## GIORDANO GALLINA

# Near-rings arising from coupling maps

**Abstract.** By contemporaneous consideration of coupling maps and of "moltiplicative" endomorphisms, a class of near-rings is given. We prove in particular that various of them are local.

**Keywords**. Near-ring, coupling map, local near-ring.

Mathematics Subject Classification (2000): 16Y30.

#### 1 - Introduction

In this article, all near-rings will be assumed to be left near-rings, that is in which the product is distributive on the left with respect to the sum (see for example [1], [2], [8]). In order to summarize completely this concept, we recall that a (left) near-ring is a structure  $[N;+,\cdot]$ , with two operations, addition and multiplication, defined onto N, such that i) [N;+] is a group; ii)  $[N;\cdot]$  is a semi-group; iii)  $\forall x,y,z\in N$   $x\cdot (y+z)=x\cdot y+x\cdot z$ . A near-ring N is called zero-symmetric ([1], Def. 3.2), if  $0\cdot x=0$  for any  $x\in N$ , and N is called near-field ([1], Def. 2.17) if  $[N\setminus\{0\};\cdot]$  is a group. According to [5], Def. 2.1, a zero-symmetric near-ring N with (multiplicative) identity is said to be local if the set L(N) of elements of N without right inverses is a subgroup of [N;+], such that  $L(N)N\subseteq N$ . A zero-symmetric near-ring N with identity is local if and only if L(N) is a subgroup of [N;+] (by Theorem 2.3 of [5], and we notice that in [5], [6], [7] notations for right near-rings, instead of for left, are used).

Received: April 26, 2010; accepted: June 30, 2011.

We now follow the terminology of [7]. Given a ring  $[A;+,\cdot]$ , a coupling map for A is defined as a function  $\varphi:A\to End[A;+,\cdot]^1$  ( $a\to\varphi_a$ ) such that  $\varphi_0=0_A$ , and, for any  $a,b\in A$ ,  $\varphi_a\circ\varphi_b=\varphi_{a\varphi_a(b)}$ . From a coupling map  $\varphi$  for A, a (left) near-ring  $[A;+,\circ]$  is introduced, which is said to be the near-ring coupled with A by  $\varphi$  ([7] page 155), where  $\circ$  is given by  $a\circ b=a\varphi_a(b)$  (which implies  $\varphi_{a\circ b}=\varphi_a\circ\varphi_b$ ). In this paper, we generalize and we complicate the description of the local near-rings on elementary abelian p-groups of order  $p^2$  of  $[\mathbf{6}]$ , starting from a near-ring  $[A;+,\circ]$  coupled with a ring  $[A;+,\cdot]$  by a suitable coupling map  $\varphi$ . We introduce a function  $\rho$  of  $A\setminus\{0\}$  into  $A\setminus\{0\}$  satisfying appropriate hypotheses with respect to the previous  $\varphi$ . From  $\varphi$  and from  $\rho$  we derive an operation  $\circ_1$  onto  $A\times A$ , finding a class of near-rings; we verify that these near-rings, under some conditions, are local. Furthermore we classify, by a necessary and sufficient condition, all S-near-rings ([4]), among the near-rings in such a way introduced. In Section 3, we analyze when, given (arbitrarily) two, of the near-rings here obtained, they can be non-isomorphic.

For further generalities on the theory of near-rings, we refer to the treatises [1], [2], [8], [9], [10].

### 2 - A class of near-rings

Let  $[A;+,\cdot]$  be a ring with identity  $1\neq 0$  without divisors of zero. The symbol  $id_A$  will be used to designate the identity map on A. Put  $A^*=A\setminus\{0\}$ . Let  $\varphi$  be a coupling map for A, with  $\varphi_a$  injective for every  $a\in A^*$ . Since 1 is the only idempotent in  $[A^*;\cdot]$ , we have then  $\varphi_x(1)=1$  for all  $x\in A^*$ . Let  $R=[A;+,\circ]$  be the (left) near-ring coupled with  $[A;+,\cdot]$  by  $\varphi$ . We recall that, here,  $x\circ y=x\varphi_x(y)$  and  $\varphi_{x\circ y}=\varphi_x\circ \varphi_y$ . On the basis of our hypotheses, each element of  $A^*$  is left cancelable with respect to  $\circ$ . By theorem 4.4 of [7], R has identity 1.  $^2$  Moreover, 1 is the unique idempotent in  $[A^*;\circ]$ . It is now clear that 1 is fixed by every endomorphism of  $[A^*;\circ]$ . For the given  $[A;+,\cdot]$  and  $\varphi$ , we denote by  $A_{\varphi}^*$  the set of all endomorphisms  $\rho$  of  $[A^*;\circ]$  verifying the condition

$$\forall x \in A^* \quad \varphi_x = \varphi_{\rho(x)}.$$

<sup>&</sup>lt;sup>1</sup> We will note  $0_A$  the function  $A \to A$  which sends every element of A to 0.

<sup>&</sup>lt;sup>2</sup> For a direct verification, we remember that  $\varphi_1(1) = 1$ ; thus  $\varphi_1 = \varphi_{1\varphi_1(1)} = \varphi_1 \circ \varphi_1$ . Since  $\varphi_1$  is injective,  $\varphi_1 = id_A$ ; hence 1 is identity for R.

<sup>&</sup>lt;sup>3</sup> If  $e \neq 0$  is such that  $e \circ e = e$ , then  $e \circ e = e \circ 1$ , which implies e = 1, by left-cancellability of e.

Examples. First of all, if  $[M;\cdot]$  is any monoid and if  $z\in M$  has (two-sided) inverse  $z^{-1}$ , we will call inner automorphism of M induced by z the function  $M\to M$ ,  $y\to z^{-1}yz$ . Now we consider the above mentioned structure  $[A^*;\circ]$  and we observe that, if  $\beta$  is an inner automorphism of  $[A^*;\circ]$  induced by an element z (endowed with inverse in  $[A^*;\circ]$ , which we denote  $z^{-1}$  by [10] page 69) with  $\varphi_z$  belonging to the center of  $[\varphi(A);\circ]$ , then  $\beta\in A_{\varphi}^*$ . Indeed, by our assumption,  $\forall x\in A^*$ 

$$\varphi_{eta(x)} = \varphi_{z^{-1}\circ x\circ z} = \varphi_z^{-1} \circ \varphi_x \circ \varphi_z = \varphi_x$$

(see also [10], page 69).

Moreover, let  $[C; +, \cdot]$  be an unitary integral domain,  $T \in Aut[C; +, \cdot]$ , B = C[X]. We denote by  $\overline{T}$  the natural extension of T to B (defined by  $\overline{T}(c_0 + \ldots + c_n X^n) = T(c_0) + \ldots + T(c_n) X^n$ ). Assume the order of T in  $Aut[C; +, \cdot]$  to be a natural number h. Let m be a natural number congruent to 1 mod h. Consider the coupling map  $\varphi'$  for B defined by (see also [7], paragraph 6):

$$\varphi_0' = 0_B, \quad \forall f \in B^* = B \setminus \{0\} \qquad \varphi_f' = \overline{T}^{\deg f}.$$

Then the function  $\rho':B^*\to B^*$ ,  $\rho':f\to f^m$  ( $f^m$  calculated in  $[B;\cdot]$ ) is an element of  $B^*_{\phi'}$  (by our general notations). In fact,  $\overline{T}^m=\overline{T}$ , hence for  $f\in B^*$  we have

$$arphi_{
ho'(f)}' = arphi_{f^m}' = \overline{T}^{\deg f^m} = (\overline{T}^m)^{\deg f} = \overline{T}^{\deg f} = arphi_f',$$

and, given the near-ring  $[B;+,\circ']$ , coupled with  $[B;+,\cdot]$  by  $\varphi'$ , for  $f,g\in B^*$ , the following steps holds

$$\rho'(f) \circ' \rho'(g) = f^m \circ' g^m = f^m \varphi'_{f^m}(g^m) = f^m \cdot (\overline{T}^{\deg f^m}(g^m)) = f^m \cdot ((\overline{T}^m)^{\deg f}(g^m))$$

$$= f^m \cdot (\overline{T}^{\deg f}(g^m)) = f^m \cdot (\overline{T}^{\deg f}(g))^m = (f \cdot (\overline{T}^{\deg f}(g)))^m = (f \varphi'_f(g))^m$$

$$= (f \circ' g)^m = \rho'(f \circ' g),$$

hence  $\rho'$  is also endomorphism of  $[B^*; \circ']$ .

Now, we consider  $[A; +, \cdot]$ ,  $\varphi$ , R as defined before these examples, in this section, and, from now on, we denote by  $\rho$  a fixed (on the other hand, arbitrary) element of  $A_{\sigma}^*$ .

We introduce a structure  $R_1 = [A \times A; +, \circ_1]$  in the following way. Let  $(x_1, x_2)$ ,  $(y_1, y_2) \in A \times A$ . We define  $(x_1, x_2) + (y_1, y_2) = (x_1 + x_2, y_1 + y_2)$ . Moreover, if  $x_1 \neq 0$ , then put

$$(x_1,x_2)\circ_1(y_1,y_2)=(x_1\circ y_1,x_2\varphi_{x_1}(y_1)+\rho(x_1)\varphi_{x_1}(y_2)),$$

and, if  $x_1=0$ , then put  $(0,x_2)\circ_1(y_1,y_2)=(0,x_2\circ y_1)$ . Let  $J=\{0\}\times A$ . We observe that, since  $\rho\in A_{\varnothing}^*$ , for  $x_1\in A^*$  we have

$$\rho(x_1)\varphi_{x_1}(y_2) = \rho(x_1)\varphi_{\rho(x_1)}(y_2) = \rho(x_1)\circ y_2.$$

Theorem 2.1. The structure  $R_1$  is a (zero-symmetric) near-ring having identity (1,0), in which J is an ideal with  $\frac{R_1}{J}$  isomorphic to R. Furthermore, J coincides with the set of nilpotent elements of  $R_1$ , and  $J \circ_1 J = \{(0,0)\}$ .

**Proof.** We verify the associativity of  $\circ_1$ . Let  $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in A \times A$ . Suppose  $x_1 \neq 0, y_1 \neq 0$ . From the definition of  $\circ_1$ , we can write

$$\begin{split} &((x_1,x_2)\circ_1(y_1,y_2))\circ_1(z_1,z_2) = (x_1\circ y_1,x_2\varphi_{x_1}(y_1) + \rho(x_1)\varphi_{x_1}(y_2))\circ_1(z_1,z_2)\\ &= (x_1\circ y_1\circ z_1,(x_2\varphi_{x_1}(y_1) + \rho(x_1)\varphi_{x_1}(y_2))\varphi_{x_1\circ y_1}(z_1) + \rho(x_1\circ y_1)\varphi_{x_1\circ y_1}(z_2)). \end{split}$$

$$= (w_1 \circ y_1 \circ z_1, (w_2 \varphi_{x_1} \circ y_1) + \rho(w_1) \varphi_{x_1} \circ y_2) \varphi_{x_1 \circ y_1} (z_1) + \rho(w_1 \circ y_1) \varphi_{x_1 \circ y_1} (z_2).$$

We recall that, since  $\rho \in A_{\varphi}^*$ , we have  $\rho(x_1 \circ y_1) = \rho(x_1) \circ \rho(y_1)$ . Therefore the last ordered pair is equal to

$$(x_1 \circ y_1 \circ z_1, x_2 \varphi_{x_1}(y_1) \varphi_{x_1 \circ y_1}(z_1) + \rho(x_1) \varphi_{x_1}(y_2) \varphi_{x_1 \circ y_1}(z_1) + (\rho(x_1) \circ \rho(y_1)) \varphi_{x_1 \circ y_1}(z_2)).$$

We bear in mind that (1)  $\varphi_{x_1}$  is an endomorphism of  $[A;+,\cdot]$ , (2)  $\varphi_{x_1}=\varphi_{\rho(x_1)}$ , (3)  $y_1\circ z_1=y_1\varphi_{y_1}(z_1)$ ; we then have

$$\begin{split} &(x_1,x_2)\circ_1((y_1,y_2)\circ_1(z_1,z_2))=(x_1,x_2)\circ_1(y_1\circ z_1,y_2\varphi_{y_1}(z_1)+\rho(y_1)\varphi_{y_1}(z_2))\\ &=(x_1\circ y_1\circ z_1,x_2\varphi_{x_1}(y_1\circ z_1)+\rho(x_1)\varphi_{x_1}(y_2\varphi_{y_1}(z_1)+\rho(y_1)\varphi_{y_1}(z_2)))\\ &=(x_1\circ y_1\circ z_1,x_2\varphi_{x_1}(y_1\varphi_{y_1}(z_1))+\rho(x_1)\varphi_{x_1}(y_2)(\varphi_{x_1}\circ \varphi_{y_1})(z_1)\\ &+\rho(x_1)\varphi_{x_1}(\rho(y_1))(\varphi_{x_1}\circ \varphi_{y_1})(z_2))\\ &=(x_1\circ y_1\circ z_1,x_2\varphi_{x_1}(y_1)(\varphi_{x_1}\circ \varphi_{y_1})(z_1)\\ &+\rho(x_1)\varphi_{x_1}(y_2)(\varphi_{x_1}\circ \varphi_{y_1})(z_1)+\rho(x_1)\varphi_{\rho(x_1)}(\rho(y_1))(\varphi_{x_1}\circ \varphi_{y_1})(z_2)). \end{split}$$

In view of the identities  $\varphi_{x_1} \circ \varphi_{y_1} = \varphi_{x_1 \circ y_1}$ ,  $\rho(x_1)\varphi_{\rho(x_1)}(\rho(y_1)) = \rho(x_1) \circ \rho(y_1)$ , we now have

$$((x_1,x_2)\circ_1(y_1,y_2))\circ_1(z_1,z_2)=(x_1,x_2)\circ_1((y_1,y_2)\circ_1(z_1,z_2)).$$

If  $x_1 \neq 0$ ,  $y_1 = 0$ , our argument is analogous (here, we recall the equalities before the statement); remaining cases are simpler. Hence we have the associativity of  $\circ_1$ . Since any  $\varphi_x$  is an endomorphism of [A; +] and since  $\circ$  is left distributive with respect to the sum onto A, the operation  $\circ_1$  is distributive on the left with respect to the sum defined onto  $A \times A$ . Further, we see that the function  $A \times A \to A$ ,  $(x_1, x_2) \to x_1$  is an epimorphism from the near-ring  $R_1$  to the near-ring R, whose kernel is J.

Finally, in consideration of the equality  $\rho(1) = 1$ , and since 1 is identity in R, (1,0) is identity in  $R_1$ . The rest is clear.

Theorem 2.2. If R is a local near-ring (in particular, if R is a near-field), then  $R_1$  is local also.

Proof. Suppose that R is a local near-ring. We denote by L the set of elements of A without right inverses with respect to  $\circ$ , and by U the set  $A \setminus L$ . We have  $\varphi(U) \subseteq Aut[A;+,\cdot]^4$ . We note that  $L \times A$  is a subgroup of  $[A \times A;+]$ , since L is a subgroup of [A;+]. We assert that  $L \times A$  consists of elements without right inverses with respect to  $\circ_1$ . Indeed suppose, on the contrary, that, for a  $(u,v) \in L \times A$ , there is a  $(t,w) \in A \times A$  such that  $(u,v) \circ_1 (t,w) = (1,0)$ . Then  $u \circ t = 1$ , which contradicts the fact that u is in L. Hence, it remains to show that each element of

$$U \times A = (A \times A) \setminus (L \times A)$$

is endowed with right inverse with respect to  $\circ_1$  (see also Theorem 2.3 of [5]). We take  $(x_1,x_2)$  in  $U\times A$ . We demonstrate that there is an  $(y_1,y_2)\in A\times A$  such that  $(x_1,x_2)\circ_1(y_1,y_2)=(1,0)$ . This last condition is equivalent to the system

$$\begin{cases} x_1 \circ y_1 = 1, \\ x_2 \varphi_{x_1}(y_1) + \rho(x_1) \varphi_{x_1}(y_2) = 0. \end{cases}$$

Here  $y_1$  is uniquely determined as the two-sides inverse of  $x_1$  in  $[A; \circ]$  (Lemma 2.4 of [5]). From  $x_1 \circ y_1 = y_1 \circ x_1 = 1$ , we have  $\rho(x_1) \circ \rho(y_1) = \rho(y_1) \circ \rho(x_1) = \rho(1) = 1$ , that is  $\rho(x_1)\varphi_{\rho(x_1)}(\rho(y_1)) = \rho(y_1)\varphi_{\rho(y_1)}(\rho(x_1)) = 1$ . Then  $\rho(x_1), \rho(y_1)$  are in U; thus  $\varphi_{\rho(x_1)}, \varphi_{\rho(y_1)}$  are automorphisms of  $[A; +, \cdot]$ , and consequently  $\rho(x_1)$  is invertible in  $[A; \cdot]$ . Since  $x_1 \in U$ , we have that  $\varphi_{x_1}$  is an automorphism of  $[A; +, \cdot]$  too. Therefore, from the second equality of the previous system, the element  $y_2$  is uniquely determined also.  $\square$ 

If  $[N;+,\cdot]$  is a near-ring, for every  $a\in N$  define  $A_l(a)=\{z\in N|za=0\}$ . In [4], a near-ring N is said to be an S-near-ring if,  $\forall a\in N$ , the relation  $S_a$  defined onto N by  $xS_ay\Leftrightarrow xa=ya$  is a congruence of N. From [3], [4] it is clear that a zero-symmetric near-ring N is S-near-ring if and only if,  $\forall a\in N, A_l(a)$  is an ideal, such that  $\forall x\in N$   $[x]_{S_a}=x+A_l(a)$ .

Theorem 2.3. The near-ring  $R_1$  is S-near-ring if and only if:

- 1.  $\rho$  is injective,
- 2. each non-null element of A is cancelable with respect to  $\circ$ .

Proof. We remember that every non-null element of A is left cancelable with respect to  $\circ$ . Suppose that 1., 2. holds. Let  $a = (0, y_2) \in A \times A$ ,  $y_2 \neq 0$ . It is

<sup>&</sup>lt;sup>4</sup> In fact, by Lemma 2.4 of [5], every element of U is invertible in  $[A; \circ]$ . Then, for a generic  $a \in U$ , there is  $b \in U$  such that  $a \circ b = b \circ a = 1$ ; thus  $\varphi_{a \circ b} = \varphi_{b \circ a} = \varphi_1$ , which implies  $\varphi_a \circ \varphi_b = \varphi_b \circ \varphi_a = id_A$ , so  $\varphi_a$  is an automorphism of  $[A; +, \cdot]$ .

immediate that  $A_l(a)=J^5$ . We demonstrate that two elements of  $A\times A$  are equivalent with respect to  $S_a{}^6$  if and only if they belongs to the same coset of J. Suppose  $(x_1,x_2)S_a(x_1',x_2')$  with  $x_1\neq 0$  (hence also  $x_1'\neq 0$ ). We have  $(x_1,x_2)\circ_1(0,y_2)=(x_1',x_2')\circ_1(0,y_2)$ , that is  $(0,\rho(x_1)\circ y_2)=(0,\rho(x_1')\circ y_2)$ . Because of  $2,\rho(x_1)=\rho(x_1')$ ; therefore, by  $1,x_1=x_1'$ , so  $(x_1,x_2)+J=(x_1',x_2')+J$ . If  $x_1=0$  then also  $x_1'=0$ , hence  $(x_1,x_2)+J=J=(x_1',x_2')+J$ . Conversely, by a direct verification we see that, for arbitrary  $x_1,x_2\in A$ , any two elements of  $(x_1,x_2)+J=(x_1,0)+J$  are equivalent with respect to  $S_a$ . For all  $b\not\in J$  we demonstrate that  $S_b$  is the discrete relation, so is congruence. We take  $b=(y_1,y_2),\ y_1\neq 0$ . Let  $(x_1,x_2)S_b(x_1',x_2')$ . If  $x_1\neq 0$ , then  $x_1'\neq 0$ , and  $x_1\circ y_1=x_1'\circ y_1$ . From  $2,x_1=x_1'$ . Therefore,

$$x_2\varphi_{x_1}(y_1) + \rho(x_1)\varphi_{x_1}(y_2) = x_2'\varphi_{x_1}(y_1) + \rho(x_1)\varphi_{x_1}(y_2);$$

since  $y_1 \neq 0$ , this implies  $x_2 = x_2'$ . If  $x_1 = 0$ , then  $x_1' = 0$ , and  $(0, x_2 \circ y_1) = (0, x_2' \circ y_1)$ , thus, by 2.,  $x_2 = x_2'$ . Consequently,  $R_1$  is an S-near-ring.

We assume now  $R_1$  to be S-near-ring. Consider elements  $x_1, x_2 \in A^*$  such that  $x_1 \neq x_2$ . We prove that  $\rho(x_1) \neq \rho(x_2)$ . Suppose on the contrary that  $\rho(x_1) = \rho(x_2)$ . Then there are two elements of  $A \times A$  equivalent with respect to  $S_{(0,1)}$ , belonging to two distinct cosets of  $J = A_l((0,1))$ , that is the elements  $(x_1,0), (x_2,0)$ :

$$(x_1, 0) \circ_1 (0, 1) = (0, \rho(x_1)) = (0, \rho(x_2)) = (x_2, 0) \circ_1 (0, 1).$$

This contradicts the fact that  $R_1$  is S-near-ring. Let  $x_1, x_1' \in A$ ,  $x \in A^*$ ,  $x_1 \circ x = x_1' \circ x$ . We assert that  $x_1 = x_1'$ . Assume  $x_1 \neq x_1'$ . We then have

$$(x_1,0) \circ_1 (x,0) = (x'_1,0) \circ_1 (x,0)$$

with  $(x_1,0),(x_1',0)$  belonging to two distinct cosets of  $A_l((x,0))=\{(0,0)\}$ , a contradiction. Thus, 1.,2. holds.

## 3 - Equivalence

Throughout this section, in addition to the previous  $\rho$  and  $R_1$ , we consider another (arbitrary) element  $\gamma$  of  $A_{\varphi}^*$ , and, if f is any automorphism of  $[A \times A; +]$  (in which + is the componentwise operation as above), then we will note  $f_1 = \pi_1 \circ f \circ i_1$ ,  $f_2 = \pi_2 \circ f \circ i_2$ ,  $f_3 = \pi_2 \circ f \circ i_1$ , where  $i_1, i_2 : A \to A \times A$  are the canonical injections, while  $\pi_1, \pi_2 : A \times A \to A$  are the canonical projections. The  $f_i$  are endomorphisms of [A; +]. Furthermore, let  $R_2 = [A \times A; +, \circ_2]$  be the near-ring derived from R and

<sup>&</sup>lt;sup>5</sup> Obviously, here  $A_l(a) = \{(z, t) \in A \times A | (z, t) \circ_1 a = (0, 0)\}.$ 

<sup>&</sup>lt;sup>6</sup> Defined here onto  $A \times A$  by  $(z,t)S_a(u,v) \Leftrightarrow (z,t) \circ_1 a = (u,v) \circ_1 a$ .

from  $\gamma$ , on the analogy of  $R_1$ . Explicitly, the addition in  $R_2$  is again componentwise operation, while the operation  $\circ_2$  is such that, for  $(x_1, x_2)$ ,  $(y_1, y_2) \in A \times A$ , if  $x_1 \neq 0$  then  $(x_1, x_2) \circ_2 (y_1, y_2) = (x_1 \circ y_1, x_2 \varphi_{x_1}(y_1) + \gamma(x_1) \varphi_{x_1}(y_2))$ , if  $x_1 = 0$  then  $(0, x_2) \circ_2 (y_1, y_2) = (0, x_2 \circ y_1)$ .

 $\rho$  will be called equivalent to  $\gamma$  if  $R_1$  is isomorphic to  $R_2$ . More precisely, we say that  $\rho$  is equivalent to  $\gamma$  by f, if f is an isomorphism from  $R_1$  to  $R_2$ , and we remark that, in this case, we have in particular  $f \in Aut[A \times A; +]$ .

Theorem 3.1. If  $\rho$  is equivalent to  $\gamma$  by f, then f(J) = J,  $f_1 \in AutR$ ,  $f_2 \in Aut[A; +]$  and  $f_3(1) = 0$ .

Proof. Since J is the ideal of nilpotent elements of  $R_1$ , and, at the same time, of nilpotent elements of  $R_2$ , and f is isomorphism, we have f(J) = J. Therefore, for all  $y \in A$ ,  $f((0, y)) = (0, f_2(y))$ ; hence  $f_2$  is bijective.

Let  $z \in A$ . Since f is surjective, there is an  $(x,y) \in A \times A$  such that f((x,y)) = (z,0). Then  $(z,0) = f((x,0) + (0,y)) = f((x,0)) + f((0,y)) = (f_1(x),f_3(x)) + (0,f_2(y)) = (f_1(x),f_3(x) + f_2(y))$ . Hence  $z = f_1(x)$ , so  $f_1$  is surjective. We state that  $f_1$  is also injective. Suppose, on the contrary, the existence of an  $x \in A^*$ ,  $x \in Kerf_1$ . Then  $f((x,0)) = (f_1(x),f_3(x)) = (0,f_3(x)) \in J$ , so the non-nilpotent element (x,0) of  $R_1$  is sended by f to a nilpotent element of  $R_2$ , a contradiction.

For  $x, y \in A$  the equality  $f_1(x \circ y) = f_1(x) \circ f_1(y)$  is immediate if x = 0. If  $x \neq 0$ , we bear in mind that  $f_1((x, 0) \circ_1 (y, 0)) = f((x, 0)) \circ_2 f((y, 0))$ , namely  $f((x \circ y, 0)) = (f_1(x), f_3(x)) \circ_2 (f_1(y), f_3(y))$  which implies

$$(f_1(x \circ y), f_3(x \circ y)) = (f_1(x) \circ f_1(y), s)$$

for a suitable  $s \in A$ . Hence,  $f_1(x \circ y) = f_1(x) \circ f_1(y)$ , so  $f_1 \in AutR$ .

We recall now that (1,0) is identity in  $R_1$  and in  $R_2$ . Consequently,  $(1,0) = f((1,0)) = (f_1(1),f_3(1)) = (1,f_3(1))$ , therefore  $f_3(1) = 0$ .

We underline that, under the hypothesis of Theorem 3.1, we can write (for every  $x,y\in A$ )

(1) 
$$f((x,y)) = (f_1(x), f_3(x) + f_2(y)).$$

Theorem 3.2.  $\rho$  is equivalent to  $\gamma$  if and only if  $\exists h \exists a \in A^*$  such that

- 1.  $h \in Aut[A; +, \cdot] \cap AutR$
- 2. a is invertible in R
- 3.  $\varphi_a = id_A$
- 4.  $\forall x \in A^*$   $a \circ h(\rho(x)) = (\gamma(h(x))) \circ a$ .

Proof. Suppose  $\rho$  equivalent to  $\gamma$  by f. By Theorem 3.1, we have  $f_1 \in AutR$ . Furthermore, for all  $y \in A$ ,  $f((0,1) \circ_1 (y,0)) = f((0,1)) \circ_2 f((y,0))$ , which signifies  $f((0,y)) = (0,f_2(1)) \circ_2 (f_1(y),f_3(y))$ , that is

$$(0, f_2(y)) = (0, f_2(1) \circ f_1(y)).$$

Hence

$$(2) \qquad \forall y \in A \quad f_2(y) = f_2(1) \circ f_1(y).$$

We show that  $f_2(1)$  is invertible in R. Since  $f_2$  is bijective by Theorem 3.1, there is a  $t \in A$  such that  $f_2(t) = 1$ . So, by (2) we have  $f_2(1) \circ f_1(t) = 1$ . Therefore

$$f_2(1) \circ f_1(t) \circ f_2(1) = 1 \circ f_2(1) = f_2(1) \circ 1.$$

Since  $f_2(1)$  is left-cancellable in  $[A; \circ]$ , the equality  $f_1(t) \circ f_2(1) = 1$  is then also true.

For every  $x \in A^*$ ,  $f((x,0) \circ_1 (0,1)) = f((x,0)) \circ_2 f((0,1))$ , i.e.  $f(0,\rho(x)) = (f_1(x),f_3(x)) \circ_2 (0,f_2(1))$ , namely  $(0,f_2(\rho(x))) = (0,(\gamma(f_1(x))) \circ f_2(1))$ . Because of (2), it is possible to assert then that

$$\forall x \in A^* \quad f_2(1) \circ f_1(\rho(x)) = (\gamma(f_1(x))) \circ f_2(1).$$

For all  $x, y \in A$ , the following relation is true

$$f((1,x) \circ_1 (y,0)) = f((1,x)) \circ_2 f((y,0))$$

and consequently, recalling (1) and that  $f_3(1) = 0$  (Theorem 3.1),

$$f((y, xy)) = (1, f_2(x)) \circ_2 (f_1(y), f_3(y)).$$

So, on account of (1) we have  $(f_1(y), f_3(y) + f_2(xy)) = (f_1(y), f_2(x)f_1(y) + f_3(y))$ , which implies  $f_2(xy) = f_2(x)f_1(y)$ . Then, in consideration of (2) we can write

(3) 
$$f_2(1) \circ f_1(xy) = (f_2(1) \circ f_1(x)) \cdot f_1(y).$$

For x=1, (3) becomes  $f_2(1) \circ f_1(y) = f_2(1) \cdot f_1(y)$ ; so  $\varphi_{f_2(1)} = id_A$ . Therefore, (3) assumes the form  $f_2(1) \cdot f_1(xy) = f_2(1) \cdot f_1(x) \cdot f_1(y)$ , which gives  $f_1(xy) = f_1(x)f_1(y)$ . We now have  $f_1 \in Aut[A; +, \cdot] \cap AutR$ . The conditions 1., 2., 3., 4. of the assertion are then verified, with  $h = f_1$ ,  $a = f_2(1)$ .

Conversely, we assume that there exists an h, and an  $a \in A^*$ , fulfilling the conditions 1., 2., 3., 4. of the statement. Let g be the automorphism of  $[A \times A; +]$  defined by

$$g:(x,y)\to (h(x),a\circ h(y)).$$

We show that g is an isomorphism from  $R_1$  to  $R_2$ .

For  $m=(x_1,x_2)$ ,  $n=(y_1,y_2)$  in  $A\times A$ , with  $x_1\neq 0$ , we calculate, remembering that  $h\in AutR$ , and  $\varphi_a=id_A$ 

$$\begin{split} g(m \circ_1 n) &= g(x_1 \circ y_1, x_2 \varphi_{x_1}(y_1) + \rho(x_1) \circ y_2) = (h(x_1) \circ h(y_1), c + d) \\ g(m) \circ_2 g(n) &= (h(x_1), a \circ h(x_2)) \circ_2 (h(y_1), a \circ h(y_2)) = (h(x_1) \circ h(y_1), e + q) \end{split}$$

where

$$\begin{split} c &= a \circ h(x_2 \varphi_{x_1}(y_1)) \\ d &= a \circ h(\rho(x_1)) \circ h(y_2) \\ e &= a \cdot h(x_2) \cdot \varphi_{h(x_1)}(h(y_1)) \\ q &= (\gamma(h(x_1))) \cdot \varphi_{h(x_1)}(a \circ h(y_2)). \end{split}$$

We remark now that q equals  $(\gamma(h(x_1))) \circ a \circ h(y_2)$ , since, through  $\gamma \in A_{\varphi}^*$ , we have  $\varphi_{h(x_1)} = \varphi_{\gamma(h(x_1))}$ .

Because of 1., the following steps are true

$$h(x_1\circ y_1)=h(x_1\varphi_{x_1}(y_1))=h(x_1)\cdot h(\varphi_{x_1}(y_1))=h(x_1)\circ h(y_1)=h(x_1)\cdot \varphi_{h(x_1)}(h(y_1))$$

which implies  $h(\varphi_{x_1}(y_1)) = \varphi_{h(x_1)}(h(y_1))$ , so c = e. Moreover, by 4. we see that d = q. Therefore,  $g(m \circ_1 n) = g(m) \circ_2 g(n)$ .

Furthermore, for arbitrary  $x_2, y_1, y_2 \in A$ , we have  $g((0, x_2) \circ_1 (y_1, y_2)) = g((0, x_2 \circ y_1)) = (0, a \circ h(x_2 \circ y_1)) = (0, a \circ h(x_2) \circ h(y_1)) = (0, a \circ h(x_2)) \circ_2 (h(y_1), a \circ h(y_2)) = g((0, x_2)) \circ_2 g((y_1, y_2))$ , which completes the proof.

Corollary 3.1. If the cardinality of  $Im\rho$  is distinct from the cardinality of  $Im\gamma$ , then  $\rho$  is non-equivalent to  $\gamma$ .

Proof. This follows from the condition 4. of Theorem 3.2. 
$$\Box$$

Remark. We advise that the content of the present article exists also in the preprint, of the same author Giordano Gallina, by the title "Sotto-quasi-anelli di quasi-anelli" (Quaderno n. 122 of the Dipartimento di Matematica dell'Università di Parma, December 1995).

#### References

- J. R. Clay, Nearrings. Geneses and applications, Oxford University Press, New York 1992.
- [2] G. Ferrero and C. Cotti Ferrero, Nearrings. Some developments linked to semigroups and groups, Kluwer Academic Publishers, Dordrecht 2002.

- [3] G. Gallina, Su certe relazioni di equivalenza nei quasi-anelli, Riv. Mat. Univ. Parma (4) 10 (1984), 1-5.
- [4] G. Gallina, Sui radicali di un S-quasi-anello, Boll. Un. Mat. Ital. A (6) 4 (1985), 415-424.
- [5] C. J. Maxson, On local near-rings, Math. Z. 106 (1968), 197-205.
- [6] C. J. Maxson, Local near-rings of cardinality p<sup>2</sup>, Canad. Math. Bull. 11 (1968), 555-561.
- [7] C. J. Maxson, Dickson near-rings, J. Algebra 14 (1970), 152-169.
- [8] J. D. P. Meldrum, Near-rings and their links with groups, Research Notes in Mathematics, 134, Pitman, Boston, MA 1985.
- [9] G. PILZ, Near-rings, second revised edition, North-Holland American Elsevier, Amsterdam 1983.
- [10] H. Wähling, Theorie der Fastkörper, Thales-Verlag, Essen 1987.

#### GALLINA GIORDANO

Dipartimento di Matematica Università degli Studi di Parma Parco Area delle Scienze 53/A 43124 Parma, Italy e-mail: giordano.gallina@unipr.it