GIORDANO GALLINA # Near-rings arising from coupling maps **Abstract.** By contemporaneous consideration of coupling maps and of "moltiplicative" endomorphisms, a class of near-rings is given. We prove in particular that various of them are local. **Keywords**. Near-ring, coupling map, local near-ring. Mathematics Subject Classification (2000): 16Y30. #### 1 - Introduction In this article, all near-rings will be assumed to be left near-rings, that is in which the product is distributive on the left with respect to the sum (see for example [1], [2], [8]). In order to summarize completely this concept, we recall that a (left) near-ring is a structure $[N;+,\cdot]$, with two operations, addition and multiplication, defined onto N, such that i) [N;+] is a group; ii) $[N;\cdot]$ is a semi-group; iii) $\forall x,y,z\in N$ $x\cdot (y+z)=x\cdot y+x\cdot z$. A near-ring N is called zero-symmetric ([1], Def. 3.2), if $0\cdot x=0$ for any $x\in N$, and N is called near-field ([1], Def. 2.17) if $[N\setminus\{0\};\cdot]$ is a group. According to [5], Def. 2.1, a zero-symmetric near-ring N with (multiplicative) identity is said to be local if the set L(N) of elements of N without right inverses is a subgroup of [N;+], such that $L(N)N\subseteq N$. A zero-symmetric near-ring N with identity is local if and only if L(N) is a subgroup of [N;+] (by Theorem 2.3 of [5], and we notice that in [5], [6], [7] notations for right near-rings, instead of for left, are used). Received: April 26, 2010; accepted: June 30, 2011. We now follow the terminology of [7]. Given a ring $[A;+,\cdot]$, a coupling map for A is defined as a function $\varphi:A\to End[A;+,\cdot]^1$ ($a\to\varphi_a$) such that $\varphi_0=0_A$, and, for any $a,b\in A$, $\varphi_a\circ\varphi_b=\varphi_{a\varphi_a(b)}$. From a coupling map φ for A, a (left) near-ring $[A;+,\circ]$ is introduced, which is said to be the near-ring coupled with A by φ ([7] page 155), where \circ is given by $a\circ b=a\varphi_a(b)$ (which implies $\varphi_{a\circ b}=\varphi_a\circ\varphi_b$). In this paper, we generalize and we complicate the description of the local near-rings on elementary abelian p-groups of order p^2 of $[\mathbf{6}]$, starting from a near-ring $[A;+,\circ]$ coupled with a ring $[A;+,\cdot]$ by a suitable coupling map φ . We introduce a function ρ of $A\setminus\{0\}$ into $A\setminus\{0\}$ satisfying appropriate hypotheses with respect to the previous φ . From φ and from ρ we derive an operation \circ_1 onto $A\times A$, finding a class of near-rings; we verify that these near-rings, under some conditions, are local. Furthermore we classify, by a necessary and sufficient condition, all S-near-rings ([4]), among the near-rings in such a way introduced. In Section 3, we analyze when, given (arbitrarily) two, of the near-rings here obtained, they can be non-isomorphic. For further generalities on the theory of near-rings, we refer to the treatises [1], [2], [8], [9], [10]. ### 2 - A class of near-rings Let $[A;+,\cdot]$ be a ring with identity $1\neq 0$ without divisors of zero. The symbol id_A will be used to designate the identity map on A. Put $A^*=A\setminus\{0\}$. Let φ be a coupling map for A, with φ_a injective for every $a\in A^*$. Since 1 is the only idempotent in $[A^*;\cdot]$, we have then $\varphi_x(1)=1$ for all $x\in A^*$. Let $R=[A;+,\circ]$ be the (left) near-ring coupled with $[A;+,\cdot]$ by φ . We recall that, here, $x\circ y=x\varphi_x(y)$ and $\varphi_{x\circ y}=\varphi_x\circ \varphi_y$. On the basis of our hypotheses, each element of A^* is left cancelable with respect to \circ . By theorem 4.4 of [7], R has identity 1. 2 Moreover, 1 is the unique idempotent in $[A^*;\circ]$. It is now clear that 1 is fixed by every endomorphism of $[A^*;\circ]$. For the given $[A;+,\cdot]$ and φ , we denote by A_{φ}^* the set of all endomorphisms ρ of $[A^*;\circ]$ verifying the condition $$\forall x \in A^* \quad \varphi_x = \varphi_{\rho(x)}.$$ ¹ We will note 0_A the function $A \to A$ which sends every element of A to 0. ² For a direct verification, we remember that $\varphi_1(1) = 1$; thus $\varphi_1 = \varphi_{1\varphi_1(1)} = \varphi_1 \circ \varphi_1$. Since φ_1 is injective, $\varphi_1 = id_A$; hence 1 is identity for R. ³ If $e \neq 0$ is such that $e \circ e = e$, then $e \circ e = e \circ 1$, which implies e = 1, by left-cancellability of e. Examples. First of all, if $[M;\cdot]$ is any monoid and if $z\in M$ has (two-sided) inverse z^{-1} , we will call inner automorphism of M induced by z the function $M\to M$, $y\to z^{-1}yz$. Now we consider the above mentioned structure $[A^*;\circ]$ and we observe that, if β is an inner automorphism of $[A^*;\circ]$ induced by an element z (endowed with inverse in $[A^*;\circ]$, which we denote z^{-1} by [10] page 69) with φ_z belonging to the center of $[\varphi(A);\circ]$, then $\beta\in A_{\varphi}^*$. Indeed, by our assumption, $\forall x\in A^*$ $$\varphi_{eta(x)} = \varphi_{z^{-1}\circ x\circ z} = \varphi_z^{-1} \circ \varphi_x \circ \varphi_z = \varphi_x$$ (see also [10], page 69). Moreover, let $[C; +, \cdot]$ be an unitary integral domain, $T \in Aut[C; +, \cdot]$, B = C[X]. We denote by \overline{T} the natural extension of T to B (defined by $\overline{T}(c_0 + \ldots + c_n X^n) = T(c_0) + \ldots + T(c_n) X^n$). Assume the order of T in $Aut[C; +, \cdot]$ to be a natural number h. Let m be a natural number congruent to 1 mod h. Consider the coupling map φ' for B defined by (see also [7], paragraph 6): $$\varphi_0' = 0_B, \quad \forall f \in B^* = B \setminus \{0\} \qquad \varphi_f' = \overline{T}^{\deg f}.$$ Then the function $\rho':B^*\to B^*$, $\rho':f\to f^m$ (f^m calculated in $[B;\cdot]$) is an element of $B^*_{\phi'}$ (by our general notations). In fact, $\overline{T}^m=\overline{T}$, hence for $f\in B^*$ we have $$arphi_{ ho'(f)}' = arphi_{f^m}' = \overline{T}^{\deg f^m} = (\overline{T}^m)^{\deg f} = \overline{T}^{\deg f} = arphi_f',$$ and, given the near-ring $[B;+,\circ']$, coupled with $[B;+,\cdot]$ by φ' , for $f,g\in B^*$, the following steps holds $$\rho'(f) \circ' \rho'(g) = f^m \circ' g^m = f^m \varphi'_{f^m}(g^m) = f^m \cdot (\overline{T}^{\deg f^m}(g^m)) = f^m \cdot ((\overline{T}^m)^{\deg f}(g^m))$$ $$= f^m \cdot (\overline{T}^{\deg f}(g^m)) = f^m \cdot (\overline{T}^{\deg f}(g))^m = (f \cdot (\overline{T}^{\deg f}(g)))^m = (f \varphi'_f(g))^m$$ $$= (f \circ' g)^m = \rho'(f \circ' g),$$ hence ρ' is also endomorphism of $[B^*; \circ']$. Now, we consider $[A; +, \cdot]$, φ , R as defined before these examples, in this section, and, from now on, we denote by ρ a fixed (on the other hand, arbitrary) element of A_{σ}^* . We introduce a structure $R_1 = [A \times A; +, \circ_1]$ in the following way. Let (x_1, x_2) , $(y_1, y_2) \in A \times A$. We define $(x_1, x_2) + (y_1, y_2) = (x_1 + x_2, y_1 + y_2)$. Moreover, if $x_1 \neq 0$, then put $$(x_1,x_2)\circ_1(y_1,y_2)=(x_1\circ y_1,x_2\varphi_{x_1}(y_1)+\rho(x_1)\varphi_{x_1}(y_2)),$$ and, if $x_1=0$, then put $(0,x_2)\circ_1(y_1,y_2)=(0,x_2\circ y_1)$. Let $J=\{0\}\times A$. We observe that, since $\rho\in A_{\varnothing}^*$, for $x_1\in A^*$ we have $$\rho(x_1)\varphi_{x_1}(y_2) = \rho(x_1)\varphi_{\rho(x_1)}(y_2) = \rho(x_1)\circ y_2.$$ Theorem 2.1. The structure R_1 is a (zero-symmetric) near-ring having identity (1,0), in which J is an ideal with $\frac{R_1}{J}$ isomorphic to R. Furthermore, J coincides with the set of nilpotent elements of R_1 , and $J \circ_1 J = \{(0,0)\}$. **Proof.** We verify the associativity of \circ_1 . Let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in A \times A$. Suppose $x_1 \neq 0, y_1 \neq 0$. From the definition of \circ_1 , we can write $$\begin{split} &((x_1,x_2)\circ_1(y_1,y_2))\circ_1(z_1,z_2) = (x_1\circ y_1,x_2\varphi_{x_1}(y_1) + \rho(x_1)\varphi_{x_1}(y_2))\circ_1(z_1,z_2)\\ &= (x_1\circ y_1\circ z_1,(x_2\varphi_{x_1}(y_1) + \rho(x_1)\varphi_{x_1}(y_2))\varphi_{x_1\circ y_1}(z_1) + \rho(x_1\circ y_1)\varphi_{x_1\circ y_1}(z_2)). \end{split}$$ $$= (w_1 \circ y_1 \circ z_1, (w_2 \varphi_{x_1} \circ y_1) + \rho(w_1) \varphi_{x_1} \circ y_2) \varphi_{x_1 \circ y_1} (z_1) + \rho(w_1 \circ y_1) \varphi_{x_1 \circ y_1} (z_2).$$ We recall that, since $\rho \in A_{\varphi}^*$, we have $\rho(x_1 \circ y_1) = \rho(x_1) \circ \rho(y_1)$. Therefore the last ordered pair is equal to $$(x_1 \circ y_1 \circ z_1, x_2 \varphi_{x_1}(y_1) \varphi_{x_1 \circ y_1}(z_1) + \rho(x_1) \varphi_{x_1}(y_2) \varphi_{x_1 \circ y_1}(z_1) + (\rho(x_1) \circ \rho(y_1)) \varphi_{x_1 \circ y_1}(z_2)).$$ We bear in mind that (1) φ_{x_1} is an endomorphism of $[A;+,\cdot]$, (2) $\varphi_{x_1}=\varphi_{\rho(x_1)}$, (3) $y_1\circ z_1=y_1\varphi_{y_1}(z_1)$; we then have $$\begin{split} &(x_1,x_2)\circ_1((y_1,y_2)\circ_1(z_1,z_2))=(x_1,x_2)\circ_1(y_1\circ z_1,y_2\varphi_{y_1}(z_1)+\rho(y_1)\varphi_{y_1}(z_2))\\ &=(x_1\circ y_1\circ z_1,x_2\varphi_{x_1}(y_1\circ z_1)+\rho(x_1)\varphi_{x_1}(y_2\varphi_{y_1}(z_1)+\rho(y_1)\varphi_{y_1}(z_2)))\\ &=(x_1\circ y_1\circ z_1,x_2\varphi_{x_1}(y_1\varphi_{y_1}(z_1))+\rho(x_1)\varphi_{x_1}(y_2)(\varphi_{x_1}\circ \varphi_{y_1})(z_1)\\ &+\rho(x_1)\varphi_{x_1}(\rho(y_1))(\varphi_{x_1}\circ \varphi_{y_1})(z_2))\\ &=(x_1\circ y_1\circ z_1,x_2\varphi_{x_1}(y_1)(\varphi_{x_1}\circ \varphi_{y_1})(z_1)\\ &+\rho(x_1)\varphi_{x_1}(y_2)(\varphi_{x_1}\circ \varphi_{y_1})(z_1)+\rho(x_1)\varphi_{\rho(x_1)}(\rho(y_1))(\varphi_{x_1}\circ \varphi_{y_1})(z_2)). \end{split}$$ In view of the identities $\varphi_{x_1} \circ \varphi_{y_1} = \varphi_{x_1 \circ y_1}$, $\rho(x_1)\varphi_{\rho(x_1)}(\rho(y_1)) = \rho(x_1) \circ \rho(y_1)$, we now have $$((x_1,x_2)\circ_1(y_1,y_2))\circ_1(z_1,z_2)=(x_1,x_2)\circ_1((y_1,y_2)\circ_1(z_1,z_2)).$$ If $x_1 \neq 0$, $y_1 = 0$, our argument is analogous (here, we recall the equalities before the statement); remaining cases are simpler. Hence we have the associativity of \circ_1 . Since any φ_x is an endomorphism of [A; +] and since \circ is left distributive with respect to the sum onto A, the operation \circ_1 is distributive on the left with respect to the sum defined onto $A \times A$. Further, we see that the function $A \times A \to A$, $(x_1, x_2) \to x_1$ is an epimorphism from the near-ring R_1 to the near-ring R, whose kernel is J. Finally, in consideration of the equality $\rho(1) = 1$, and since 1 is identity in R, (1,0) is identity in R_1 . The rest is clear. Theorem 2.2. If R is a local near-ring (in particular, if R is a near-field), then R_1 is local also. Proof. Suppose that R is a local near-ring. We denote by L the set of elements of A without right inverses with respect to \circ , and by U the set $A \setminus L$. We have $\varphi(U) \subseteq Aut[A;+,\cdot]^4$. We note that $L \times A$ is a subgroup of $[A \times A;+]$, since L is a subgroup of [A;+]. We assert that $L \times A$ consists of elements without right inverses with respect to \circ_1 . Indeed suppose, on the contrary, that, for a $(u,v) \in L \times A$, there is a $(t,w) \in A \times A$ such that $(u,v) \circ_1 (t,w) = (1,0)$. Then $u \circ t = 1$, which contradicts the fact that u is in L. Hence, it remains to show that each element of $$U \times A = (A \times A) \setminus (L \times A)$$ is endowed with right inverse with respect to \circ_1 (see also Theorem 2.3 of [5]). We take (x_1,x_2) in $U\times A$. We demonstrate that there is an $(y_1,y_2)\in A\times A$ such that $(x_1,x_2)\circ_1(y_1,y_2)=(1,0)$. This last condition is equivalent to the system $$\begin{cases} x_1 \circ y_1 = 1, \\ x_2 \varphi_{x_1}(y_1) + \rho(x_1) \varphi_{x_1}(y_2) = 0. \end{cases}$$ Here y_1 is uniquely determined as the two-sides inverse of x_1 in $[A; \circ]$ (Lemma 2.4 of [5]). From $x_1 \circ y_1 = y_1 \circ x_1 = 1$, we have $\rho(x_1) \circ \rho(y_1) = \rho(y_1) \circ \rho(x_1) = \rho(1) = 1$, that is $\rho(x_1)\varphi_{\rho(x_1)}(\rho(y_1)) = \rho(y_1)\varphi_{\rho(y_1)}(\rho(x_1)) = 1$. Then $\rho(x_1), \rho(y_1)$ are in U; thus $\varphi_{\rho(x_1)}, \varphi_{\rho(y_1)}$ are automorphisms of $[A; +, \cdot]$, and consequently $\rho(x_1)$ is invertible in $[A; \cdot]$. Since $x_1 \in U$, we have that φ_{x_1} is an automorphism of $[A; +, \cdot]$ too. Therefore, from the second equality of the previous system, the element y_2 is uniquely determined also. \square If $[N;+,\cdot]$ is a near-ring, for every $a\in N$ define $A_l(a)=\{z\in N|za=0\}$. In [4], a near-ring N is said to be an S-near-ring if, $\forall a\in N$, the relation S_a defined onto N by $xS_ay\Leftrightarrow xa=ya$ is a congruence of N. From [3], [4] it is clear that a zero-symmetric near-ring N is S-near-ring if and only if, $\forall a\in N, A_l(a)$ is an ideal, such that $\forall x\in N$ $[x]_{S_a}=x+A_l(a)$. Theorem 2.3. The near-ring R_1 is S-near-ring if and only if: - 1. ρ is injective, - 2. each non-null element of A is cancelable with respect to \circ . Proof. We remember that every non-null element of A is left cancelable with respect to \circ . Suppose that 1., 2. holds. Let $a = (0, y_2) \in A \times A$, $y_2 \neq 0$. It is ⁴ In fact, by Lemma 2.4 of [5], every element of U is invertible in $[A; \circ]$. Then, for a generic $a \in U$, there is $b \in U$ such that $a \circ b = b \circ a = 1$; thus $\varphi_{a \circ b} = \varphi_{b \circ a} = \varphi_1$, which implies $\varphi_a \circ \varphi_b = \varphi_b \circ \varphi_a = id_A$, so φ_a is an automorphism of $[A; +, \cdot]$. immediate that $A_l(a)=J^5$. We demonstrate that two elements of $A\times A$ are equivalent with respect to $S_a{}^6$ if and only if they belongs to the same coset of J. Suppose $(x_1,x_2)S_a(x_1',x_2')$ with $x_1\neq 0$ (hence also $x_1'\neq 0$). We have $(x_1,x_2)\circ_1(0,y_2)=(x_1',x_2')\circ_1(0,y_2)$, that is $(0,\rho(x_1)\circ y_2)=(0,\rho(x_1')\circ y_2)$. Because of $2,\rho(x_1)=\rho(x_1')$; therefore, by $1,x_1=x_1'$, so $(x_1,x_2)+J=(x_1',x_2')+J$. If $x_1=0$ then also $x_1'=0$, hence $(x_1,x_2)+J=J=(x_1',x_2')+J$. Conversely, by a direct verification we see that, for arbitrary $x_1,x_2\in A$, any two elements of $(x_1,x_2)+J=(x_1,0)+J$ are equivalent with respect to S_a . For all $b\not\in J$ we demonstrate that S_b is the discrete relation, so is congruence. We take $b=(y_1,y_2),\ y_1\neq 0$. Let $(x_1,x_2)S_b(x_1',x_2')$. If $x_1\neq 0$, then $x_1'\neq 0$, and $x_1\circ y_1=x_1'\circ y_1$. From $2,x_1=x_1'$. Therefore, $$x_2\varphi_{x_1}(y_1) + \rho(x_1)\varphi_{x_1}(y_2) = x_2'\varphi_{x_1}(y_1) + \rho(x_1)\varphi_{x_1}(y_2);$$ since $y_1 \neq 0$, this implies $x_2 = x_2'$. If $x_1 = 0$, then $x_1' = 0$, and $(0, x_2 \circ y_1) = (0, x_2' \circ y_1)$, thus, by 2., $x_2 = x_2'$. Consequently, R_1 is an S-near-ring. We assume now R_1 to be S-near-ring. Consider elements $x_1, x_2 \in A^*$ such that $x_1 \neq x_2$. We prove that $\rho(x_1) \neq \rho(x_2)$. Suppose on the contrary that $\rho(x_1) = \rho(x_2)$. Then there are two elements of $A \times A$ equivalent with respect to $S_{(0,1)}$, belonging to two distinct cosets of $J = A_l((0,1))$, that is the elements $(x_1,0), (x_2,0)$: $$(x_1, 0) \circ_1 (0, 1) = (0, \rho(x_1)) = (0, \rho(x_2)) = (x_2, 0) \circ_1 (0, 1).$$ This contradicts the fact that R_1 is S-near-ring. Let $x_1, x_1' \in A$, $x \in A^*$, $x_1 \circ x = x_1' \circ x$. We assert that $x_1 = x_1'$. Assume $x_1 \neq x_1'$. We then have $$(x_1,0) \circ_1 (x,0) = (x'_1,0) \circ_1 (x,0)$$ with $(x_1,0),(x_1',0)$ belonging to two distinct cosets of $A_l((x,0))=\{(0,0)\}$, a contradiction. Thus, 1.,2. holds. ## 3 - Equivalence Throughout this section, in addition to the previous ρ and R_1 , we consider another (arbitrary) element γ of A_{φ}^* , and, if f is any automorphism of $[A \times A; +]$ (in which + is the componentwise operation as above), then we will note $f_1 = \pi_1 \circ f \circ i_1$, $f_2 = \pi_2 \circ f \circ i_2$, $f_3 = \pi_2 \circ f \circ i_1$, where $i_1, i_2 : A \to A \times A$ are the canonical injections, while $\pi_1, \pi_2 : A \times A \to A$ are the canonical projections. The f_i are endomorphisms of [A; +]. Furthermore, let $R_2 = [A \times A; +, \circ_2]$ be the near-ring derived from R and ⁵ Obviously, here $A_l(a) = \{(z, t) \in A \times A | (z, t) \circ_1 a = (0, 0)\}.$ ⁶ Defined here onto $A \times A$ by $(z,t)S_a(u,v) \Leftrightarrow (z,t) \circ_1 a = (u,v) \circ_1 a$. from γ , on the analogy of R_1 . Explicitly, the addition in R_2 is again componentwise operation, while the operation \circ_2 is such that, for (x_1, x_2) , $(y_1, y_2) \in A \times A$, if $x_1 \neq 0$ then $(x_1, x_2) \circ_2 (y_1, y_2) = (x_1 \circ y_1, x_2 \varphi_{x_1}(y_1) + \gamma(x_1) \varphi_{x_1}(y_2))$, if $x_1 = 0$ then $(0, x_2) \circ_2 (y_1, y_2) = (0, x_2 \circ y_1)$. ρ will be called equivalent to γ if R_1 is isomorphic to R_2 . More precisely, we say that ρ is equivalent to γ by f, if f is an isomorphism from R_1 to R_2 , and we remark that, in this case, we have in particular $f \in Aut[A \times A; +]$. Theorem 3.1. If ρ is equivalent to γ by f, then f(J) = J, $f_1 \in AutR$, $f_2 \in Aut[A; +]$ and $f_3(1) = 0$. Proof. Since J is the ideal of nilpotent elements of R_1 , and, at the same time, of nilpotent elements of R_2 , and f is isomorphism, we have f(J) = J. Therefore, for all $y \in A$, $f((0, y)) = (0, f_2(y))$; hence f_2 is bijective. Let $z \in A$. Since f is surjective, there is an $(x,y) \in A \times A$ such that f((x,y)) = (z,0). Then $(z,0) = f((x,0) + (0,y)) = f((x,0)) + f((0,y)) = (f_1(x),f_3(x)) + (0,f_2(y)) = (f_1(x),f_3(x) + f_2(y))$. Hence $z = f_1(x)$, so f_1 is surjective. We state that f_1 is also injective. Suppose, on the contrary, the existence of an $x \in A^*$, $x \in Kerf_1$. Then $f((x,0)) = (f_1(x),f_3(x)) = (0,f_3(x)) \in J$, so the non-nilpotent element (x,0) of R_1 is sended by f to a nilpotent element of R_2 , a contradiction. For $x, y \in A$ the equality $f_1(x \circ y) = f_1(x) \circ f_1(y)$ is immediate if x = 0. If $x \neq 0$, we bear in mind that $f_1((x, 0) \circ_1 (y, 0)) = f((x, 0)) \circ_2 f((y, 0))$, namely $f((x \circ y, 0)) = (f_1(x), f_3(x)) \circ_2 (f_1(y), f_3(y))$ which implies $$(f_1(x \circ y), f_3(x \circ y)) = (f_1(x) \circ f_1(y), s)$$ for a suitable $s \in A$. Hence, $f_1(x \circ y) = f_1(x) \circ f_1(y)$, so $f_1 \in AutR$. We recall now that (1,0) is identity in R_1 and in R_2 . Consequently, $(1,0) = f((1,0)) = (f_1(1),f_3(1)) = (1,f_3(1))$, therefore $f_3(1) = 0$. We underline that, under the hypothesis of Theorem 3.1, we can write (for every $x,y\in A$) (1) $$f((x,y)) = (f_1(x), f_3(x) + f_2(y)).$$ Theorem 3.2. ρ is equivalent to γ if and only if $\exists h \exists a \in A^*$ such that - 1. $h \in Aut[A; +, \cdot] \cap AutR$ - 2. a is invertible in R - 3. $\varphi_a = id_A$ - 4. $\forall x \in A^*$ $a \circ h(\rho(x)) = (\gamma(h(x))) \circ a$. Proof. Suppose ρ equivalent to γ by f. By Theorem 3.1, we have $f_1 \in AutR$. Furthermore, for all $y \in A$, $f((0,1) \circ_1 (y,0)) = f((0,1)) \circ_2 f((y,0))$, which signifies $f((0,y)) = (0,f_2(1)) \circ_2 (f_1(y),f_3(y))$, that is $$(0, f_2(y)) = (0, f_2(1) \circ f_1(y)).$$ Hence $$(2) \qquad \forall y \in A \quad f_2(y) = f_2(1) \circ f_1(y).$$ We show that $f_2(1)$ is invertible in R. Since f_2 is bijective by Theorem 3.1, there is a $t \in A$ such that $f_2(t) = 1$. So, by (2) we have $f_2(1) \circ f_1(t) = 1$. Therefore $$f_2(1) \circ f_1(t) \circ f_2(1) = 1 \circ f_2(1) = f_2(1) \circ 1.$$ Since $f_2(1)$ is left-cancellable in $[A; \circ]$, the equality $f_1(t) \circ f_2(1) = 1$ is then also true. For every $x \in A^*$, $f((x,0) \circ_1 (0,1)) = f((x,0)) \circ_2 f((0,1))$, i.e. $f(0,\rho(x)) = (f_1(x),f_3(x)) \circ_2 (0,f_2(1))$, namely $(0,f_2(\rho(x))) = (0,(\gamma(f_1(x))) \circ f_2(1))$. Because of (2), it is possible to assert then that $$\forall x \in A^* \quad f_2(1) \circ f_1(\rho(x)) = (\gamma(f_1(x))) \circ f_2(1).$$ For all $x, y \in A$, the following relation is true $$f((1,x) \circ_1 (y,0)) = f((1,x)) \circ_2 f((y,0))$$ and consequently, recalling (1) and that $f_3(1) = 0$ (Theorem 3.1), $$f((y, xy)) = (1, f_2(x)) \circ_2 (f_1(y), f_3(y)).$$ So, on account of (1) we have $(f_1(y), f_3(y) + f_2(xy)) = (f_1(y), f_2(x)f_1(y) + f_3(y))$, which implies $f_2(xy) = f_2(x)f_1(y)$. Then, in consideration of (2) we can write (3) $$f_2(1) \circ f_1(xy) = (f_2(1) \circ f_1(x)) \cdot f_1(y).$$ For x=1, (3) becomes $f_2(1) \circ f_1(y) = f_2(1) \cdot f_1(y)$; so $\varphi_{f_2(1)} = id_A$. Therefore, (3) assumes the form $f_2(1) \cdot f_1(xy) = f_2(1) \cdot f_1(x) \cdot f_1(y)$, which gives $f_1(xy) = f_1(x)f_1(y)$. We now have $f_1 \in Aut[A; +, \cdot] \cap AutR$. The conditions 1., 2., 3., 4. of the assertion are then verified, with $h = f_1$, $a = f_2(1)$. Conversely, we assume that there exists an h, and an $a \in A^*$, fulfilling the conditions 1., 2., 3., 4. of the statement. Let g be the automorphism of $[A \times A; +]$ defined by $$g:(x,y)\to (h(x),a\circ h(y)).$$ We show that g is an isomorphism from R_1 to R_2 . For $m=(x_1,x_2)$, $n=(y_1,y_2)$ in $A\times A$, with $x_1\neq 0$, we calculate, remembering that $h\in AutR$, and $\varphi_a=id_A$ $$\begin{split} g(m \circ_1 n) &= g(x_1 \circ y_1, x_2 \varphi_{x_1}(y_1) + \rho(x_1) \circ y_2) = (h(x_1) \circ h(y_1), c + d) \\ g(m) \circ_2 g(n) &= (h(x_1), a \circ h(x_2)) \circ_2 (h(y_1), a \circ h(y_2)) = (h(x_1) \circ h(y_1), e + q) \end{split}$$ where $$\begin{split} c &= a \circ h(x_2 \varphi_{x_1}(y_1)) \\ d &= a \circ h(\rho(x_1)) \circ h(y_2) \\ e &= a \cdot h(x_2) \cdot \varphi_{h(x_1)}(h(y_1)) \\ q &= (\gamma(h(x_1))) \cdot \varphi_{h(x_1)}(a \circ h(y_2)). \end{split}$$ We remark now that q equals $(\gamma(h(x_1))) \circ a \circ h(y_2)$, since, through $\gamma \in A_{\varphi}^*$, we have $\varphi_{h(x_1)} = \varphi_{\gamma(h(x_1))}$. Because of 1., the following steps are true $$h(x_1\circ y_1)=h(x_1\varphi_{x_1}(y_1))=h(x_1)\cdot h(\varphi_{x_1}(y_1))=h(x_1)\circ h(y_1)=h(x_1)\cdot \varphi_{h(x_1)}(h(y_1))$$ which implies $h(\varphi_{x_1}(y_1)) = \varphi_{h(x_1)}(h(y_1))$, so c = e. Moreover, by 4. we see that d = q. Therefore, $g(m \circ_1 n) = g(m) \circ_2 g(n)$. Furthermore, for arbitrary $x_2, y_1, y_2 \in A$, we have $g((0, x_2) \circ_1 (y_1, y_2)) = g((0, x_2 \circ y_1)) = (0, a \circ h(x_2 \circ y_1)) = (0, a \circ h(x_2) \circ h(y_1)) = (0, a \circ h(x_2)) \circ_2 (h(y_1), a \circ h(y_2)) = g((0, x_2)) \circ_2 g((y_1, y_2))$, which completes the proof. Corollary 3.1. If the cardinality of $Im\rho$ is distinct from the cardinality of $Im\gamma$, then ρ is non-equivalent to γ . Proof. This follows from the condition 4. of Theorem 3.2. $$\Box$$ Remark. We advise that the content of the present article exists also in the preprint, of the same author Giordano Gallina, by the title "Sotto-quasi-anelli di quasi-anelli" (Quaderno n. 122 of the Dipartimento di Matematica dell'Università di Parma, December 1995). #### References - J. R. Clay, Nearrings. Geneses and applications, Oxford University Press, New York 1992. - [2] G. Ferrero and C. Cotti Ferrero, Nearrings. Some developments linked to semigroups and groups, Kluwer Academic Publishers, Dordrecht 2002. - [3] G. Gallina, Su certe relazioni di equivalenza nei quasi-anelli, Riv. Mat. Univ. Parma (4) 10 (1984), 1-5. - [4] G. Gallina, Sui radicali di un S-quasi-anello, Boll. Un. Mat. Ital. A (6) 4 (1985), 415-424. - [5] C. J. Maxson, On local near-rings, Math. Z. 106 (1968), 197-205. - [6] C. J. Maxson, Local near-rings of cardinality p², Canad. Math. Bull. 11 (1968), 555-561. - [7] C. J. Maxson, Dickson near-rings, J. Algebra 14 (1970), 152-169. - [8] J. D. P. Meldrum, Near-rings and their links with groups, Research Notes in Mathematics, 134, Pitman, Boston, MA 1985. - [9] G. PILZ, Near-rings, second revised edition, North-Holland American Elsevier, Amsterdam 1983. - [10] H. Wähling, Theorie der Fastkörper, Thales-Verlag, Essen 1987. #### GALLINA GIORDANO Dipartimento di Matematica Università degli Studi di Parma Parco Area delle Scienze 53/A 43124 Parma, Italy e-mail: giordano.gallina@unipr.it