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Near-rings arising from coupling maps

Abstract. By contemporaneous consideration of coupling maps and of “moltipli-
cative” endomorphisms, a class of near-rings is given. We prove in particular that
various of them are local.
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1 - Introduction

In this article, all near-rings will be assumed to be left near-rings, that is in
which the product is distributive on the left with respect to the sum (see for
example [1], [2], [8]). In order to summarize completely this concept, we recall
that a (left) near-ring is a structure [N; +, -], with two operations, addition and
multiplication, defined onto N, such that ?) [N;+] is a group; %) [V; ] is a semi-
group; 1) Vax,y,2 € N ¢-(y+2)=x-y+ -2 A near-ring N is called zero-
symmetric ([1], Def. 3.2),if 0 - « = 0 for any « € N, and N is called near-field ([1],
Def. 2.17) if [N \ {0};-] is a group. According to [5], Def. 2.1, a zero-symmetric
near-ring N with (multiplicative) identity is said to be local if the set L(N) of
elements of N without right inverses is a subgroup of [N;-+], such that
L(N)N C N. A zero-symmetric near-ring N with identity is local if and only if
L(N) is a subgroup of [V; +] (by Theorem 2.3 of [5], and we notice that in [5], [6],
[7] notations for right near-rings, instead of for left, are used).
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We now follow the terminology of [7]. Given aring [4; +, -], a coupling map for A is
defined as a function ¢ : A — End[A;+, -] Y — @,) such that g, = 04, and, for any
a,b €A, 9,00, = p4,p- From a coupling map ¢ for A, a (left) near-ring [A; +, o] is
introduced, which is said to be the near-ring coupled with A by ¢ ([7] page 155), where
o is given by a o b = ag,(b) (which implies ¢,., = ¢, © ¢;). In this paper, we gen-
eralize and we complicate the description of the local near-rings on elementary
abelian p-groups of order p? of [6], starting from a near-ring [A; +, o] coupled with a
ring [A; +, -] by a suitable coupling map ¢. We introduce a function p of A \ {0} into
A\ {0} satisfying appropriate hypotheses with respect to the previous ¢. From ¢ and
from p we derive an operation oy onto A x A, finding a class of near-rings; we verify
that these near-rings, under some conditions, are local. Furthermore we classify, by
a necessary and sufficient condition, all S-near-rings ([4]), among the near-rings in
such a way introduced. In Section 3, we analyze when, given (arbitrarily) two, of the
near-rings here obtained, they can be non-isomorphie.

For further generalities on the theory of near-rings, we refer to the treatises [1],
(2], [8], [91,[10].

2 - A class of near-rings

Let[A; +, -] be aring with identity 1 # 0 without divisors of zero. The symbol id 4
will be used to designate the identity map on A. Put A* = A \ {0}. Let ¢ be a coupling
map for A, with ¢, injective for every a € A*. Since 1is the only idempotent in [A*; -],
we havethen ¢, (1) = 1forallx € A*. Let B = [A; +, o] be the (left) near-ring coupled
with [A;+,-] by ¢. We recall that, here, x o y = wp,(y) and ¢,,, = ¢, 0 ¢,. On the
basis of our hypotheses, each element of A* is left cancelable with respect to o. By
theorem 4.4 of [7], R has identity 1. % Moreover, 1is the unique idempotent in [A*; 0].3
It is now clear that 1 is fixed by every endomorphism of [A*; o]. For the given [A4; +, -]
and ¢, we denote by A} the set of all endomorphisms p of [A*; o] verifying the con-
dition

! We will note 04 the function A — A which sends every element of A to 0.

% For a direct verification, we remember that ¢,(1) = 1; thus ¢, = P1p,1) = ¢1 © 91 Since
¢y is injective, p; = ida; hence 1 is identity for R.

31f ¢ 0 is such that eoce =, then eoe = e o 1, which implies e = 1, by left-cancell-
ability of e.
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Examples. First of all, if [M; -] is any monoid and if z € M has (two-sided) in-
-1 we will call inner automorphism of M induced by z the function M — M,
y — 2z 'yz. Now we consider the above mentioned structure [A*; o] and we observe
that, if ff is an inner automorphism of [A*; o] induced by an element z (endowed with
inverse in [A*; o], which we denote z=1 by [10] page 69) with ¢, belonging to the center
of [p(A); o], then f§ € A(p Indeed, by our assumption, Vx € A*

verse 2

Py = Pezlogor — (0;1 Py O P, = Py
(see also [10], page 69).

Moreover, let [C; +, -] be an unitary integral domain, 7' € Aut[C; +, -], B = C[X].
We denote by 7T the natural extension of 7 to B (defined by
T(co+ ...+, X") = T(co) + ...+ T(c,)X"). Assume the order of T'in Aut [C; +, -] to
be a natural number %. Let m be a natural number congruent to 1 mod k. Consider
the coupling map ¢’ for B defined by (see also [7], paragraph 6):

y=0s, Yf€B =B\{0} ¢ =T"%

Then the function p’' : B* — B*, p/ : f — f™ (f™ calculated in [B;]) is an element of
B, (by our general notations). In fact, T" =T, hence for f € B* we have

’ ' deg f™ =M - —deg f ’
Gy = 0po =T = @) =T = g,
and, given the near-ring [B; +, o'], coupled with [B; +, -] by ¢/, for f,g € B*, the fol-
lowing steps holds

p/(f) o/ p/(g):f?'ﬂ, o/ gm :fm¢}m(gm):fm . (T (g’ﬂ’b)) :fﬂl . ((Tnl)dng(gm))

— - (T (g = - @ gy = (f - T @) = ()"

— (f o/ g)W’L :pl(f O/ g)7

hence p’ is also endomorphism of [B*; o'].

degfm

Now, we consider [4; +, -], ¢, R as defined before these examples, in this section,
and, from now on, we denote by p a fixed (on the other hand, arbitrary) element of A;;.

We introduce a structure By = [A X A;+, 01] in the following way. Let (11, x2),
Y1,y2) € A x A. We define (x1,22) + (W1, y2) = (1 + X2, %1 + y2). Moreover, if
x1 # 0, then put

(1, 22) o1 (Y1,¥2) = (X1 0 Y1, %20, (Y1) + p(X1)9,, (42)),

and, if x; = 0, then put (0, x2) o1 (y1,y2) = (0,22 0 y1). Let J = {0} x A. We observe
that, since p € A;;, for x; € A* we have

PPy, Y2) = p(E1)@ ) (Y2) = plier) 0 Yo.
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Theorem 2.1. The structure R; is a (zero-symmetric) near-ring having
Ry
J
wncides with the set of nilpotent elements of Ry, and J o1 J = {(0,0)}.

identity (1,0), in which J is an ideal with isomorphic to R. Furhermore, J co-

Proof. We verify the associativity of oy. Let (x1,22), (1, ¥2), (21,22) € A x A.
Suppose x1 # 0,%1 # 0. From the definition of o1, we can write

((21,22) o1 (Y1,Y2)) 01 (21, 22) = (1 0 Y1, X2, (Y1) + plX1)@,, (Y2)) 01 (21,22)

= (@1 0 Y1 0 21, (@20, (Y1) + P@DP, (Y2)) Py, o (R1) + p(E1 © Y1)y, oy, (22))-

We recall that, since p € A;, we have p(x1 o 1) = p(x1) o p(y1). Therefore the last
ordered pair is equal to

(21 0 Y1 0 21, 20, Y1) Py, 0y, (R1) + PP, Y2)Ps 0, R1) + (p(21) © p(Y1))P4 0y, (22))-

We bear in mind that (1) ¢, is an endomorphism of [A;+,], (2) ¢, = ¢, B)
Y1021 = Y1, (21); we then have
(1, 22) 01 (Y1, Y2) 01 (21, 22)) = (1, 2) 01 (Y1 © 21, Y20, (1) + p(Y1)9,, (22))
= (1 0 Y1 021,020, (Y1 0 21) + p(@D)p,, (Y20, 21) + pY1),, (22)))
= (1 0 Y1 © 21,220, (10, (21)) + p@1)p,, Y2)(9,, © 9, )(21)
+ p@D)p,, (pYDNg,, © 0,)(22))
= (1 0 Y1 © 21,020, Y1), © 9),)z1)
+ p)@y, W)@y, © 9,,)z1) + PPy (PYDN @y, © 0, )(22)).

In view of the identities ¢, o ¢, = 0, ;s PEDP,)PH1) = p(r1) © p(y1), We now
have

(@1, 22) 01 (Y1,Y2)) 01 (1,22) = (x1,%2) o1 (Y1, ¥Y2) o1 (21,%22)).

If %y # 0,y1 = 0, our argument is analogous (here, we recall the equalities before the
statement); remaining cases are simpler. Hence we have the associativity of o;. Since
any ¢, is an endomorphism of [4; +] and since o is left distributive with respect to the
sum onto A, the operation o; is distributive on the left with respect to the sum defined
onto A x A. Further, we see that the function A x A — A, (x1,x2) — 1 is an epi-
morphism from the near-ring R; to the near-ring R, whose kernel is J.

Finally, in consideration of the equality p(1) = 1, and since 1 is identity in R, (1,0)
is identity in R;. The rest is clear. |

Theorem 2.2. If R is a local near-ring (in particular, if R s a near-field ),
then Ry is local also.
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Proof. Suppose that R is alocal near-ring. We denote by L the set of elements
of A without right inverses with respect to o, and by U the set A\ L. We have
o(U) C Aut[A; +, ]* We note that L x A is a subgroup of [A x A; +], since L is a
subgroup of [A; +]. We assert that L. x A consists of elements without right inverses
with respect to o;. Indeed suppose, on the contrary, that, for a (u,v) € L x A, thereis
a (t,w) € A x A such that (u,v) o; (¢,w) = (1,0). Then u ot = 1, which contradicts
the fact that « is in L. Hence, it remains to show that each element of

UxA=AxA)\LxA)

is endowed with right inverse with respect to o; (see also Theorem 2.3 of [5]). We take
(x1,22) in U x A. We demonstrate that there is an (y1,72) € A x A such that
(21, 22) o1 (Y1,¥2) = (1,0). This last condition is equivalent to the system

x10y1 =1,
w20, (Y1) + px1)e,, (y2) = 0.

Here y; is uniquely determined as the two-sides inverse of x; in [4; o] (Lemma 2.4 of
[5]). From a1 o 1 = y1 o x1 = 1, we have p(x1) o p(y1) = p(y1) o p(x1) = p(1) = 1, that
is p(1)9 ) (PY1) = pY1P ) (pac1)) = 1. Then p(a1), p(y1) are in U; thus ¢, ¢,
are automorphisms of [A;+, -], and consequently p(x;) is invertible in [A;-]. Since
x1 € U,wehavethat ¢, isanautomorphism of [A; +, -]too. Therefore, from the second
equality of the previous system, the element y, is uniquely determined also. O

If [N; +, -]is a near-ring, for every @ € N define A;(a) = {z € N|za = 0}.In[4],a
near-ring N is said to be an S-near-ring if, Va € N, the relation S, defined onto N by
2Sqy < xa = ya is a congruence of N. From [3], [4] it is clear that a zero-symmetric
near-ring N is S-near-ring if and only if, Va € N, A;(a) is an ideal, such that Vx € N
[x]s, = + Ay(@).

Theorem 2.3. The near-ring Ry is S-near-ring if and only if :
1. pis injective,
2. each non-null element of A is cancelable with respect to o.

Proof. Weremember that every non-null element of A is left cancelable with
respect to o. Suppose that 1., 2. holds. Let a = (0,y2) € A x A, y2 #0. It is

4 In fact, by Lemma 2.4 of [5], every element of U is invertible in [A;c]. Then, for a
generica € U, thereisb € Usuchthataob = boa = 1;thus 9., = ¢}, = @1, Which implies
Pq © Py = Py © P, = id4, SO @, is an automorphism of [4; +, -].
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immediate that A;(@) = J°. We demonstrate that two elements of A x A are
equivalent with respect to S, % if and only if they belongs to the same coset
of J. Suppose (x1,%2)Sq(x],x5) with x; #0 (hence also x] #0). We have
(1, 22) 01 (0,92) = (2], 25) o1 (0, y2), that is (0, p(x1) o y2) = (0, p(x}) o y2). Because of
2., p(x1) = p(a)); therefore, by 1., 21 = @], so (w1, 22) +J = (], x5) + J. If o1 = 0 then
alsox} = 0, hence (x1,22) +J = J = (2], 25) + J. Conversely, by a direct verification
we see that, for arbitrary x;, x2 € A, any two elements of (a1, x2) + J = (x1,0) + J are
equivalent with respect to S,. For all b ¢ J we demonstrate that S, is the discrete
relation, so is congruence. We take b = (y1,¥2), y1 # 0. Let (x1,22)Sp(x], a5). If
w1 # 0, then ] # 0, and 1 o y1 = 2} o y1. From 2., x; = . Therefore,

120, (1) + pe1e,, Y2) = 250, (1) + p(e1)e,, (U2);

since y1 # 0, this implies xp = a5. If 1 = 0, then &} = 0, and (0, x2 o y1) = (0,25 o Y1),
thus, by 2., x; = . Consequently, B; is an S-near-ring.

We assume now R; to be S-near-ring. Consider elements x;, 22 € A* such that
x1 # x2. We prove that p(a;) # p(az). Suppose on the contrary that p(x;) = p(x).
Then there are two elements of A x A equivalent with respect to S(g 1), belonging to
two distinct cosets of J = A;((0, 1)), that is the elements (xy, 0), (a2, 0):

(21,0) 01 (0,1) = (0, p(w1)) = (0, p(w2)) = (2, 0) o1 (0, 1).

This contradicts the fact that R; is S-nearring. Let wx,2] €A, x<cAf,
w1 o x = ) o x. We assert that x; = x}. Assume x; # «}. We then have

(1,0) o1 (x,0) = (23, 0) o1 (,0)

with (x1,0), (¢}, 0) belonging to two distinct cosets of A;((x,0)) = {(0,0)}, a contra-
diction. Thus, 1.,2. holds. O

3 - Equivalence

Throughout this section, in addition to the previous p and R, we consider another
(arbitrary) element y of Aj;, and, if f is any automorphism of [A x A; +] (in which + is
the componentwise operation as above), then we will note fij =m of o1y,
fo =mgofoiyfs =mof oi, Whereiy,12 : A — A x A are the canonical injections,
while 71,72 : A x A — A are the canonical projections. The f; are endomorphisms of
[A; +]. Furthermore, let Ry = [A x A; +, 02] be the near-ring derived from R and

5 Obviously, here A;(a) = {(z,t) € A x A|(z,t) o1 & = (0,0)}.
5 Defined here onto A x A by (2, )Sq(u,v) < (2,t) o1 @ = (u,v) o1 a.
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from v, on the analogy of R;. Explicitly, the addition in R is again componentwise
operation, while the operation og is such that, for (xy,a2), (y1,%2) € A x A, if
x1 70 then (x1,%2) oz (y1,¥2) = (¥1 0 Y1, %20, (Y1) + Y@y, (y2)), if €1 =0 then
(0, 2) o2 (y1,y2) = (0,22 0 Y1).

p will be called equivalent to y if R; is isomorphic to Ry. More precisely, we say
that pis equivalent to y by f, if f is an isomorphism from R; to Re, and we remark that,
in this case, we have in particular f € Aut[A x A;+].

Theorem 3.1. If p is equivalent to y by f, then f(J)=J, fi € AutR,
fo € Aut[A; +] and f3(1) = 0.

Proof. SinceJ istheideal of nilpotent elements of Ry, and, at the same time, of
nilpotent elements of Re, and f is isomorphism, we have f(J) = J. Therefore, for all
y € A, £((0,y) = (0, /2(y)); hence f; is bijective.

Let z€ A. Since f is surjective, there is an (x,y) € A x A such that
f(x,y) = (,0). Then (2,0)=f((,0)+0,y)=r((x0)+f(0,9) = (filx),s®)
+(0,£2(y) = (fi(@), fz(x) + f2(y)). Hence z = fi(x), so fi is surjective. We state that f;
is also injective. Suppose, on the contrary, the existence of anx € A*, x € Kerf;. Then
f((x,0)) = (i), f3(x)) = (0,f3(x)) € J, so the non-nilpotent element (x,0) of Ry is
sended by f to a nilpotent element of Ry, a contradiction.

For x,y € A the equality fi(x o y) = f1(x) o fi(y) is immediate if x = 0. If x £ 0,
we bear in mind that fi((x,0) o1 (,0)) = f((x,0)) oz f((y,0)), namely f((xoy,0))
= (1i®),f3(x)) o2 (f1(%),f3(y)) which implies

(fieoy),fz(xoy) = (filx) o fi(y), )

for a suitable s € A. Hence, fi(x o y) = fi(x) o fi(y), so fi € AutR.
We recall now that (1,0) is identity in Ry and in Re. Consequently,
1,0) =((1,0) = (1(1),f3(1)) = (1,/3(1)), therefore f3(1) = 0. O

We underline that, under the hypothesis of Theorem 3.1, we can write (for every
v,y €A)

1) f((@,y) = (@), f5) + fo(y).

Theorem 3.2. pis equivalent to y if and only if Ih Ja € A* such that

1. h € Aut[A;+, - ]NAutR

2. a is iwvertible in R

3. Vg = ldA

4. Yo € A" aoh(p(x) = (y(h(x))) o a.
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Proof. Suppose p equivalent to y by f. By Theorem 3.1, we have f; € AutR.
Furthermore, for all ¥ € A, f((0,1) oy (y,0)) = f((0,1)) o2 f((,0)), which signifies
F(0,9)) = (0,£2(1)) o2 (f1(y),f3(y)), that is

0,1£2y) = (0,£2(1) o fi(y)).
Hence
(2) Yy e A foly) =fo(1) o fiy).

We show that f5(1) is invertible in R. Since f; is bijective by Theorem 3.1, there is a
t € A such that f2(t) = 1. So, by (2) we have f2(1) o f1(t) = 1. Therefore

S ofi(®) ofo(1) =10 fo(1) = fo(1) o 1.
Since f>(1) is left-cancellable in [A;0], the equality fi(f) o fz(1) =1 is then also

true.

For every weA*, [f((@0)01(0,1)=f((x,0))02/((0,1), 1ie. f(0,px))
= (fi(@), f3(x)) oz (0, /2(1)), namely (0, fa(p(x))) = (0, (p(f1(x))) o f2(1)). Because of (2), it
is possible to assert then that

Vee A" f() o filp() = ((fi(@) o fo(D).
For all «,y € A, the following relation is true
f(@,2) 01 (,0)) = f((1,2)) 02 f((y, 0))
and consequently, recalling (1) and that f3(1) = 0 (Theorem 3.1),
S, xy) = 1, f2(@)) o2 (fi(y), f3(1).

So, on account of (1) we have (fi(y),3(¥) + fo(xy)) = (W), o@)fi(y) + f(y)), which
implies fa(xy) = fo(®)f1(y). Then, in consideration of (2) we can write

3) o) o filwy) = (f2(1) 0 fi(@)) - fi(y).

For & = 1, (3) becomes f2(1) o f1(y) = fo(1) - f1(); so Pra) = id4. Therefore, (3) as-
sumes the form f5(1) - fi(xy) = fo(1) - f1(x) - f1(y), which gives fi(xy) = fi(x)f1(y). We
now have f; € Aut[A;+, 1N Aut R. The conditions 1.,2.,3.,4. of the assertion are
then verified, with & = f1, a = fo(1).

Conversely, we assume that there exists an &, and an a € A*, fulfilling the con-
ditions 1.,2., 3., 4. of the statement. Let g be the automorphism of [A x A; +] defined
by

g: @,y) — (h(x),a o h(y)).

We show that ¢ is an isomorphism from R; to Rs.
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For m = (x1,22), n = (y1,%2) in A x A, with x; # 0, we calculate, remembering
that h € AutR, and ¢, = tda

g(m o1 ) = g(x1 ° Y1, 220, (Y1) + p(x1) 0 Yy2) = (h(x1) © ”M(Y1), ¢ + d)
g(m) oz g(n) = (h(x1), @ o h(wz)) o2 (h(y1),a o h(yz)) = (h(x1) o h(y1),e + q)

where

¢ = a o h(x20,, (1))

d = a o h(p(x1)) o h(yz)
e=a-h(xg) (ﬂh(ml)(h(yl))

q = ((@1))) * Py (@ 0 I(Y2)).

We remark now that g equals (y((x1))) o @ o h(yz), since, through y € A;j, we have

Py = Pyntar)-
Because of 1., the following steps are true

Iy 0 y1) = h(@19,, (Y1) = h(x1) - Moy, (Y1) = h(x1) o M(y1) = ”(x1) - @pepy (Y1)

which implies /(p,, (41)) = ¢}, ((y1)), s0 ¢ = e. Moreover, by 4. we see that d = q.
Therefore, g(m o1 n) = g(in) og g(n).
Furthermore, for arbitrary w«s,y1,%2 €A, we have g¢((0,x2) o1 (¥1,¥2))
= 90,22 0y1)) = (0, @0 hiwz 0 y1) = (0, 0 haz) 0 h(y)) = (0, 0 hiaz)) o3 (alyy),
a o h(yz)) = g((0, x2)) o2 g((¥1,y2)), Wwhich completes the proof. O

Corollary 3.1. If the cardinality of Imp is distinct from the cardinality of
Imy, then p is non-equivalent to y.

Proof. This follows from the condition 4. of Theorem 3.2. O

Remark. We advise that the content of the present article exists also in the
preprint, of the same author Giordano Gallina, by the title “Sotto-quasi-anelli di
quasi-anelli” (Quaderno n. 122 of the Dipartimento di Matematica dell’Universita di
Parma, December 1995).
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