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Graph ideals with linear quotients

Abstract. Monomial ideals corresponding to complete bipartite graphs are con-
sidered and the property of having linear quotients is investigated. Standard al-
gebraic invariants are computed.

Keywords. Graph ideals, linear quotients.

Mathematics Subject Classification (2010): 05C99, 05B35, 13C15, 13P10.

Introduction

In several papers on graph theory some algebraic properties of bipartite graphs
are studied ([2], [8]). In particular, classes of monomial ideals in the polynomial ring
in two sets of variables R = K[X1,...,X,;Y1,...,Y,,] over a field K associated to
bipartite graphs are introduced in [6], [5].

In this paper we are interested in some classes of monomial ideals of R with linear
quotients that can arise from graph theory.

Let {uy,...,u:} be the unique minimal set of monomial generators of an ideal
I C R. We say that [ has linear quotients if there is an ordering w4, ..., u; with
degu; < deguz <...<degu; such that, for each 2 <j <t the colon ideal
(u1,ug, ..., uj—1) : u;is generated by a subset of {X1,...,X,;Y1,...,Y),}. Itis known
that if amonomial ideal / generated in one degree has linear quotients, then  has linear
resolution ([1]). Important monomial ideals with linear quotients in the polynomial ring
in one set of variables are the Veronese ideal and the Veronese-type ideal ([3], [9]).

In order to find new classes of monomial ideals with this good property we
investigate the ideals of Veronese bi-type of R introduced in [5]. They arise from the
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walks of a bipartite graph G with loops and they are called generalized graph ideals.
We prove that these ideals have linear quotients and as an application the standard
invariants are computed.

The paper is organized as follows. In Section 1 we consider bipartite graphs with
loops. A graph on vertexset V = {v1,...,v,} hasloopsifitis not requiring v; # v; for
all its edges {v;,v;}. A graph G is said quasi-bipartite if its vertex set V can be
partitioned into disjoint subsets V7 and Vs, any edge joins a vertex of V; with a vertex
of V5 and there exists some vertex of V with a loop. A quasi-bipartite graph G is
strong if all the vertices of V; are joined to all vertices of V;, and for each vertex of V
there is aloop. The generalized ideals 1,(G) associated to the walks of a strong quasi-
bipartite graph G correspond to the Veronese by-type ideals Lyo = > I.2Jsp2,

r+s=q
where 7,8 > 1, I,» is a Veronese type ideal generated in degree r in the variables
Xi,...,X, and J, is a Veronese type ideal generated in degree s in the variables

Yi1,..., Yy ([5]). We show that I,(G) associated to a strong quasi-bipartite graph G
has linear quotients for ¢ > 3 because it is an ideal of Veronese bi-type.

In Section 2 we use the property that I,(G) has linear quotients to investigate
standard algebraic invariants of R/1,(G). More precisely, formulas to compute the
dimension, the projective dimension, the depht, the Castelnuovo-Mumford regu-
larity of R/I,(G) are stated.

1 - Linear quotients

In this section we investigate monomial ideals arising from quasi-bipartite
graphs that have a good property, namely a class of monomial ideals with linear
quotients. We recall some preliminary notions given in [5].

Definition 1.1. A graph G with loops is strong quasi-bipartite if all the ver-
tices of V7 are joined to all the vertices of V» and for each vertex of V there is a loop.

Definition 1.2. Let G be strong quasi-bipartite graph on » vertices. A walk
of length q in G is an alternating sequence w = {v;, i, v, li,, ..., vi i, i},
where v; is avertex of Gand [;, = {v;,_,,v; } is the edge joining v;, , and v;; or aloop if
Vijy =vij,1§i1 <1 SS’LQ <n.

Example 1.1. Let G be a strong quasi-bipartite graph on disjoint vertex sets
Vi ={a1,22} and Vo = {y1,y2}. A walk of length 2 is

w = {ay, I, 21, b, },
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where l; = {u1, 21} is the loop on &7 and Iy = {wx1,y;} is the edge joining x; and y; (a
walk win G can not have the edges {x;, a;}, with 7 # j and {y,, y:} with s # ¢, because
G is bipartite).

Let G be a strong quasi-bipartite graph on disjoint vertex sets Vi = {1, ..., 2.}
and Vo = {y1,...,Ym -

The generalized ideal 1,(G) associated to G is the ideal of the polynomial ring
R=K[Xi,...,X;; Y1,...,Yy] generated by the monomials of degree ¢ corre-
sponding to the walks of length ¢ — 1. Hence the generalized ideal I,(G) is generated
by all the monomials of degree ¢ > 3 corresponding to the walks of length ¢ — 1 and
the variables in each generator of 1,(G) have at most degree 2.

As described in [5] the ideal 1,(G) correspond to the Veronese bi-type ideal L, » of
R generated in degree q. More precisely, one has

Loa= > LaJss, 15>1,

r+s=q

where I, 2 is the special class of ideals of Veronese-type of degree 7 in the variables
n

Xi,...,X, generated by the set {Xf1 XIS e =1, 0<a; < 2} and J; 2 is the
i=1

special class of ideals of Veronese-type of degree s in the variables Yi,...,Y),

m
generated by {Yfl Y S b =5, 0<b < 2}.

n m
ZCLi—Fij =gq, 0< CLi,bj < 2})
i1 =

Remark 1.1. By definition the ideal L,» is not trivial for 2 <gq
<2mn+m)—1.

Jj=1
Hence L,z = ({ X0 zny{u L Ybn

m

Example 1.2. R = K[X1,Xy;Y1,Y2].
Lys = I32J1 + L1J32 + InJs = (X2XoY1, X2Xo Yo, X1 X3V, X1 X5Y2, X1 Y2Y 0, X2 Y2Y5,
X\ YE, XoY1YE, XPYZ XiY1Ye, X0YE X2VE X2YZ X3Y1Ye, X1 XoY?, X1XoYE,
X1 XoY1Y2).

Therefore we can write:

1,(G) =Lgys = Z I,2Jso, for q>3.

r4s=q

Example 1.3. Let R = K[X1,X»;Y1,Ys] and G be the strong quasi-bipartite
graph on disjoint vertex sets Vi = {21, 22} and Vo = {y1,92}:
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T1 T2

m g2

A walk of length 6 in G is: w = {&1,l1, 21, b, ¥1, 13, Y1, ls, %2, U5, 22, ls, Y2 }, Where
Iy = {1, 2} is the loop on a1, lo = {1,y } is the edge joining x; and y1, I3 = {y1,¥1}
is the the loop on y1, Iy = {x2, 1} is the edge joining x2 and y1, l5 = {a2, 42} is the
loop on a2, ls = {a2, y2} is the edge joining x» and y2. The walk w corresponds to the
monomial X?2X5Y?Y> of R.

All the walks of length 6 correspond to the generators of the generalized ideal of
degree g = T:

17(G) = L7z = (X2X5Y2Y0, X2X2Y Y2, X2 X Y2YE X1 X5V 2Y5).

Remark 1.2. For q=2 the ideal L,» doesn’t describe the edge ideal
1(G) = I5(G) of a strong quasi-bipartite graph. In fact, if we consider the strong
quasi-bipartite graph on vertices 1, 22, %1, %2 then

I(g) = (X1Y17X1Y27X2Y15X2Y27X12aX227 Y12> Y22)7

but Lge = (X1Y1,X1Y2, X2Y1,X5Y3). Hence I(G) # Las.
For this reason in the sequel we consider 1,(G) for ¢ > 3.

The following definitions give some algebraic properties of monomial ideals, our
aim is to investigate them for I,(G), where ¢ > 3 and G is a strong quasi-bipartite

graph.

Definition 1.3. LetLCR=K[X;,...,X,;Y1,...,Y,;;]be amonomial ideal and
G(L) be its unique set of minimal generators. L satisfies the bi-exchange condition
if for all pairs of monomials » = X7" - - - X Yfl Yl and v = X7t - -Xf;bell oo Y
in G(L) and for each ¢ with a; > ¢; or k with b;, > d}, there exist j € {1,...,n} and
le{1,...,m} such that a;<c; or b;<d; and Xju/X; € G(L) or Yu/Y; € G(L).

Definition 1.4. Let LCcR=K[X;y,...,X,;Y1,...,Y,;] be a monomial
ideal and G(L) be its unique set of minimal generators. L has linear quotients if
there is an ordering u;,...,u; of the monomials belonging to G(L) with
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deg(uy) < --- < deg(u;) such that for each 2<j<t the colon ideal
(u1,...,uj-1) : u; is generated by a subset of {Xi,...,X,;Y1,...,Y},}.

Proposition 1.1. Let G be a strong quast-bipartite graph, then 1,(G) satisfies
the bi-exchange condition, for q > 3.

Proof. Let I,(G) and G(I,(G)) be its unique set of minimal generators. Set
w=X" . XYYy =X XY Y € GUTL(G)), then X - X% €1,

m

n m
and Yfl ~~-Y7,b;“ €Js2 such that Y a;+> bj=q, and 0<a;b <2. Let

B, ={(a;b) € ZI{™ : |a| =1, |b| =s, Z;l—i— s :]?]1, 0 < a;,b; <2} be the set of the
vector exponents of the elements of G(1,(G)). Let (a,b),(c,d) € B, with a; > ¢; or
by, > di, for some j € {1,...,n} with a;<c; and [ € {1,...,m} with b;<d;, one has
(a;0)—(e;;0)+(e;;0) =(ay,...,a;—1,...,a;+1,...,a,:b1,...,by) and (a; b) — (0; ¢;)
+(0;e) = (ar,...,au:b1,...,0p,—1,...,0,+1,...,by), where ¢; and ¢;, denote the
standard basis vectors of R" and R"™ respectively. Hence (a; b) — (e;;0) + (¢;;0) € By
or (a;b) — (0;¢;) + (0;¢) € B, by construction. It follows that X;u/X; € G(I,(G)) or
Yiu/Y, € GU,(G). O

Theorem 1.1. Let G be a strong quast-bipartite graph, then 1,(G) has linear
quotients, for q > 3.

Proof. Let G(I,(G)) be the unique set of minimal generators of I,(G). Let
u € GU(Q9), we set I = e GU,(G)| v <u) with < the lexicographical order.
We prove that I:u = @/GCD(u,v)|vel) is generated by a subset of
{X1,...,X; Y1,...,Y,}. Therefore we must prove that for all v <wu there
exists a variable of R in I:u such that it divides v/GCD(u,v). Let
=X X0y VP and v = X0 XOYT . YSe in G(I,(G)). Since v < u
there exists an integer ¢ € {1,...,n} with a; > c; and a = ¢, for k=1,...,1— 1.
Hence by Proposition 1.1 there exists an integer j € {1,...,n} with ¢; > a; such
that w = X;(u/X;) € GU,(G). Since j>1, it follows that wel and
w = X;(u/X;) € GU,(G) implies wX; = Xju, that is X; € I:u. Since the j-th
component of the vector exponent of v/GCD(u,v) is given by
¢; —min{c;,a;} = c¢; —a; >0, then X; divides v/GCD(u,v) as required. If we
suppose that ay=c¢; for all k=1,....,n, b;>d; and b =d; for all
I=1,...,i—-1i€{1,...,m}, then we obtain Y; € I : w and Y; divides v/GCD(u, v).
The thesis follows. O

Corollary 1.1. Let G be a strong quasi-bipartite graph, then 1,(G) has linear
resolution, for q > 3.
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Proof. It is known that if a monomial ideal generated in the same degree has
linear quotients, then it has a linear resolution ([1]). O

2 - Applications

Let G be a strong quasi-bipartite graph. Let 1,(G) be the ideal of R with linear

quotients with respect to the ordering uy, ..., u; of the monomials of G(,(G)). We
denote by q;(I,(G)) the number of the variables which is required to generate the
ideal (ul, . ,uj_l) : u7

Set q(14(9)) = maxo<j<; qj(1,(G)). The integer q(1,(G)) is independent of the choice
of the ordering of the generators that gives linear quotients ([3]).

A vertex cover of 1,(G) is a subset W of {Xi,...,X,;Y1,...,Y,} such that each
u € G ,(9)) is divided by some variables of W.

Denote by i(I4(G)) the minimal cardinality of the vertex covers of 1,(G).

Now we investigate some algebraic invariants of £/1,(G).

Theorem 2.1. Let R =K[Xy,...,X;;Y1,..., Y] with n,m >1 and 1,(G)
with 3 < q <2 +m —1). Then:

1) dimg(R/1,(G)) = n+ m — min{n, m}
2) pdp(R/14(G) =n+m

3) depthip(R/1,(G) =0

4) regr(R/1,(9) =q— 1.

Proof. Let @)= ({X" - XpYP - ¥io| S ai+ 3bj=g, 0 < ai,by < 2})
i=1 i=1

with 3 <q <2(n+m —1). We order the generators i)f 1,(G) with respect to
the lexicographical order with X;>Xo> - =X, =Y1>=Yo = - =Y,.
Let je{l,...,n} such that 2(-1+aj=q—-1 a;=1,2 we have:
X;X3--- X2 XYy - X;X3--- X2 X[Yp = - = XiX5 .- X2\ XUY,, > - and so
on up to X,Y'Y?, - Y2, with 2(m — ) + b; = ¢ — 1. By the computation of the
linear quotients it follows that the maximum system of their generators is
{X1,...,. X Y1,..., Y1} Hence q(J((G)) =n+m — 1. The minimal cardinality
of the vertex covers of 1,(G) is MlI,(G)) = min{n,m} being G a quasi-bipartite
graph. Hence:

1) dimg (B/14(G)) = dimg R — h(1((G)) = n +m — min{n, m} ([3]).
2) The length of the minimal free resolution of R/I,(G) over R is equal to
q4(9) + 1 ([4], Corollary 1.6). Then pdz(R/I,(G) = n + m.
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3) is a consequence of 1) and 2), by using Auslander-Buchsbaum formula
depth,(R/1,(9) = 1+ m — pdp(R/1,(G) = 0.

4) I,(G) has linear resolution, then regp(R/1,(G)) = q¢ — 1. O

Theorem 2.2. Let R =K[Xy,...,X;;;Y1,..., Y] with m,m >1 and 1,(G)
with ¢ = 2(n +m) — 1. Then:

1) dimg (R/1,(Q) =n+m —1
2) pdp(R/14(9) =2

3) depthp(R/1,(G) =n+m —2
4) regp(R/1,(G) =2(n +m — 1).

Proof. Letq=2(n+m)— 1. The generators of 1,(G) are the following:

fi =X2XZ. X2 X2 X2Y2YZ-- Y2 Y,
fo=X2X2. - X2 X2 X2Y2YZ---Y,, Yﬁl,

fo=X2XZ. X2 X2 X2Y2YZ.-.Y,, oY2 Y2,

n—1 m—1

Foimo1 =X2Xp - X2 X2 X2Y2YZ...Y2 V2,

m—1
fn+m = X1X22 B szz 2X121 1Xv27Y12Y22 e Y/&%zflygn'

The linear quotients are:

(1) : (o) = V1), (f1,02) - () = Ye2), -, (f1, - s fin1) = () = (Y1),
(fh cee 7](:”0) : (fm+1) = (Xn)y ) (fiv cee 7fm+nfl) : (.ﬁm+n) = (Xp).

It follows that ¢(/,(G)) = 1. The minimal cardinality of the vertex covers of 1,(G) is
h(14(G)) =1 being W = {X;} a minimal vertex cover of /,(G). Hence:

1) dimg (B/14(G)) = dimg R — h(I4(G)) = n +m — 1 ([3]).

2) The length of the minimal free resolution of R/I,(G) over R is equal to
qU4(9) + 1 ([4], Corollary 1.6). Hence pdp(R/I,(9)) = 2.

3) As a consequence of 1) and 2) we compute depthp(R/I,(9)=n+m
—pdp(R/1,(G) =n+m — 2.

4) regr(R/1,(G) =q—1=2n+m)—1—1=2n+m —1) because I,(G) has
linear resolution. O

Example 2.1. Let R = K[X;, X»; Y1, Y2] be a polynomial ring over a field K
and G be the strong quasi-bipartite graph:
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Q 1 T2

O 11 by2

I:(G) = (X2X2Y2Y,, X2X2Y, Y2, X2X, Y22, X, X2Y2Y2).

Set fi = X2X2Y2Ys, f = X2X2Y Y2, fo = X2XoY2YE, fi = X, X3Y2Y2.

The linear quotients are:

Io = (f1): (f) = (Y1)
I3 = (fi.f2) : () = (X2)
I4 - (.flaféa.fg) : (.ﬁl) == (Xl)~

Then q(I7(G)) = maxe<;<4{q;([7(9)} = 1.
The minimal cardinality of a vertex cover of I7(G) is h(I7(G)) = land W = {X; } is
such a vertex cover. Then:

(1]
(2]
(3]
(4]

(5]

1) dimg (B/I7(9)) = 3
2) pdp(R/17(9)) =2

3) depthg(R/I7(9)) = 2
4) regp(R/1:(Q)) = 6.

M.
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