized Poincaré conjecture from it. We will closely
follow Milnor’s book ([35]).

3.1 - The Morse complex

Morse theory provides a way of computing the homology of a manifold in terms of
the critical points of a suitable function and the dynamics of the gradient flow.

Let W be a smooth manifold and f: W — R be a smooth function. A critical
point of f is a point & € W, such that the differential df, : T.,W — R vanishes. A
critical value is the image of a critical point.

Let @ € W be a critical point of . Choose a chart ¢ : Q C R” — W such that
0 € Q and ¢(0) =«. Then the partial derivatives of f :=f o¢ vanish at 0 € Q.
Consider the Hessian of f at 0,

Pf
3901'8.’)0]‘

H(f,0) =1 0)1.

The Hessian is a symmetric matrix, hence it is diagonalizable.

e The critical point « is non degenerate if H(f,0) is non singular.
e The index of f at the critical point & € W is the number of the negative ei-
genvalues of H(f,0) (counted with their multiplicity).

It is easy to see that the concepts above do not depend on the choice of chart. The
behavior of f near a non degenerate critical point is described by the well known
Morse Lemma:

Lemma 3.2. Ifxis a non degenerate critical point of index 4, there exists a
chart ¢ : Q — W as above, such that:

fan. L a)=c-> a2+ Y o c=f0)eR.
=1

j=i+1

In particular, non degenerate critical points are isolated.
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A chart such as above is called a Morse chart.

Let W be a Riemannian manifold, which for the moment we assume to be closed,
and letf : W — IR be a smooth function whose critical points are non degenerate. In
this situation we will say that f is a Morse function. The existence of (many) Morse
functions on a closed manifold is a rather simple consequence of the Theorem of Sard.

The basic idea of Morse Theory is to study how the topology of the “sub levels”
We .= {x € W: f(x) < a} changes as a varies. This is done by using the gradient
flow of f and the Morse Lemma.

We start by reviewing the basic properties of the gradient flow. Recall that the
gradient of f, Vf, is the vector field characterized by:

(VF, &) =df(©), V vector field ¢

For a given vector field ¢&, the integral line through « € W is the solution of the
initial value problem:

7.0 = @),  7,(0) = .

The existence for small values of ¢, the uniqueness, and the smooth dependence on
the initial conditions ” are the starting-point of the theory of ordinary differential
equations. Moreover, since W is assumed to be closed, the integral lines of ¢ are
defined for all t € R.

Lemma 3.3. Themap y, : W — W, yp(x):=y,@®) is a diffeomorphism of W.

Proof. The differentiability of y, is a consequence of the smooth dependence on

the initial conditions. Moreover, it is easy to see that y, , =y, 07 8. Hence
-1

Yt =" O

In the absence of critical values, we have:

Theorem 3.4 (Neck principle). Iff~([a,b]) does not contain critical points,
then there is a diffeomorphism of W taking W° onto W® Moreover, f—([a, b]) is
diffeomorphic to f1(b) x [a, b).

Proof. Wewill essentially follow the flow of the vector field —Vf. Observe that
there are no zeros in ([ — 2¢, b + 2¢]) for ¢ sufficiently small. Moreover, f is de-
creasing along the integral lines of —Vf. In order to control how fast f decreases, we

7 i.e. the smoothness of the map (x,£) € W x (—¢, &—y,B) e W.
8 Both are solutions of the same ODE with the same initial condition.
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“normalize” the vector field. Consider a smooth function 1 : W — R which is 1 on
f1([a, b)) and zero outside of f1([a — &, b + ¢]). Let & be the vector field defined by:

-V
&= )v—fz
V£l
Clearly ¢ is well defined and smooth. If x € f~!([a, b]), then let 7, be the integral

curve of & through x. Then, for small values of ¢ > 0, we have:

df (7, (®)
dt

in f‘l([a —2¢,b+2¢]), ¢=0 outside f‘l([a — 2¢,b + 2¢)).

= dfG,) = (Vf,&) = 1.

In particular, f(y,(t1)) —f(y,(t2)) = t2 — 1, and y, ) is the required diffeo-
morphism. A diffeomorphism between f~1(b) x [a,b] and f~'([a,b]) is given by
(, 1) — 7,@). O

The preceding argument and the Morse Lemma give the following character-
ization of twisted spheres:

Theorem 3.5 (Reeb). A closed manifold is a twisted sphere if and only if it
admits a Morse function with only two critical points.

Proof. Let W be a closed manifold and f : W — R a Morse function with only
two critical points, p, ¢ € W. We can assume that p is the minimum, f(p) = 0, ¢ is the
maximum and f(q) = 1. According to the Morse lemma, W* is a disk for ¢ > 0 suf-
ficiently small. By the neck principle (3.4), W2 is a disk. A similar argument shows
that W, = {x € W: f(x) > 1/2} is also a disk and therefore W is a twisted sphere.

Conversely, let ¢ € Diff * (S"1) and let Wy be the twisted sphere obtained from
two copies of R" by identifying a non zero point x of the first copy with

y = ¢(H”;—H)/||x|| of the second copy. Then:
2
N
L+ flaf* 1+ [lyl?
is a Morse function with exactly two critical points. O

Remark 3.6. Theorem 3.5 s still true without the assumption that the cri-
tical points are non degenerate.

Next we study what happens when we pass through a critical value. The
basic operation will be attaching cells. We recall that the operation of attaching
a J-cell to a space X is defined as follows: given a map ¢ : 0D* — X, we con-
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sider, in the disjoint union X [[D* the equivalence relation generated by
x € OD* ~ ¢(x). The quotient of X [[D* by this relation is the space obtained
from X by attaching a A-cell by ¢.

Let 0 € R be a critical value of f and suppose, for simplicity, that we have only one
critical point p € £71(0), which is non degenerate of index 4. Consider a Morse chart
$:Q C R" — M. Fore > 0 sufficiently small, the disk of radius 2¢is contained in Q,
and 0 is the only critical point of f :=f o ¢. The situation in the disk looks like the
figure below

et TZ2e

Fig. 1. The level hypersurfaces in a Morse chart.

It is reasonably clear from the picture that, in D, we can deform f (- o0,¢))
onto f((— oo, —el)Je!, where et :={(r1,...,x,) R :a) =-- =, =0,
>~ a% < &2}, Thus, at least locally, “passing through a critical point of index 2” is
equivalent, up to homotopy, to attaching a 1-cell.

For further reference, we must also remember that a (finite) CW complex is a
space X, together with a (finite) sequence of subspaces X, such that X© is a finite
set of points (with the discrete topology), and X® is obtained from X%~V by at-
taching (a finite number of ) k-cells. X® is called the k-skeleton.
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The cellular chain complex {C", oy is associated to this complex, where:

o U = Hi(X® X®*-D) (which is isomorphic, by excision, to the free abelian
group generated by the k-cells).

o Ol el ¢ is the boundary homomorphism in the exact sequence of the
triple (X®, X#-D_xk-2)

Itis a standard fact that the homology of the cellular complex is isomorphie to the
singular homology of X.
The local considerations above can be generalised as follows:

Theorem 3.7. Let W be a closed differentiable manifold, and let f : W — R
be a Morse function. Then, W is homotopy equivalent to a CW complex with a cell
m dimension 2, for each critical point of f of index A.

The reader is referred to [34] for a proof.

The critical points of f determine the cellular chain groups. Now we will describe
the boundary homomorphism. For this purpose we will assume W to be oriented,
and consider special Morse functions.

Definition 3.8. A Morse function f : W — R is self indexing if, for every
critical point p € W, f(p) is the index of f at p.

Remark 3.9. Itisnot difficult to show that, given a Morse function, there is a
self indexing one with the same critical points (and indices).

Let f : W — R be a self indexing Morse function, {p1,...,px}, and {q1,...,q;}
cell

be the critical points of f/ of index (4 + 1) and 4 respectively. They are a basis of C(7
and C" respectively. So:

ol (p;) = Z ;g

We will now describe how to obtain the a;;. Consider the integral curves of —Vf
“starting at p;” °. These curves locally form a 4 + 1 dimensional disk which intersects
the level hypersurface {x € W : f(x) = A+ 1/2} in a 1 dimensional sphere, 27", the
lower sphere of p;. Since W is assumed to be oriented, the hypersurface is oriented by
the choice of the (non zero) normal Vf, and so we can choose an orientation for the
lower sphere. Consider now the integral curves “ending in ¢;”. They form a n — 4

9 An integral curve y “starts” at p; if limy_,_ooy(t) = p;. In terms of a Morse chart these
curves are the integral lines through the points where the last » — 2 — 1 coordinates vanish.
In a similar way we define the integral curves “ending” in a critical point.
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dimensional disk which intersects the hypersurface in a # — A — 1 dimensional
sphere, ¥ the upper sphere of g;. We want to define the intersection number of the
two spheres. Generically the two spheres intersect each other transversally, hence
for dimensional reasons, they intersect at a finite number of points. To each of these
points we associate a sign + 1 according to whether at the point the orientation of 27",
followed by the orientation of X%, gives the orientation of the hypersurface or the
opposite one. The sum of the signs is the intersection number of the two spheres. This
number does not depend on the general-position argument or, at least up to sign, the
orientations chosen on each sphere. We define the a;; to be the intersection numbers
as in the construction above.

The algebraic complex defined in this way is called the Morse complex of W as-
sociated with the function f.

Starting from different Morse functions we obtain different Morse complexes,
and the basic result is the following (see [35] for a proof):

Theorem 3.10. The homology of a Morse complex is isomorphic to the
singular homology of W.

3.2 - The h-cobordism Theorem

The Morse Theory outlined above works in a slightly more general context.

Definition 3.11. A cobordism is a triple (W"+!, My, M;), where W1 is a
(n + 1)-dimensional compact manifold, whose boundary is the disjoint union of M,
and M;.

We will suppose W to be oriented and consider the induced orientation on each M.

The simplest example of cobordism is the product cobordism,i.e. W = M x [0, 1],
M; =M x {i}, i =0, 1. The point of the h-cobordism Theorem is to give sufficient
conditions for a cobordism to be diffeomorphic to a product cobordism.

Definition 3.12. A Morse function on a cobordism (W' My, M;) is a
function f : W —[a, b] C R such that:

1) f(My) =a, f(My)=Db,
(2) f does not have critical points in a neighborhood of oW,
(3) all critical points of f are non degenerate.

Mutatis mutandis, we can repeat the construction of the previous subsection and
define the Morse complex of a Morse function for a cobordism. The homology of this
Morse complex will be isomorphic to the relative homology H.(W, Mj).
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It follows from the neck principle (3.4) that, if a Morse function without critical points
exists, then the cobordism is diffeomorphic to a product cobordism. Then the main idea
is to find conditions under which there is a Morse function without critical points.

Definition 3.13. A cobordism (W"*1, My, M) is a h-cobordism if the inclu-
sions 7; : M; — W"* 1 are homotopy equivalences.

Smale’s h-cobordism theorem can be stated as follows:

Theorem 3.14. Let (W™, My, M) be a h-cobordism, W simply connected
and n > 5. Then the cobordism is diffeomorphic to the product cobordism.

The remaining part of this subsection is dedicated to sketching the main ideas
behind the proof of the h-cobordism theorem. In the next subsection, we will see how
the G.P.C. for n > 5 follows from this theorem, and we will describe other important
results.

Let f: W— R be a self indexing Morse function on a cobordism (W, My, M;).
Suppose p,q € W are critical points of indexes 1 + 1 and A respectively, and that
there is a unique integral curve y of Vf starting at p and ending in q. In this case we
say that the points p, q are complementary. It is not difficult to see that com-
plementary critical points do not contribute to the homology of W. The first question
to ask is the following: is it possible to “cancel” two complementary critical points, i.e.
to find a Morse function f : W — R which coincides with f outside a neighborhood
U of the two points, and which does not have any critical points in U?

The following picture illustrates the situation

A R

Fig. 2. Modifying the function.
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In the situation described above it is, in fact, possible to cancel the two critical
points. This fact, essentially due to Morse, is non trivial but by no means the most
difficult step of the proof of the entire theorem. The main idea is to modify the
gradient field in order to obtain a new vector field, which coincides with —Vf outside
U, has no singularities in U, and is, essentially, 1° the gradient of a new function f.
The situation is illustrated in the next figure

Fig. 3. Modifying the gradient.

We need a more general result. First we can observe that, if p, ¢ are com-
plementary critical points, the corresponding coefficient a,, in 0%l (p) is + 1. Then
there is the following question: assuming only the algebraic condition a,, = £1,is it
still possible to cancel the two critical points p and ¢? This can certainly be done if we
can modify the function in such a way that the lower and upper spheres intersect just
at one point. This is the most delicate part of the proof of the Theorem and it is here
that the condition » + 1 = dim W > 5 plays an essential role. We will give a rough
sketch of the argument.

First of all it is not too difficult to see that, without loss of generality, we can make
the following assumptions: p and q are the only critical points of index 4 4+ 1 and 4
respectively, 2 < /1 < n — 3, and the level hypersurface S = f (4 4 1/2) is simply
connected.

Consider the two spheres 27 and X transversal in S and let &, % be two points of
their intersection having opposite signs. We join 2 and y by two arcs, one in 27 and
the other in 27, containing no other points of intersection. Let y be the closed loop on
S given by the two ares. Since S is simply connected, then y is the boundary of a

10§ e. it is what is called a pseudo gradient. See [35] for details.
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singular disc D. This disc, by a general position argument, may be deformed into an
embedded disk, which, in turn, is in general position with the two spheres '!. At this
point it is not difficult to use the disk or, better, a regular neighborhood of it, as a
support of an isotopy that takes £ onto a sphere 2" with &' N 21 =31 N 29\ {p, ¢}.
Thus, using the Whitney Lemma, we can limit ourselves to the case where the two
spheres intersect in exactly one point. Then we may apply the result of Morse on
complementary critical points.

By suitable rearrangements it is possible to use the argument above to cancel
critical points as long as the incidence number a;; is nonzero.

Finally, the condition that (W"*!, My, M;) is a h-cobordism, in particular that
H. (W™ M) = {0} implies that the critical points occur in pairs of “cancelable
ones” in the sense of the constructions above, and this concludes the proof.

Remark 3.15. We observe that the restriction on the dimension of W, which
allows one to use the general position arguments, does not represent a technical
problem, but a fact of nature! In fact the DIFF version of the h-cobordism Theorem
does not hold in lower dimensions as we will see in the next section.

3.3 - The Poincaré conjecture in dimensions > 5

We will see now how the Poincaré conjecture follows from the h-cobordism
Theorem. We may start from a characterization of the disks.

Theorem 3.16. Let W be a compact, contractible smooth manifold of
dimension n > 6, with a (non empty) simply connected boundary. Then, W is
diffeomorphic to a disk.

Proof. Let p be an interior point of W and D a small disc centered at p.
Consider W \ D. Then W\ 5, OW,0D) is a cobordism. Since W is contractible, it
follows from standard algebraic topology that such a cobordism is a h-cobordism (see
[35] for example). From the h-cobordism theorem, we can say that it is diffeomorphic
to S"~1 x [0,1]. Hence W is diffeomorphic to a disk with a collar attached, which is
still a disk. O

Regarding the G.P.C. in dimension # > 6, we can say:

U'The disk D is called a Whitney disk and the procedure of cancelation of the
intersection—points is part of a more general result known as the Whitney Lemma.
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Theorem 3.17. Let M" be a n-dimensional closed smooth manifold, homo-
topy equivalent to S™. If n > 6, M is a twisted sphere S™.

Proof. LetDbean-discin M. Now M \ 5 satisfies the hypothesis of Theorem
3.16, hence it is diffeomorphic to a disk. Then M is the union of two disks attached by
a diffeomorphism of their boundaries, i.e. a twisted sphere. O

The case n =5 is exceptional. We quote the following result of Kervaire and
Milnor (see [26]):

Theorem 3.18. Let M be a closed smooth manifold homotopy equivalent
to 8" If n=4,5,6, M 1is the boundary of a compact contractible smooth
manifold.

From Theorems 3.18, 3.14 and 3.16 we deduce the following:

Corollary 3.19. A n-dimensional smooth homotopy sphere is diffeomorphic
to S", if n =5,6.

At this point, we can prove Theorem 2.4, i.e:

Theorem 3.20. Let M" be a n-dimensional closed smooth manifold home-
omorphic to 8", n # 4. Then M" is a twisted sphere.

Proof. The casen > 5 immediately follows from Theorems 3.17 and 3.19. For
n <3, the result is a consequence of the already mentioned equivalence
TOP = DIFF. O

Remark 3.21. We observe that the above results imply I™ = {0}, for
n =5,6.

3.4 - The strong G.P.C. for the PL case

The PL h-cobordism Theorem is stated, with the obvious modifications, exactly as
its DIFF counterpart:

Theorem 3.22. Let (W"™ My, M) be a simply connected PL h-cobordism,
n > 5. Then W is PL isomorphic to the product PL cobordism My x [0,1]. In
particular, My oL M.
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The method of proof is the same as that used in the differentiable case, only that
the concept of Morse function is now replaced by the equivalent concept of attaching
handles to a PL or DIFF manifold. In this context the procedure of canceling critical
points, in order to simplify a Morse function, is translated into the procedure of
canceling handles of a given handle-decomposition W. Here it is worth mentioning
that handlebodies were introduced by Smale to prove his h-cobordism Theorem in
the DIFF category. Today the main reference for the fundamentals of PL topology
and the PL h-cobordism theorem is [55].

Here is the first important consequence of Theorem 3.22, which is proved exactly
as its DIF'F counterpart:

Theorem 3.23. Let W be a contractible PL manifold of dimension n > 6,
with a non-empty, and simply-connected boundary. Then W 2 pr,

Let S denote the n-sphere with its canonical PL structure. Then, regarding the
PL G.P.C. in dimension n > 6, as a pleasant surprise, we can say that the strong
version holds:

Theorem 3.24. Let M" be a n-dimensional, closed PL manifold, homotopy
equivalent to S™. If n > 6, M L gn,

Proof. Similarly to the DIFF case, one shows that M" is the union of two PL
disks attached by a PL isomorphism between their boundaries. But such a manifold
is a PL sphere by the cone construction in PL topology (see Footnote 6). |

The 5-dimensional case is also true but its proof is even more recondite than the
higher dimensional case:

Theorem 3.25. A 5-dimensional PL homotopy sphere M® is PL isomorphic
to S°.

Proof. The proofwill only be roughly outlined. By the Hirsch-Munkres theory
of the smoothings of PL manifolds, the only obstruction to the existence of a smooth
structure on M° lies in H°(M, I'*). Since I'* = {0}, there exists a smooth structure.
Let Mprrr be the manifold M with this differentiable structure. This structure is
compatible (according to Whitehead) with the given PL structure on M. By Theorem
3.19, Mppr is diffeomorphic to S°. It follows that on Mp;pp there are two PL
structures, imported respectively from the original PL structure and from the
standard PL structure of S°. By Whitehead’s Theorem on uniqueness of triangu-
lations, those two structures must be PL equivalent, and so M5 2 5. O
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Therefore, in the PL case the strong G.P.C. is true, for n > 5. The difference from
the smooth case is exactly that, by the cone construction, there are no nontrivial
twisted spheres in PL (see Footnote 6).

Remark 3.26. For n =4 the strong PL G.P.C. is still an open problem. It is
equivalent to its smooth counterpart, because PL = DIFF up to dimension 6.

Finally we observe that the G.P.C. is true in TOP. In fact, if » > 5 a topological
homotopy sphere has a PL structure, since the only obstruction is the Kirby-
Siebenmann class that lives in H*(M, 72) = {0} (see Remark 2.1). Then the positive
answer to the TOP conjecture follows from the positive answer to the PL one. The
cases n = 3,4 will be discussed in the next sections.

Remark 3.27. A more direct treatment of the TOP case, in dimensions at
least five, is due to Newmann (1966). The weak PL Poincaré conjecture obviously
follows from the strong one. However, a direct proof was given by Stallings and
Zeeman (1960-62) using sophisticated techniques of PL topology (see the Appendix
for a sketch of the proof).

4 - Freedman’s classification of simply connected closed 4-manifolds

The proof of the DIFF h-cobordism Theorem fails hopelessly in dimension 4, as
shown by Donaldson (see, for example, [12], [13]). Working on a TOP version of the h-
cobordism theorem in dimension 4, Freedman, at the end of the 70’s, obtained a
major breakthrough in low dimensional topology: the classification of closed, simply
connected '? 4-manifolds. The following is a brief summary of Freedman’s work.

4.1 - The intersection form

Compact and connected surfaces can be described in terms of the first homology
group with 7 coefficients as follows: H;(M?; 7.) is the 75 vector space spanned by
equivalence classes of maps o : S! — M?, where two such maps are equivalent if
there exists a compact oriented 2-manifold W, with a boundary two copies of S*, and a
map F : W — M? which coincides with the two given maps on the boundary. Given
two such classes, we can choose representatives which are transversal immersions.

12 We can not classify closed 4-manifolds in general, since any finitely presented group is
the fundamental group of a 4-manifold and those groups can not be classified.
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In particular they intersect in a finite number of points. Whether the cardinality of
the set ;2 ([01], [a2]) of intersection points is even or odd it does not depend on the
given representatives. So we can define a bilinear form called the intersection form:

tpe « HIM?; 72) @ Hi(M?; 7,5) — 72 = Ho(M?, 7s).

The intersection form is clearly symmetric and, according to Poincaré duality,
non singular.
Here are some examples:

o For the 2-sphere S? we have H,(S?; Z») = {0}.

e For the torus T = S x S we have that H,(T; 7s) is 2-dimensional, as a 7o
vector space, and it is generated by the inclusions of S* as S! x {p} and {q} x S*
respectively. The intersection form u is the hyperbolic form, given by the matrix:

0 1
H = [1 0} |
e For the projective plane RP? we know that H(RP?;7s) is generated by the
inclusion of a projective line RP! = S! — RP?. Two such lines, if transversal, in-
tersect at exactly one point, hence the intersection number is 1.
e A simple application of the Mayer-Vietoris sequence shows that the intersec-

tion form of a connected sum of surfaces is the direct sum of their respective in-
tersection forms.

From an algebraic point of view, finite-dimensional symmetric, non singular bilinear
forms over 7 are direct sums of a diagonal form and hyperbolic forms. Since a closed
surface is a sphere or a connected sum of tori and projective planes, it follows that:

Theorem 4.1. The map that associates to a given closed surface M? its in-
tersection form we is a bijection. Moreover, M? is orientable if and only if
p,x) =0, Vv € H(M? 7Zs).

Four-dimensional closed, simply connected manifolds can be dealt with in a si-
milar way using homology with coefficients in 7 (we will omit the reference to the
group of coefficients in the notation).

If M is such a manifold, its second homology group with integer coefficients
Hy(M) is a finitely generated free abelian group, hence isomorphic to the direct sum
of b = by(M) copies of 7., where be(M) is the second Betti number of M. Moreover, an
evaluation of a cohomology class on a homology class gives a canonical isomorphism
between 2-dimensional homology and 2-dimensional cohomology. The intersection
form of M is the bilinear map given by the cup product:

pg : H* M) x H¥ (M) — H*M), (o, [oel) = [y U [l
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If M is a smooth manifold, we can view the intersection form in different ways. We
may mention a couple of them.
Fix an orientation on M, i.e. an isomorphism H*(M) — 7.

e Using the de-Rham cohomology of M, let «; be closed 2-forms which represent
cohomology classes [o;],7 = 1, 2. Then, up to a fixed constant

sy (o], [o]) = joq A .
M

e Since M is simply connected, by the Hurewicz Theorem any homology class in
Hs(M) is the image of the fundamental class of the 2-sphere S? through the map
induced in homology by a continuous function f : S2 — M. Such a function may be
assumed to be a smooth immersion. Thus, roughly speaking, this class is f(S?). We
can put two such maps transversal to each other without changing the homology
classes, so that their images will intersect at a finite number of points, {p1, ..., px}-
To each p; we can associate a sign &(p;) = £ 1 according to whether the orientation of
the tangent space to the first submanifold, followed by the one on the tangent space
to the second, is the orientation of 7, M or the opposite one. The intersection
number Z’f &(p;) is well defined, i.e. it only depends on the homology classes. This
defines a map:

fy - Ho(M) x Hoy(M) — 7,

which is the intersection form, up to canonical isomorphisms.

Remark 4.2. A result of Quinn (see [52]) guarantees that a TOP manifold
admits a DIFF structure in the complement of a point. This allows us to carry the
above constructions to the TOP category and, more in general, to use DIFF
methods in many proofs of purely TOP results.

It follows from basic algebraic topology that the intersection form is bilinear,
symmetric and unimodular. In particular, with respect to a given basis, it is re-
presented by a symmetric matrix of determinant + 1. Here are some examples that
are very similar to the ones given in the two—dimensional case:

e M = S*. The intersection form is the empty form.

e M = S? x S%. The second homology group is generated by the canonical in-
clusions of S? as S? x {p} and as {q} x S%. These classes do not depend on the
particular choices of p, ¢ € S2. Clearly the two submanifolds intersect at exactly one
point with a positive intersection number. On the other hand, if we choose two dif-
ferent basepoints, two immersions of the first type (or of the second) do not intersect,
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hence the generators have self—intersection number equal to zero. The intersection
form is then the hyperbolic form, that, in this basis, is given by the matrix:

0 1
H = [1 0} .

e M = CP?, the complex projective plane. The 2-dimensional homology is gen-
erated by the inclusion of a projective line S? = CP! C CP? Two such lines intersect
at exactly one point, with a positive intersection number. Hence the intersection
form is u = [1].

o M= @2’ the complex projective plane with the opposite orientation. In this
case the intersection formis 4 = [ — 1]. In general, inverting the orientation of the 4-
manifold the intersection form changes its sign.

o If M is the connected sum of two manifolds, then its intersection form is the
direct sum *® of the intersection forms.

4.2 - Integral bilinear forms

If & is a real vector space, a symmetric bi-linear non singular map on [ is re-
presented, in a suitable basis, by a diagonal matrix with entries + 1. It follows that
real symmetric automorphisms are classified by the dimension of E and by the
signature (the number of positive eigenvalues minus the number of negative ones).
For integral symmetrie, unimodular bi-linear forms the situation is quite different.
In reality, these forms are not fully classified.

In order to study isomorphism classes of symmetric unimodular integral bilinear
forms it is convenient to consider various cases. Let

w7 e 7t — 7,
be such a bilinear form. We will say that:

1 is of even type if u(e,x) = 0 (mod 2), Va € 7°.

w is of odd type if it is not of even type.

w is definite if u(x, x) is positive (or negative), V x € 7b.
u is indefinite if is not definite.

An important example is the form Fg, which is the bilinear form on 78 whose
matrix in the canonical basis is:

13 The direct sum of two bilinear forms is defined in a standard way, in the direct sum of
the corresponding lattices.
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This is the Cartan form of the exceptional Lie group Es and is characterized as
the unique positive form of the even type and rank 8.

An algebraic feature of the forms of even type, that is not difficult to prove (see
[24]), is the following:

Lemma 4.3. A symmetric unimodular form of even type has a signature
which s a multiple of 8.

Indefinite bilinear forms are thus classified:

Theorem 4.4. If u is an indefinite form, then:

e u=mlllen[ —1], m,n #£0 if s of odd type.
o u=mH@®nks, m#0 if uisof even type.

For the definite forms, the situation is completely different. We know that, for a
given rank, the set of isomorphism classes of such forms is finite, but its cardinality
grows very fast with the rank. For example, there are at least 10°! classes of rank 40.
A useful reference for this is [24].

4.3 - Freedman’s Theorem

It was already known before Freedman’s work that the intersection form is a
basic invariant of 4-dimensional simply connected closed TOP manifolds. For ex-
ample, Whitehead proved the following Theorem (see [24] for a simple proof):

Theorem 4.5. Two closed, simply connected 4-manifolds are homotopy
equivalent if and only if their intersection forms are tsomorphic.

At this point, two natural questions arise, closely analogous to the 2-dimensional
case (see Theorem 4.1):
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e Given a symmetric bilinear, unimodular form, does a manifold (in TOP or
PL = DIFF'), whose intersection form is the given one exist?

e If two manifolds (in TOP or PL = DIFF) have isomorphic intersection forms,
are they equivalent in the corresponding category?

For a better understanding of the first question, it is important to produce ex-
amples of manifolds with a given intersection form. For instance, does a differ-
entiable manifold with intersection form Fg or 2[g exist? * A possible strategy to
find such a manifold is to start with the Kiimmer surface. This is the quartic surface
of CP3:

3
K = {[20,21,22,23] € Ccp? . sz =0}.
0

Using the theory of characteristic classes, we may compute the intersection form,
and we find that
Ux = 3H @ 2IEg.

The idea now is to decompose K as the connected sum of two manifolds, one
with intersection form 3t and the other one with intersection form 2Jig. For this
purpose, Casson found open submanifolds CH;,i =1,2,3, properly homotopy
equivalent to the complement of a 4-disc in S? x S?, the so called Casson handles,
that realize the summands I in the intersection form of K. Then the natural
strategy would be to perform a DIFF surgery in order to eliminate the CH;
regions, and fill up the holes with disks. In this way we would obtain a manifold
with intersection form 2[Eg. Since such a manifold does not exist in DIFF (see
Theorem 4.10), this strategy is bound to fail.

2Eg

S3 xR

Fig. 4. The Kiimmer surface and its Casson handles.

14 We now know that such a manifold does not exist (see the next subsections).
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The main techniques of differential topology, namely the surgery theory and the
h-cobordism theorem, work well in DIF'F for dimensions > 5, but not for dimension
4. In fact we will see, the “neck” in figure 4 is homeomorphic but not diffeomorphic to
S x R.In order to construct a manifold with intersection form 2Ig and, generally, to
answer the two questions stated above, the effort was concentrated to find a TOP
version of surgery and h-cobordism. Freedman proved that the Casson handles are
TOP-equivalent to the complement of a 4-disc in S? x S?, a very difficult result in-
deed. He found an open submanifold, containing the Casson handles, that realizes
the 3IH summand in the intersection form and is homeomorphic to S? x R outside a
compact set. So he was able perform a TOP-surgery to obtain K as a connected sum
of two TOP-manifolds, with intersection forms 2Eg and 311 respectively. Using this
kind of techniques, Freedman proved the existence of a TOP-manifold with any
given intersection form.

In order to answer the second question, Freedman proved a TOP version of the h-
cobordism Theorem. In the previous section, we noticed that the hypothesis on the
dimension in the h-cobordism Theorem is used essentially to find an embedded 2-disc
on a level hypersurface. One of the main achievements of Freedman’s version of the
h-cobordism Theorem is the proof that such a disk exists in TOP. Freedman’s re-
markable results may be summarized as follows:

Theorem 4.6 (Freedman). Let My, Mg be the homeomorphism classes of
simply-connected topological manifolds with intersection form of odd and even
type respectively. Then:

) If u is a symmetric unimodular bi-linear form of odd type, then there are
exactly two elements in My having u as their intersection form, and they are very
different: the product of one of them with S* is a triangulable manifold, while the
other is a non-triangulable manifold.

Q) If u is a symmetric unimodular bi-linear form of even type, then there is
exactly one element in Mg having u as its intersection form.

The 4-dimensional Poincaré conjecture follows by applying the Theorem to the
empty form (which is even!):

Theorem 4.7 (4-dimensional topological Poincaré conjecture). A closed,
simply connected topological 4-manifold, homotopy equivalent to S?, is home-
omorphic to S*.

Another interesting consequence of Theorem 4.6 is the existence of a 4-manifold,
homotopy equivalent to CP?, which is not triangulable.
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For later use we state a TOP characterization of R* which is a consequence of the
TOP version of the 4-dimensional proper h-cobordism Theorem.

Theorem 4.8 (Freedman). Let M € TOP be a 4-dimensional simply con-
nected manifold with Hy(M) = {0}, and with one end (complement of a compact
set) homeomorphic to 83 x R. Then M is homeomorphic to R™.

4.4 - The DIFF-case and exotic structures on R*

As far as differentiable manifolds are concerned, the Theorem of Freedman leads
to the following questions:

e Given a symmetric unimodular bi-linear form u, does a smooth manifold having
1 as its intersection form exist?

e Given two smooth manifolds with isomorphic intersection forms, are they dif-
feomorphic?

The answer to the first question is negative in general, but we know two im-
portant necessary conditions. The first of them, due to Rohlin, has been known for a
long time and may be considered as the DIFF version of Lemma 4.3 (see [53]):

Theorem 4.9. Ifasmooth, closed, simply connected }-dimensional manifold
has an intersection form of even type, then its signature is a multiple of 16.

The second, very striking, was obtained by Donaldson (see [12]).

Theorem 4.10. If M is a simply connected closed smooth j-manifold with a
definite intersection form p, then, up to orientation, u = n[1].

Note that such an intersection form is realized in DIF'F by the connected sum of n
copies of CP2 (or CP2).

Once the question for definite forms is settled, we examine the case of the in-
definite forms. We will consider the two cases mentioned explicitly in the classifi-
cation Theorem 4.4.

o If x is odd, then u = n[1] ® m[ — 1]. These intersection forms are realized in
DIFF by the connected sum of % copies of CP? and m copies of CP2 (observe that the
other manifold with the same intersection form is not in DIFF because it is not
triangulable).

o If uis even, then u = nll @ kEg. If M € DIFF, the signature of u is a multiple of
16 by 4.9, so k =2m. If n =3m + h,h > 0, such a form is realized in DIFF by a
connected sum of m copies of the Kummer surface and & copies of S% x S2.
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The latter consideration leads to the following conjecture:

Conjecture. There are no smooth manifolds with intersection form
nH @ 2mlg and n<3m.

Remark 4.11. Observe that, for u=nll&2mls, the rank of u is
be = 2n + 16m (be is the second Betti number of the manifold) and the signature is

g = 16m. The condition n <3m is therefore equivalent to by < %o. For this reason

. 11 . .\ .
the conjecture takes the name of the g-conjectum. A positive answer to this con-

jecture has been given by Donaldson for # = 1,2. Note that a positive answer to the
full conjecture would imply that every smooth, closed, simply connected 4-manifold
18 homeomorphic to the connected sum of algebraic surfaces.

Remark 4.12. We notice the interesting similarity between the results
quoted above and the classification Theorem 4.1 for 2-dimensional manifolds. The
role of orientable surfaces is played by the spin manifolds (u of even type), and
the role of the non orientable surfaces is played by the non-spin manifolds (« of
odd type).

As far as the second question is concerned, very little is known. However, the
techniques and results we mentioned above lead to proving the existence of exotic
structures on R®. This is a very surprising fact because, if 7 # 4, R" has long been
known to admit a unique PL and DIFF structure (see the Appendix).

To give an idea of the construction of an exotic structure on R* we will go back to
the example of the Kiimmer surface. As we stated earlier, this surface contains an
open submanifold X, homeomorphic to the complement of a 4-disc in the connected
sum of three copies of S? x S2. It follows that X has one end, End(X), homeomorphic
to S% x R. This end is an open set of K, in particular, it admits a DIFF-structure.
However this structure is not diffeomorphic to S* x R since, otherwise, we could
perform a DIFF-surgery, thus obtaining a manifold in DIFF with intersection form
2Jtig, which contradicts Donaldson’s Theorem 4.10.

There is a smooth embedding of X into the connected sum £3S* x S? that re-
present the 2-dimensional homology of £3S? x S%. Identify X with its image, and let
Xo be X with its end truncated at level 0. Then, let M be the complement of X, in
#3S? x S%. Using the Van Kampen Theorem applied to M UX, and the Mayer-
Vietoris sequence, we see that M is simply connected and the second homology
group vanishes. Moreover, by construction, M has one end, that is homeomorphic to
S3 x R. Then, by Freedman’s Theorem 4.8, M is homeomorphic to R*.
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However, M can not be diffeomorphic to R*. In fact, the compact set M \ M N X
can not be contained in any smooth disc, or again, by a DIFF-surgery, we would then
obtain a smooth manifold with intersection form 2Fg. But in R* all compact sets are
contained in a smooth disc!

Even more is known:

Theorem 4.13 (De Michelis-Freedman). There is an uncountable family of
non-diffeomorphic differentiable structures on R™.

5 - The 3-dimensional case

While the higher dimensional cases of the G.P.C. only involve (sophisticated)
methods of differential topology, the known solution of the classical case, n = 3,
involves (hard) analysis on manifolds 15 The method, introduced by Hamilton in the
80’s and known as the Ricci flow method, consists of modifying a given metric in
order to obtain a “better” one, and using differential geometry to deduce topological
properties of the manifold. Again, the results give a positive answer to a much more
general conjecture, the geometrization conjecture, stated by Thurston in the 70’s.

5.1 - The geometrization conjecture

Since the beginning of last century it was clear that Riemannian geometry, which
had recently been born, was to play an important role in the study of the topology of
surfaces, a topic that was still in its infancy. Particulary remarkable in this sense is
the Uniformization Theorem, coming from the work of Poincaré, Klein and others:

Theorem 5.1. Any 2-dimensional manifold admits a complete metric of
constant curvature *6.

Simply connected, complete surfaces of constant curvature k are, up to normal-
ization of the metric, the unit sphere, the Euclidean plane and the hyperbolic
plane '?, with & = 1,0, —1 respectively. In particular, compact surfaces have com-

15 1n reality, also Donaldson’s work, discussed in the previous section, is based on hard
analysis and differential geometric methods.

16 Such a metric exists in any conformal class.

" A model is the upper half plane I :={(x,5) € R®:y >0} with the metric
ds? = (da? + dy?)/%>.
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plete, simply connected, constant-curvature surfaces as universal coverings, and
therefore, they are quotients of such spaces by properly discontinuous groups of
isometries. This would eventually lead to the topological classification of compact
surfaces.

A similar program was suggested by Thurston in the 70’s for the case of 3-di-
mensional manifolds. Not surprisingly, one can not expect the existence of a con-
stant-curvature metric, but at the most the existence of a “nice” metric. Let us ex-
plain what is meant by “nice”.

We recall that a “geometry” in the sense of Klein is essentially a manifold M
together with a transitive group of diffeomorphisms G, and geometry is the study of
properties of the subsets of M which are invariant under the action of G. If the
isotropy groups G, := {g € G : gx = x} are compact, we can define a Riemannian
metric on M for which G acts as a group of isometries. Since G is transitive, the
metric is homogeneous, hence it is complete. This leads to the following:

Definition 5.2. A geometry on a 3-dimensional manifold M is a locally
homogeneous complete Riemannian metric with compact quotients'®. If the
manifold admits such a metric, we will say that it is geometrizable.

Of course we will consider equivalent two geometries which differ by a diffeo-
morphism commuting with the actions. Moreover, since there may be several
transitive groups acting on M with the same orbits, we will assume that the group is
maximal.

Thurston gives a classification of simply connected (maximal) geometries (see
[62]). They are:

e The spaces of constant curvature, S3, R?, 113, with a 6-dimensional isometry

group.
e The products S% x R, HZ x R, with a 4-dimensional isometry group.
e The (nilpotent) 3-dimensional Heisenberg group:

1 =y
Nilg={H=|0 1 z|:x,9,2€R}
0 0 1

with a left invariant metric. The isometry group is 4-dimensional.

18 The requirement for compact quotients is due to a desire to model compact manifolds
with simply connected geometries and to simplify the classification of such geometries.
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e The universal covering group Slﬁ) of the special linear group, with a left
invariant metric and a 4-dimensional isometry group.

e The solvable 3-dimensional group, Solg consisting of isometries of the
Lorentzian metric da? — dy? on R?, with a left invariant metric and a 3-dimensional
isometry group.

Remark 5.3. The above classification is a special case of Bianchi’s classifi-
cation of homogeneous Lorentzian metrics. The classification of 3-dimensional
geometries is important in General Relativity and Cosmology (see [1]).

A “Uniformization type Theorem”, in this context, should assert the existence of a
geometry on a 3-dimensional manifold. But this is not the case. However Thurston
proved (see [63]) that if the fundamental group is “sufficiently large” then the
manifold can be decomposed into open sets, each of which admits a geometry (for a
more precise statement see 5.11). He also asked whether the hypothesis on the
fundamental group was necessary. This question took the name of The
Geometrization Conjecture. It can be roughly summarized as follows:

Conjecture. Any closed 3-dimensional manifold can be decomposed into
parts admitting a geometry.

Remark 5.4. In general the geometries on the pieces will not nicely glue on
the intersections, so they do not give a (global) geometry for the manifold. For
instance it can be seen that, in general, the connected sum of two geometries does
not admit a geometry.

Nice references for the Geometrization Conjecture (and the Rieci flow, that we
will discuss later) are, between others, [30], [10] and the recent book [3].

We shall be more precise on what the term “decomposition” means. For simplicity
we will deal with manifolds that are compact and orientable.

It is clear that if two manifolds are geometrizable, the geometrization conjecture
has a positive answer for their connected sum. So we can focus on manifolds which do
not decompose into connected sums of non trivial elements.

Definition 5.5. A manifold M is prime if, for every connected—sum de-
composition M = M; § My, either M, or M; is a sphere.

Remark 5.6. A similar concept is that of an irreducible manifold. A n-di-
mensional manifold is irreducible if every embedded (rn — 1) dimensional sphere
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bounds a n—dimensional disc. In dimension 3, a manifold is prime if and only if it is
either irreducible or diffeomorphic to S x S2.

As it happens with integers with respect to multiplication, we have a unique prime
decomposition, due to Kneser (existence, see [28]) and Milnor (uniqueness, see [33]):

Theorem 5.7. A closed 3-dimensional manifold M admits a connected sum
decomposition:

M=y K) ¢ (41L) ¢ (4} 8'x 8P,
where:

o The K; and L; summands are closed irreducible 3-dimensional manifolds.

e The K; summands have finite fundamental group and a homotopy sphere as
universal covering.

o The L; summands have infinite fundamental group and contractible uni-
versal covering.

Moreover, assuming that none of the summands is homeomorphic to S?, unless
M = 83, the decomposition is unique up to the order®.

At this point, the problem is reduced to that of deciding whether a prime
manifold admits a geometry. The answer is again negative. We need a finer de-
composition.

Definition 5.8. A surface in a 3-dimensional manifold is called n-
compressible, if the inclusion induces a monomorphism between the fundamental
groups.

The positive answer to the Geometrization Conjecture takes the following form:

Theorem 5.9. Let M be a closed prime 3-dimensional manifold. Then there
18 a finite collection of incompressible tort, such that the complement is a union of

geometrizable submanifolds.

Hence any closed 3-dimensional manifold is geometrizable away from a finite
number of spheres and incompressible tori.

19 Because M1S? = M.
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Remark 5.10. Jaco-Shalen and Johannsen (see [25]) had already shown
that there is a collection of finitely many incompressible tori which separate the
manifold into compact submanifolds (with boundary), which are either torus ir-
reducible or Seifert fibred spaces’. The latter were known to be geometrizable
(see [B7]).

Thurston’s result quoted above may be stated precisely as follows:

Theorem 5.11. If a 3-dimensional closed manifold M contains an in-
compressible torus, then the Geometrization Conjecture is true for M.

By virtue of Thurston’s result we may concentrate on the case where there are no
incompressible tori. So the decomposition in (5.9) is the prime decomposition (5.7).
Since in such decomposition the S' x S? summands admit a geometry, we are left
with the following two cases:

o Elliptic case: if M is an irreducible closed 3-dimensional manifold with a finite
fundamental group, then M admits a geometry, necessarily a S® geometry, and
therefore, it is diffeomorphic to the quotient of S? by a properly discontinuous action
of a subgroup of O(4) 21

e Hyperbolic case: If M is an irreducible closed 3-dimensional manifold with an
infinite fundamental group containing no subgroups isomorphic to Z & 7, then M
admits a complete metric of constant curvature -1 and compact quotients.

In particular, a positive answer to the first question implies a positive answer to
the 3-dimensional Poincaré conjecture.

Remark 5.12. The reduction to the hyperbolic case follows from the fact that
if the fundamental group of M contains a subgroup isomorphie to 7 & 7, then either
it has a non-trivial center, or M contains an incompressible torus (see [56]). In the
first case M is a Seifert fibred space (see [7]), for which the positive solution of the
geometrization conjecture was known (see [57]), while in the second case the geo-
metrization follows from Theorem 5.11.

20 A compact 3-dimensional manifold is torus irreducible if every embedded incompres-
sible torus can be deformed into a torus that lies in the boundary. A Seifert fibred space is a
manifold foliated by circles.

21 Since such a manifold has a homotopy sphere as its universal covering, the only
geometry that it can support is the constant-curvature 1 geometry.
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Remark 5.13. A well known result (by Preissman) states that every (non-
trivial) abelian subgroup of the fundamental group of a closed manifold, with ne-
gative sectional curvature, is isomorphic to 7. Therefore, the existence of a sub-
group isomorphic to Z @ Z in the fundamental group of a closed manifold is an
obstruction to the existence of a hyperbolic geometry.

Remark 5.14. The above-mentioned reduction is not as effective as it seems.
In fact, as we will see, in the course of the proof we may need to perform surgeries,
which “change the manifold”.

5.2 - The Ricci flow

At the beginning of the 80’s Hamilton started a program to attack the
Geometrization Conjecture. The basic idea was to use an evolution type equation on
the metric. The classical evolution equation in the theory of P.D.E. is the heat
equation:

0
au(t,x) = Au, w0, x) = up(x).

This equation describes the heat distribution, at time ¢, in a body with initial heat
distribution uy. It is intuitively clear that the distribution tends to be uniform as time
passes. So, starting with a similar equation on a Riemannian metrie, the hope is that
such a metric tends to be “uniform” as time evolves. But which object should we put
on the right hand side of the equation? We would like a symmetric bilinear form that
depends only on the space derivatives of the metric of order at the most two. Up to
multiples of the metric, there is essentially only one simple and natural such form,
namely Ricc, the Ricci tensor 2.

Before continuing with our discussion, let us recall some few basic facts from
Riemannian geometry. Let M be a n-dimensional Riemannian manifold and H(M)
the space of smooth vector fields on M. We have the Levi-Civita connection

V HM) x HM) —HWM), X,Y) > VyX,

which, if M is isometrically embedded in some Euclidean space %, is just the pro-
jection of the derivative of X in the direction Y on the tangent space of M. Now the

22 This is essentially the same reason that led to the Einstein field equations in general
relativity.

2 By a celebrated Theorem of Nash, a Riemannian manifolds may be isometrically
embedded is some Eucledean space.
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geometry at a point & € M" is the geometry of R" in the sense that T, M" is isometric
to R”. But this is not the case in a neighborhood of x, and the “curvature” measures
how much the two geometries differ. The curvature is measured by the Riemann
curvature tensor

RX,Y)Z :=VxVyZ - VyVxZ - VixyiZ,

which is tri-linear with respect to smooth functions, i.e. a tensor 2. We will be in-
terested in various “contractions” of the curvature tensor.

e The sectional curvature. If = C T,,M is a 2-dimensional subspace, the sectional
curvature of 7 is given by

where X,Y € 7 are orthonormal. So the sectional curvature is a function on the
bundle of 2-planes tangent to M.
e The Rucci tensor. For X, Y € T, M, the Ricci tensor is the bi-linear form

n
RiceX,Y) = (R(X;, X)Y,X;)

1
where {Xi,...,X,} is an orthonormal basis for 7, M. For a unit vector X, the
quadratic form Ricci(X) := Rice(X, X) is called the Ricci curvature of X. Then, the
Ricci curvature is a function on the unit tangent bundle.

e The scalar curvature. The scalar curvature S is a function on M, defined as the

trace of the Ricci curvature, i.e.

S(x) = iRicci(Xi).
1

Here are some geometric interpretations.

e The sectional curvature K(rn) is the Gaussian curvature, at x, of the (local)
surface M, spanned by the geodesics with origin in & and tangent vector in 7. It
measures the ratio between the length of “circles” in M and the length of Eucledian
circles. More precisely, if C = {y € M, : d(x,y) = r}, then, for » small,

L(C) = 2rr(1 — ?ﬁ + 0(r?)).

e The Ricci curvature measures the change of the Riemannian volume form.
More precisely, if we move from « to a nearby point y, at distance » in the direction of

24 Observe that V is not linear in the first variable with respect to functions, hence it is
not a tensor.
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a unit vector X € T, M", we have
.
dv(y) = (1 — & RiceiX) + 0(r))Avgc

where dv(y) is the volume form of M" at i and dvg,; is the volume form of R”".
e The scalar curvature measures the ratio between the volume of a disc in M and
the Euclidean volume. More precisely, if D = {y € M : d(x,y) < r}, then, for » small,

_dm o5 1 5 5
vol(D) = 3 (r 30 S@x)r° + o(r°)).
We go back to our previous discussion. The natural equation to study is
0 . )
1) 5190 = —2Ricc(g®) + 2Dg®,  9(0) = go,

where g is a given Riemannian metric on the manifold.
Hamilton also considered the equation (1) for A(f) = 0:

@) 9 40 = ~2Rice(gt).  90) = go.

The two equations are essentially equivalent in the sense that (2) can be trans-
formed into (1), by rescaling the metric and the time variable. For example, by re-
scaling the metric in such a way that the volume is constant, we get equation (1) with
At) = j S@)dv(t) where S(t) is the scalar curvature of g(f) and dv(?) is the volume

form. ¥

Remark 5.15. The curve of metrics g(f) may be thought of as an integral
curve of the vector field —2Ricc(g(t)) + A(t)g(t) in the space of metrics on the
manifold. Unfortunately, this space is not a nice space, even though it is a cone in the
linear space of sections of the bundle of symmetric bilinear forms; a priori, there is
no associated flow.

Hamilton proved that there is a solution of the equation (1), defined on a maximal
interval [0, T) C R, and that such a solution is unique once we fix the initial data. This
fact follows from the classical existence and uniqueness theory for such equations,
once written in suitable local coordinates®. The “singular time” T has to be un-
derstood as the time when the solution tends to a bilinear form which is not positive
definite. Observe that the sign minus is essential. In general, there are no solutions

% The equation looks parabolic but it is not. However the proof of existence and
uniqueness may be reduced to the parabolic case by an argument known as the De Turck
trick. This simplifies the original proof of Hamilton.
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for negative times, while the factor 2 is introduced just for convenience. Note also
that, as we will see in the examples below, the interval is not the same for (2) and (1).

Here are some examples:

e Let us suppose that the initial metric has a constant Ricci curvature, i.e.
Rice(g(0)) = kg(0), k € R. Then the solutions of (2) are given by g(t) = (1 — 2kt)g(0).
Observe that the solution is a (positively defined) metric for ¢ € [0,1/2k), if k > 0. If
we rescale the metric in such a way that the volume is constant, we get the constant
solution g(t) = ¢(0), which is a positive definite metric for all ¢ € [0, o).

e For 2-dimensional manifolds, it is possible to show that the Ricci flow “con-
verges” to a constant-curvature metric. In this way, we obtain an alternative proof of
the Uniformization Theorem 5.1.

e Let 2 be a surface of constant curvature k. Consider the product metric on
S! x X. Then, the Ricei flow preserves the product structure, keeps the metric on S*
invariant, and modifies the metric on 2 according to the formula of the first example.

e In general, the fixed points of (2) are the Ricci flat metries, while for the rescaled
flow with constant volume, they are the Einstein metrics, i.e. metrics of constant
Ricei curvature.

Therefore the task is to study the flow, and try to prove that the solution con-
verges to a “nice solution”, i.e. to a homogeneous metric. While this is generally not
the case, it works under additional conditions. A first step is to study the curvature of
the solution.

The scalar curvature satisfies the following equation

3) 9 _ 48 + 2||Rice|)?,
ot
where 4 and Ricc are (space) Laplacian and the Ricci tensor for the metric g(t). A

basic fact has to be observed. Suppose that S has a minimum, S,, at x € M. Then

oS
A8(x) is non negative, and so is w Hence, heuristically, S,, is non-decreasing with {.

This can be made rigorous, and it gives what is called the scalar maximum principle.
The Riccei tensor satisfies the following equation

) 8};;“' = ARicc + Q(Rice),

where @ is a quadratic expression in Ricc.

Hamilton proved an analogous maximal principle for the solution of the equation
(4) that implies, in particular, that if the Ricci curvature of the initial data is positive,
then it stays positive under the flow. Using this principle and estimates on the
gradient of S, Hamilton proved a seminal result in the theory (see [20]).
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Theorem 5.16. If the manifold is compact and the initial metric has a po-
sttive Ricct curvature, then the rescaled solution is defined for all positive times
and converges, as t — oo, to a solution of constant curvature.

In particular we have the following “Riemannian version of the Poincaré con-
jecture”:

Corollary 5.17. A compact simply connected Riemannian 3-dimensional
manifold with positive Ricci curvature is diffeomorphic to S3.

5.3 - The Ricci flow with surgery

Let us consider the Ricci flow with an arbitrary initial condition. If the curvature
of the metric g(t) goes to infinity (somewhere) as t — T < oo, then the solution can
not be defined for ¢ > T'. In fact, the converse is also true: if the curvature of g(¢) is
bounded for t<T, then the solution can be extended to [0, T + ¢) for ¢ > 0, suffi-
ciently small. In particular, if the curvature remains bounded, the solution is defined
in the interval [0, co). In this case Hamilton proved the following result (see [22]):

Theorem 5.18. Suppose that the Ricci flow is defined for all positive times.
Then we have one of the following possibilities:

1) The manifold admits a flat metric.
(2) Thereis a family of disjoint submanifolds H;, admitting hyperbolic metrics,
whose complement is the union of Seifert fibred spaces and Solg manifolds.

In particular, in both cases, the geometrization conjecture holds true.

We now analyze the case where the curvature becomes unbounded as ¢ ap-
proaches T' < co. One of the main achievements obtained by Perelman is the so called
canonical neighborhood Theorem. The precise statement is rather technical, then
we will just give a very inaccurate statement (see [43] for the precise statement).

Theorem 5.19. There is a universal constant ry such that, if we start with a
suitable normalized metric, any point with scalar curvature greater than vy has a
neighborhood that looks like:

1) cylinders, with a metric close to the standard one (called necks),
(2) balls or complement of a ball in the projective space, that are close to a cy-
linder outside a small set (called caps)

or the manifold is diffeomorphic to a finite quotient of S°.
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If the curvature becomes big as t — T'< oo, then it may be unbounded every-
where, or on a proper subset. In the first case we will say that the manifold becomes
extinct (big curvature, “small” manifold). If the manifold becomes extinct, it is,
eventually, totally covered by canonical neighborhoods. Pasting these canonical
neighborhoods together, whose topology is known, Perelman proved in [44].

Theorem 5.20. Ifthemanifold becomes extinct, then itis either a finite quotient
of S3 or ST x S% or RP?  RP3. In all cases the geometrization conjecture holds true.

In general, there will be a region where the curvature remains bounded, the thick
part, and a region where it explodes, the thin part. Perelman took over an idea of
Hamilton considering the Ricci flow with surgery. Let (x;,t;) be a sequence such that
the curvature of g(t;) at x; tends to infinity, as ¢; — T Then, near a limit point, we
have a canonical neighborhood U, as in 5.19. We cut U off and fill up the boundary
with caps obtaining a new manifold M, possibly not connected, with a Riemannian
metric g7. It was noted that, if My is geometrizable, so is M. Then we start a new
Ricci flow on M7 with initial condition g7. This procedure should be seen as a “non
continuous” version of the classical Ricei flow (not even the manifold is the same!).
The figures below give a very rough idea of what is happening.

thick part

T T A

Fig. 5. The situation before surgery.

Then Perelman proved a key result: the singular times do not accumulate, i.e. in
a finite interval we only need to perform a finite number of surgeries. The proof is
quite involved and is based on beautiful arguments of Riemannian geometry. But not
only this, again based on ideas of Hamilton, he proved that, if we start with a simply
connected manifold, then the flow with surgery becomes extinct at a finite time, i.e
the connected components of the modified manifold are covered by canonical
neighborhoods. Then, arguing as in Theorem 5.20, we have the positive answer to the
Poincaré conjecture.
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Theorem 5.21. A compact, simply connected 3-manifold is diffeomorphic
to S3.

Remark 5.22. An alternative proof, based on harmonic maps theory, is given
in [11].

If the fundamental group is finite, the argument implies that the manifold is a
finite quotient of S3. If the fundamental group in infinite, we have to allow the Ricci
flow with surgery to be defined for all times. In this case, in the thin-thick decom-
position, hyperbolic pieces emerge from the thick part, while the thin part will col-
lapse, producing, after rescaling, what is called a graph manifold, essentially Seifert
fibrations glued along boundaries. Further comments on the situation “nous
entrainerait trop loin” as Poincaré said, and we may stop our discussion here.

thick part

s o

Fig. 6. The situation after surgery.

5.4 - A remark on the Ricci flow in higher dimensions

One of the reasons why the Ricei flow method works so well for 3-dimensional
manifolds is that, in this dimension, the Ricci curvature completely determines the
Riemannian curvature tensor. In particular, positive Ricei curvature is equivalent to
positive sectional curvature. This is not the case in higher dimensions. However,
suitable conditions on curvature imply, even in higher dimensions, the convergence
of the Ricei flow. This is a very recent and fruitful field of research. The main point is
to show that the positivity of certain curvatures is preserved by the flow and, in fact,
improved. An example of such a result is the differentiable pinching Theorem. The
classical pinching Theorem, proved in the 60’s (Berger and Klingenberg), states that
a compact simply connected Riemannian manifold, whose sectional curvature is in
the interval (1/4,1], is homeomorphic to a sphere. A natural question, unanswered
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for fifty years, is whether such a manifold is diffeomorphic to a sphere. A positive
answer to this question (with slightly weaker hypothesis) has been recently given by
Brendle and Schoen. In [5], they prove that for those manifolds the (normalized)
Ricci flow converges to a constant-curvature metric.

6 - Appendix

In this appendix, we briefly describe some interesting results related to the
Poincaré conjecture that we did not include in the main part of the paper, so as not to
deviate from the main focus of the points presented.

Definition 6.1. Let M € TOP. A triangulation of M is a homeomorphism
f:|K| — M, where |K]| is the support of a locally finite simplicial complex K; f is
said to be combinatorial if |K| is a PL manifold or, equivalently, if the link of any
vertex is a PL-sphere.

Intuition may lead us to think that any triangulation of a topological manifold is
combinatorial. Surprisingly, Edwards showed, in 1974, the existence of non combi-
natorial triangulations of some manifolds, even very simple ones like spheres and
Euclidean spaces of suitable dimensions. For example, the double suspension of the
Poincaré sphere gives a non combinatorial triangulation of S°. It is important to
observe that combinatorial triangulations of S” or R” are PL equivalent, if n # 4.
More precisely:

Theorem 6.2. Ifn # 4, R" admits a unique PL structure as well as a unique
DIFF structure.

Proof (Sketch). Since R” has vanishing cohomology in positive dimensions,
Munkres’ smoothing-theory ensures that DIFF-uniqueness follows from PL-un-
iqueness. The latter was proved by Moise for n» = 3 (see also 2.1), and by Stallings for
n > b5 (see [61] ). If M}, is a PL manifold, with M}, ror R" and n > 5, Stallings
proves, with a very delicate argument, that each compact subset of M7, is contained
in the interior of a PL disk. From this, the equality M}, B R" follows by applying
the PL version of the Palais-Cerf Lemma, which is due to Newman and Gugenheim

(see [55], pg. 44). O

Remark 6.3. The only properties of M}, , apart from n > 5, used in Stallings’
argument are that M}, is contractible and simply connected at infinity, i.e. each
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compact subset lies in a compact subset whose complement is simply connected.
Clearly R" enjoys these properties for n > 2.

As far as spheres are concerned we have:
Theorem 6.4. Ifn #4, S" has a unique PL structure.

Proof. This is a classical result for n < 2, and it is due to Moise for n = 3.
For n > 5 the result follows from Smale’s strong version of the PL Poincaré
conjecture. O

In conclusion, spheres and Euclidean spaces in general admit a unique PL
structure, but not a unique polyhedral structure.
We now briefly go back to the weak G.P.C:

Theorem 6.5. Let M" be a PL homotopy sphere, n > 5. Then M is home-
omorphic to S™.

Proof. Letp e M. A simple argument shows that M \ {p} is contractible, and
simply connected at infinity. Then, by Theorem 6.2 (and Remark 6.3), M" is home-
omorphic to the one point compactification of R", i.e. to S™. O

Finally, we may quote an interesting consequence of the 3-dimensional Poincaré
conjecture:

Theorem 6.6. If M* € TOP, any triangulation of M* is combinatorial.

Proof (Sketch). One can show (see [19]) that the link of any vertex in a given

triangulation is a simply-connected 3-manifold, hence such a link is a sphere. O
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