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Galerkin BEM to wave propagation problems

Abstract. Here we consider wave propagation problems with vanishing initial
and mixed boundary condition reformulated as space-time boundary integral
equations. The energetic Galerkin boundary element method used in the dis-
cretization phase, after a double analytic integration in time variables, has to deal
with weakly singular, singular and hypersingular double integrals in space vari-
ables. Efficient numerical quadrature schemes for evaluation of these integrals are
here proposed. Several numerical results are presented and discussed.
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1 - Introduction

Linear time-dependent two and three-dimensional problems are ideally suited
to successful applications of boundary integral equation (BIE) approaches and to
their discretizations into boundary element methods (BEMs). Frequently
claimed advantages over domain approaches are the dimensionality reduction,
the easy implicit enforcement of radiation conditions at infinity and the high
accuracy achievable. Excellent survey on the available literature on BIE and
BEM in time-dependent problems can be found in [11, 12]. The transformation of
the problem to a boundary integral equation follows the same well-known method
for elliptic boundary value problems. Most earlier contributions concerned direct
formulations of BEM in the frequency domain, often using the Laplace transform
and addressing wave propagations problems. The pioneering work of Cruse and
Rizzo [13] and the results in [2, 8, 15, 16, 18, 26, 28] are among the standard re-
ferences in the field.

Time-domain direct BIE formulations were developed more recently, pri-
marily stimulated by soil-structure interaction problems. In this case, the re-
presentation formula in terms of single layer and double layer potentials uses the
fundamental solution of the hyperbolic partial differential equation and jump
relations, giving rise to retarded boundary integral equations [9, 10]. These
approaches lead in the discretization phase to systems of linear equations with
nonsymmetric coefficient matrices, to be solved for each time step. Symmetric
formulations were proposed in [26, 34].

Usual numerical discretization procedures include collocation techniques and
Laplace-Fourier methods coupled with Galerkin BEM in space. The application
of Galerkin BEM in both space and time has been implemented by several au-
thors but in this direction only the weak formulation due to Ha Duong [20] and
Ha Duong et al. [21] furnishes genuine convergence results. The only drawback
of the method is that it has stability constants growing exponentially in time, as
stated in [12].

The convolution quadrature method for the time discretization has been devel-
oped in [23, 24, 25]. This method has the fundamental property of avoiding using the
explicit expression of the kernel which is instead replaced by that of its Laplace
transform. These rules do not have any degree of exctness, however the convergence
properties are guaranteed under certain assumptions on the above Laplace trans-
form and on the density function.

Recently, we have considered 2D Dirichlet or Neumann problems for a temporally
homogeneous (normalized) scalar wave equation outside an obstacle /™ in the time
interval [0, 7], reformulated as a boundary integral equation with retarded potential.
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Special attention was devoted to a natural energy identity related to the differential
problem, that leads to a space-time weak formulation for the BIEs, having, under
suitable constraint, precise continuity and coerciveness properties (see [4, 5]).

The related energetic Galerkin BEM formulation is discretized in time and space,
and it is shown that the time integrations can be performed analytically. A time
marching scheme is set up to numerically solve the resulting BIE. The spatial sin-
gularity of the resulting kernels are investigated and shown to be exactly those found
in the static case. As a consequence of this, the treatment of the singular and hy-
persingular double integrals (see [19]) in space variables can be similar to that de-
vised for this simpler case. Krishnasamy el al. [22] have introduced a hypersingular
formulation for time-harmonic three-dimensional elastic wave scattering by cracks
and discussed different alternatives for the computation of the hypersingular in-
tegrals. Sladek and Sladek [35] solved the same problem by Laplace transform
method, but they also remove the hypersingular integrals by partial integrations.
Recent overviews, properties and applications of finite-part integrals have been
presented by Monegato [33].

In this paper, we consider all integrals whose evaluation is required by Galerkin
BEM based on piecewise polynomial approximants of arbitrary local degrees. To
compute these integrals we propose efficient quadrature schemes. In the last section
various numerical results will be presented and discussed.

2 - Model problem and its energetic boundary integral weak formulation

We consider a mixed boundary value problem for the wave equation with
homogeneous initial conditions, in a bounded, simply connected, domain 2 C RZ,
with a boundary I" referred to a Cartesian orthogonal coordinate system
X = (®1,%2) and partitioned into two non intersecting subsets 7", and I,
(I'yN Iy = 0) such that I = I, U I',. Without loss of generality we will consider
a dimensionless problem which can be obtained after an appropriate scaling of
the units

1) Uy — Au = 0, xeQ te0,1)

(2) u(x,0) = u(x,0) = 0, xcQ

3) w(x, t) = u(x, 1), x,t) e 2y =1, x[0,T]
(4) p(x,t) = %(x7 ) = p(x, 1), x,t) € 24 =1, x[0,T]

where n is the unit outward normal vector of I, % and p are given boundary data of
Dirichlet and Neumann type, respectively.
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Let us consider the boundary integral representation of the solution of (1)-(4) for
xeQandt e (0,7T) (see [27])

t
(5) utx) = | | [G(r,t o) - g—imt = o0 dedy,
ro

where r = ||r||, = [|x — &||, and

6) Grt—p) e 2 HlEZT 7]

RN

is the forward fundamental solution of the two dimensional wave operator, with HJ - ]
the Heaviside function. With a limiting process for x tending to I” we obtain the
space-time BIE (see [27])

oG

t
(1) % u(x,t) = J Gr,t — Op§, D dedy; — JJ—(’/‘, t — Du, 1) dedy,,
ro

r

ng

S

which can be written, with obvious meaning of notation, in the compact form
1
(8) 5 u(x,t) = (Vp)(x, 1) — (Ku)(x, ).

The BIE (8) is generally used to solve Dirichlet problem, but can be employed for
mixed problems too. However, in this last case, we consider a second space-time
BIE, obtainable from (5), performing the normal derivative with respect to ny and
operating a limiting process for x tending to I” we obtain

¢ ¢
1 oG G
9) 5 px,t) = J JTX(T, t —pE, 1) drdy; — Jjanx one (r,t — Du(&, 7) dedy,,
ro o
which can be written in the compact form
1
(10) 5 PO = (K'p)(x, 1) — (Du)(x, 8).

Note that the operator K’ is the adjoint of the Cauchy singular operator K, which can

be expressed as
t

or
11 K H=—|—|Gor.t—
( ) u(x, t) IJ:a ﬁi (7, 7) |:ut(E.!7 7) +

w(&, 1)

[ d‘:dyé.

Expression (11) can be obtained starting from the definition of the double layer
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operator K and observing that
gH[t—T—T]_QH[t—T—T]
o i—ci—r O i—i-r

In fact, using (12) we have

oG oG or
al‘lg (T,t - 1) 75(7”,157 ‘L') —ané
1 8[ 1 H[t—‘c—?"]} or

"2z 0r Vi—t+7r Vt—t—7r 1 0Ong
1 [ 1 1 H[t—1—7] 1 8H[t—r—r]}ﬂ

_ét—T+T\/(t_T)2_7.2 \/t—r—i—ra Vi—t—7r 8n¢'

(12)

(13)

T

Now, inserting (13) in the definition of K, integrating in the sense of distributions the
term containing the derivative with respect to 7, one gets, up to the factor —1/(2n),

t

Jﬂ“} Hit—7—-r] w@1) +H[t7177‘]2[ u(&, 7) ded,
I“anao 2\ t—f—p2t—t+r Vi—t—r OtlVt—t+r Yo

expressing explicitly the time derivative of the second term in the integrand func-
tion, one finally deduces (11).

Further, considering at this stage the derivative with respect to ny of (11) and
operating with the same arguments as before, after a cumbersome but easy calcu-
lation the hypersingular integral operator D in (10) can be equivalently expressed in
the following way

t
. 627’ 'LL(&, T)
Du(x,t) = — J@nxang J Gor,t —1) {ut(‘tm )+ m} drdy;
r 0
t
or Or 2 ut(E_n T) 3 u(é? T)
+lanx oo lG(m ) [utt(a,ﬂ st TH)Z] v dys.

Hence, using the boundary conditions (3)-(4), a mixed boundary value wave propa-
gation problem can be rewritten as a system of two BIEs in the boundary unknowns
the functions p(x, ) and u(x,?) on I'y, I'p, respectively

(14) Vu —Kp Pl _ *Vp %I‘FKu P (X,t)GZ%
K, D, ||u|”|-Y+K, -D, ||u] xtezh

where the boundary integral operator subscripts f = u, p define their restriction to
i or Zﬂ; Then, starting from the observation that the solution of (1)-(4) satisfies the
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following energy identity

T
Eu, T) ;:%J[ x, T) + |Vucx, T)[*] ”ut(x t)— (x t)dtdy,
Q ro

obtainable multiplying equation (1) by u; and integrating by parts over
2= Q x [0,T], and remembering (8) and (10), the energetic weak formulation of
the system (14) is defined as 1

{ <(Vup)t>W>L2(y;> — ((Bpu), >L2(2“) = (f{"v >L2(Z")

15 )
(15) _<K7itpa77t>LZ(E‘;)+<Dpu’7]t>L2(E’;) = (f?, ’7t>L2<2?;)

where
ﬁu:—(Vpl_’)t‘F((%I"’K%ﬂ)ﬁ)t? fp:(—%l—i-K;))f)—Duﬂ

and w(x, t), n(x,t) are suitable test functions, belonging to the same functional space
of p(x,t), u(x,t), respectively. The first equation in (14) has been derived with re-
spect to time and projected with the L2(2%,) scalar product onto the space of functions
approximating p(x,t), while the second equation in (14) has been projected with the

(Z ) onto the space of time derivative of functions approximating u(x, t). The in-
terest reader is refered to [7] for the appropriate functional setting. Note that the
involved scalar products are represented by a space-time integral; hence, taking into
account the space-time integral nature of operators V, K, K', D, in (15) we will have to
deal with quadruple integrals, double in space and double in time.

2.1 - Galerkin BEM discretization

For time discretization we consider a uniform decomposition of the time
interval [0, 7] with time step At =T/Ny4,N4 € N*, generated by the Ny + 1
instants

tr=kdt, k=0,--- Ny,

and we choose temporally piecewise constant shape functions for the approximation
of p and piecewise linear shape functions for the approximation of u, although higher
degree shape functions can be used. Note that, for this particular choice, temporal
shape functions, for k =0,---, Ny — 1, will be defined as

v () = Hlt — ;] — H[t — t41], V@) = Rt — t) — B(¢ — tg11),

! See also [4], where the energetic weak formulation was introduced for the problem (1)-
(4) with domain Q C R.
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t—t
At

for the approximation of p and u, respectively, and R(t — t;) = HI[t — t;]is the
ramp function.

For the space discretization, we employ a Galerkin BEM. We consider a poly-
gonal approximation of boundary I = I",, U I, denoted with =" W U 2 », Where
Iy and T’ » are constituted by N,, N, straight elements {e;‘}fﬁ‘l and {e? }?21,
respectively; with 2[; := length(ef ) < Azx, ef N ef =(ifi#jand f =u, p.

The functional background compels one to choose spatially shape functions be-
longing to L? (I",,) for the approximation of p and to H é(IA“ ») for the approximation of
u. Hence, having defined Py, the space of algebraic polynomials of degree d; on the
element ¢; of I', we consider, respectively, the space of piecewise polynomial func-

tions

(16) Xl i= {wP(x) e LAT,) : why € Pa,, Vej C T}
and the space of continuous piecewise polynomial functions
(17) X = {w"(x) € CUT) : Wiy € Py, Ve C T}

Hence, denoting with M, M, the number of unknowns on T « and T », Tespectively,
and having introduced the standard piecewise polynomial boundary element basis
functions wj’."(x),j =1,---,M,,in X;! and wi(x), j=1,---,M, in XY, the approx-
imate solutions of the problem at hand will be expressed as

NAtfl Mp NAt*]- Mu
(18)  plx,t):= kz > a®ul )l M), wx,t) = kz > ol i () v (B).
=0 j=1 =0 j=1

The Galerkin BEM discretization coming from energetic weak formulation (15)
produces the linear system

(19) FEoa=h,

where matrix I has a block lower triangular Toeplitz structure, since its elements
depend on the difference ¢, — t;, and in particular they vanish if ¢, < t;. Each block
has dimension M := M, + M,,. If we indicate with £ the block obtained when
o=t —tr=C+ DA, £=0,..., Ny — 1, the linear system can be written as

E©® 0 0 0 a® b
O EO o ... 0 o® b®
0 a«® [ _| b®

(20) E® ED FO
EN2=D  pWNz=2 O RO a®™a=D pNa—1)
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where
21) a® = (fx_j.‘)) . b= (b_;.@) . g=1,...,M.

Note that each block has a 2 x 2 block sub-structure of the type

O RO

(22) E(/{) _ lt’uu h’u}o
E ©) E )

Tpu Tpp

where diagonal sub-blocks have dimensions M,,, M,, respectively, h;ﬁl = (ng;,)T and
it holds

-
O _ () ©) () ©)
a0 — (aph”"OCpMp’aul’”'7auMu) ,
The solution of (20) is obtained with a block forward substitution, i.e. at every time
instant ¢y, one computes

4
70 :b(f) _Z E(})a(/«—]), £=0,--- ,Ny—1,
J=1

and then solves the reduced linear system
(23) E@g® — 4O

Procedure (23) is a time-marching technique, where the only matrix to be inverted is
the symmetric non-singular £’ diagonal block, while all the other blocks are used to
update at every time step the right-hand side. Owing to this procedure we can
construct and store only the blocks E© | - .. E¥+~D with a considerable reduction of
computational cost and memory requirement.

Having set 4, = t, — ti, the matrix elements in blocks of the type ng; , after a
double analytic integration in the time variables, are of the form

1

(24) ﬁzo( - 1)H/j J W?(X) J H[AthcH)’ — 1]V, Uy tk+ﬁ) wjp(g) dVg dyy,
. T, T,

where

1
(25) V(r,ty, t,) = o [log (Ahk + \/A%Lk - 7’2) —log 1"} ;

0

matrix elements in blocks of the type [, ),

after a double analytic integration in the
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time variables, are of the form

1
26 3 (—1 j wh(x) J HUy s — 710 by st ) 0 ey,

o,f=0 P P
I, I,
where
1 r-ng 5
27 bhot)=—_— S 2.
( ) IC(Tv hs k) oAt 2 hk ey

matrix elements in blocks of the type E;f;, after a double analytic integration in the
time variables, are of the form

1
28 S (-1 Jw?(x) jH[AMM DO byt ) WE) el

o,f=0 P X
I, I,
where
1 (r-ny)(r-ng) e \ A%Lk — 72
D(/ra th7 tk) :2 (A t)2 { ,,/_2 7‘2
(29) "

+(nxz;né) {log(ﬁhk + m) logr— @} }

We will refer to one of the double integrals in (24), (26) or (28), in the sequel indicated
by

(30) [ w0 [ Hua = 1St w@ vy
5

where o, f = u, p and S represents one of the kernels (25), (27) or (29) and where we
have dropped redundant apices u,p in the notation, being clear which parts of the
boundary and which test and shape functions are involved in the double integration,
in relation to the fixed kernel. In the following, this simplification will be operated
whenever possible.

Using the standard element by element technique, the evaluation of every
double integral of the form (30) is reduced to the assembling of local contributions
of the type

2l; 2l;
(31) J W9(s) J H Ay, — 1180, ty, t) 0 (2) dz ds,
0 0
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where Zv%i),m =0,---,d; (iv;‘%j),n =0,---,d;) defines one of the local lagrangian
basis function in the space variable of degree d; (d;) defined over the element ¢; (¢;) of
the boundary mesh.

Looking at (25), (27) and (29), we observe space singularities of type log r,
O(r~1) and O(r~2) as r — 0, which are typical of 2D static weakly singular, sin-
gular and hypersingular kernels. Hence, efficient evaluation of double integrals
of type (31) is particularly required when e; = ¢; and when ¢; , ¢; are consecutive.
Note that when the kernel is hypersingular and e; = e; we define both the inner
and the outer integrals as Hadamard finite parts [19], while if e; and e; are
consecutive, only the outer integral is understood in the finite part sense: the
correct interpretation of double integrals is the key point for any efficient nu-
merical approach based on element by element technique (see [3]).

Further, we observe that the Heaviside function H[4,; — »] in (31) and the

function W/A%Lk — 72 in the kernel S(r,t;,1;), give rise to other different type of

troubles, which have to be properly faced, as described in [6]. Hence, the nu-
merical treatment of (31) has been operated through quadrature schemes widely
used in the context of Galerkin BEM coming from elliptic problems [3], coupled
with a suitable regularization technique [31], after a careful subdivision of the
integration domain due to the presence of the Heaviside function. In the fol-
lowing sections we present a complete list of efficient numerical integration
schemes we have used for the discretization of weakly, strongly and hypersin-
gular BIEs related to wave propagation problems and which represent a valid
alternative to those proposed in [17, 38].

3 - Evaluation of Galerkin matrix elements

Let us start with an analysis of the double integration domain in (31). Due to the
presence of the Heaviside function H[4;; — 7], the double integration domain is
constituted by the intersection between the rectangle [0,21/;] x [0,2;] and the 2D
domain Ay, — r > 0. Let us specify this issue with respect to the geometrical dis-
position of the mesh elements e; and e;.

Coincident boundary elements (e; = ¢;)

In this case, the distance between the source and the field point can be
written as r = |s — z|; hence the double integration domain is represented by the
intersection between the square [0,21/;] x [0,2[;] and the strip |s — 2| <4, where
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2=0.1 t -t=0.15 2I.=D.1 tn—tk=0.05 21=01 t -t =0.025
N ] ]
" ooy | " oo % " oog /
| A | 8

yd

El
|
%P5 0 oos 01 ots %o 9 05 01 o015 %os 0 o0os 01 o1s
s s s

Fig. 1. Double integration domain (coincident elements) for different values of 4.

the Heaviside function is not trivial. In Figure 1 we show these intersections for
different values of 4, and fixed length 2[;. Having set

M = max(0,s — 4y), ms = min 2l;, s + dp) ,

double integral (31) in this case becomes

21; M
(32) J w'(s) J S, t, ) W (2) dz ds .
0 M,

The numerical quadrature in the outer variable of integration s has been per-
formed subdividing, when necessary, the outer interval of integration. Without
this subdivision, one should use a lot of quadrature nodes for the outer numerical
integration in order to achieve the single precision accuracy. Let us explain this
issue in details. The derivative with respect to s of the outer integrand function,
after the inner integration, presents jumps in correspondence to possible sub-
division points given by

s1 = A, Sp = 2l; — Ay .

Note that in this simple geometrical case, if 4, > 2[; these points do not belong to
the integration interval [0, 2[;]; if 4, = 2I; these points coincide with the endpoints of
the integration interval [0,2[;]; when 0< A, <2l;, 4, # I; both points belong to
[0,2;]; at last, when 4, = [; only one point belongs to the integration interval
(s1 = s2). Almost all these geometrical situations as shown in Figure 1. Further, as an
example, in Figure 2 we present the behavior of the derivative

Mg

d ~
ds [ J log (4y,; + W) w](O)(z) dz} ,
M.

s
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20=0.1 (1, -1)=0.15 21=0.1 (1, -1 }=0.05 21=0.1 (1 -t )=0.025
0145 - o . ; ; 4 ; ; ;
3 }
0.1} e ] S~
2t i | |
0.05| 2|
1}
of |
of 0|
-0.05 |
=1}
-0} |
-3l
-2l { |
-0.15/ 1 ___—‘-'--.\ —_____\
-3l | [
—02! . " " J : . X " " s .
% 002 004 006 008 01 0 002 004 006 008 01 0 002 004 0068 008 D01
5 5 s

Fig. 2. Behavior of outer integrand function derivative for different values of 4.

referred to the domains of the previous figure and to an integrand function related to
the non-singular (for » — 0) part of the kernel (29).
Hence, (32) will be eventually decomposed into the sum of double integrals of the
form
b ms
(33) J@ﬁ,ﬂfﬂ(s) J S, ty,, ) W (2) dz ds
M

a

where [a, b] C [0, 2[;]. Of course when no subdivision is needed, we will have to deal
with only one double integral (33) where [a, b] = [0, 2;].

In Table 1 the computational gain obtained to achieve single precision accuracy
when using the suggested splitting is displayed in the numerical evaluation of the

Table 1. Relative errors in the outer numerical integration of (34) when Ay, =
= 0.05,0.025, with and without the proposed splitting. The symbol —— means that the single
precision accuracy has been achieved.

Ay = 0.05 Ap, = 0.025
n. nodes without splitting  with splitting without splitting with splitting
4 1.5871 -102 1.2663 - 107> 4.8220-10°4 4.7584 - 1076
8 4.4374-1073 4.8539 -1077 5.2265 - 1072 7.3393 - 1077
16 1.1928 - 1073 —— 2.1787-107* ——
32 3.1162-1074 3.9416 - 104
64 7.9969 - 1075 2.1043 -107°
128 2.0301-107° 2.5823-107°
256 5.1162 10~ 2.0254 - 109
512 1.2786 - 10~6 1.1237-1076
1024 3.1285- 1077 6.6507 - 1077

2048 —— ——
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outer integral of

2l; mg

(34) I = J J log (A, +1\/ £, — |s — 2[%) dzds,

0 M

for 2I; = 0.1 and 4,; = 0.05, 0.025, using a classical Gauss-Legendre rule. In this
simple geometrical case, the inner integral has been evaluated analytically.

Consecutive aligned boundary elements (¢; = ;1)

In this case, the distance between the source and the field point can be written as
r=s+z, with s € [0,2[;] and z € [0, 2[;]. Hence the double integration domain is
represented by the intersection between the rectangle [0,2/;] x [0,2/;] and the half
plane: z < 4, — s, where the Heaviside function is not trivial. This intersection will be
not empty if: 0<s < 4y;. Therefore, having set

moy = min (dy, 21;) , mg = min (21, A — S) ,

double integral (31) in this case becomes

mo My
(35) J W9(s) J SOr b, 1) 7 (2) dz ds .
0 0

Also in this case, the numerical quadrature in the outer variable of integration s has
been performed subdividing, when necessary, the outer interval of integration. In fact,
the derivative with respect to s of the outer integrand function, after the inner in-
tegration, presents a jump in correspondence to a possible subdivision point given by

s1 = Ay, — 2l;.

Note that in this geometrical case, it is simple to verify that if 4y, <2l; or 4y, > 21; +21;
this point does not belong to the integration interval [0,m,], while if 2[; +
+2l; <4y, <2l;, s1 breaks in two subintervals the outer integration interval
[0,m0]. Hence, (35) will be eventually decomposed into the sum of double in-
tegrals of the form

b My
(36) Jwgdz’(s) J SO, ty, ) W7V () dz ds,

a 0
where [a, b] C [0,mg]. Of course when no subdivision is needed, we will have to deal
with only one double integral (36) where [a, b] = [0, mq].
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Consecutive not aligned boundary elements (¢; = ;1)

In this case, having set w = o + f§ (see Figure 3), the distance between the source
and the field point can be written as: » = [22 + 25z cos w + 2]/, with s € [0, 2;],
z € [0,2l;,1] and 0 < w < 7. Hence the double integration domain is represented by the
intersection between the rectangle [0,2/;] x [0,2(;] and the ellipsis 2 — A,ZZ,C <0 cen-
tered in the unique singularity point (0, 0), where the Heaviside function is not trivial.

Fig. 3. Geometrical representation of consecutive not aligned elements.

The directions of the two axes of the ellipsis are ( — 1,1) and (1, 1) with semi-length
respectively (1 — cos a))’l/ 2 and (1 + cos a))’l/ 2 of course, when 0<cosw<1 the
major axis will be oriented in direction (1, 1), when —1 < cos @ < 0 the major axis will
be oriented in direction ( — 1,1), when cos w = 0 the ellipsis becomes a circle. The
angle 6 = © — w between contiguous elements determines the eccentricity, while the
increasing parameter A4, determines a dilation of the ellipsis. In Figure 4, we show
various types of intersections, i.e. double integration domains, for different values of
A and different angles 0 between contiguous elements. Note that the inequality

(37) ¥+ 2szcosw + 8F — A7, <0,
can be satisfied if and only if

A4 Y|
2 _ Ahk <s< Ik

sino >0 < - - .
sinw sinw

2
A =8

For s € (0,2[;) the lower limitation for the outer variable of integration is always
satisfied; then under the restrictions: 0 <s< 4y /sin @, the inequality (37) will be
satisfied for

S S s 2 2 12
#1 <2<z, where zj,=—scoswF /4y —s?sin‘w.
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Double integration domain

) B | ot

-0. . . . .
—6.2 -0.15 -01 -0.05 0 005 041 0.15

Fig. 4. Double integration domain (consecutive not aligned boundary elements of length
2l; =2l; =0.1) for different values of 4, and angles w: (1) 4y, =0.09,0 = /4, (2)
A, = 0.095, w0 = 57/8, (3) Ay, = 0.092, w = 171/24, (4) Ay = 0.05, 0 = /2.

Therefore, having set
R Ahk B s . s
my = min 2l;, —), M, = max(0,2]), ms = min (2];,25)
sinw '

double integral (31) in this case becomes
mo Mg

(38) J W% (s) J S(r b, t) W\ () dzds .
0 M,

The numerical quadrature in the outer variable of integration s has been performed
subdividing, when necessary, the outer interval of integration. In fact, also in this
case, the derivative with respect to s of the outer integrand function, after the inner
integration, presents a jump in correspondence to possible subdivision points to be
searched among the solutions of the equations

21 =0, zy =21,
formally given by
s17% = F,  sy? = —2licosw F \/ £, — QLY sin®w .
Note that s% = — A, £10,mo] and we can write real solutions s;’z under the restric-

tion: Ay, > 2;sin w. Having set

2 = @LY + QL) + 22L)2l)cos o,
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with a deeper analysis, one obtains that:
o s2¢c[0,m)] when 0<dy<2l;;
o for O<w<mn/2

only sg breaks the outer integration interval [0,m0] in two subintervals when:
21]' <Ay < gw;

o for n/2<w<n

o if cosw > —21;/2l;
s5 € [0,1my] when  2l; sin o < 4y <4,

o if cosw > —2l;/2l;
sy € [0,1my] when  2[;sinw< 4, <2l;,

otherwise when  max{2l;sinw, {,} <4, <2l;.

Hence, the integral (38) will be eventually decomposed into the sum of double in-
tegrals of the form

b Mg
(39) J@%i)(s) J S(r,ty, t) " (2) dz ds,,
M;

a

where [a, b] C [0, mg]. Of course, when no subdivision is needed, we will have to deal
with only one double integral (39) where [a, b] = [0, m¢]. Note that for some values
of s it could happen that m; — M, < 0; in this case the inner integral does not give
any contribution to the final result and its evaluation has to be avoided.

Disjoint elements (g; Ne; = ()

Having indicated with (x! ,,2% ,), (x!,2?) the end-points of e¢; and with

(é}_h 5_72_1), (é} 572) the end-points of ¢;, the distance between the source and the field
points can be written as

= [[a+bs—cz]2+[d+es—fz]2]l/2,

where

1_ gl I_d
W X szj Sj-1

2l; 2l
a2 — g &-&,
d= 90%_1 ]2*1 €= ! le =1 ) f = 2l]7 .
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The double integration domain is the intersection between the rectangle
[0,2;] x [0,2[;] and the 2D domain:

(40) < Ay & [a—i—bs—cz]2+[d+es—fz]2<A,zlk,
where the Heaviside function is not trivial. Using the relations
B+ =1, E+fP=1,

with a straightforward calculation, we obtain that the inequality (40) is satisfied if
and only if

A2, — ((bf — ce)s + af — cd)*> 0,
that implies restriction on the outer variable of integration s when bf — ce # 0; more
precisely:

. B  —y, — (af — cd) M — (af —cd)
if bf —ce>0 m = o — ce <s< o — ce =

. e — (af — cd) — i, — (af —cd)
if bf —ce<0 m = o —ce <s< o — ce =

M,

M.

Under these restrictions, the inequality (40) will be satisfied for
7l <z<zy,

where

(41) 2y = (ac+df)+ (be+ef)s 7 \[ £, — ((Of — cors +af — cd)’.
Therefore, having set

M, = max (0, m), my = min 21;, M),

M, = max (0,z9), my = min (21}, 25),

double integral (31) in this case becomes

my mg

(42) J W9 (s) J Sr,ty, t) " (2) dz ds .

Ml Ms

The numerical quadrature in the outer variable of integration s has been optimally
performed subdividing, when necessary, the outer interval of integration. In fact, the
derivative with respect to s of the outer integrand function, after the inner in-
tegration, presents a jump in correspondence to possible subdivision points to be
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searched among the solutions of the equations
Z; =0, 2y = 2l;,

formally given by

81,2:ﬁ1$ \/Aizlk+)bl7 8;12:ﬂ2$ \/iZ_A%,k7

with:

By = —(ab + de), Jq = (ab + de)* — a® — d2,
Bo = 2li(be + ef ) — (ab +de),  Jp = a®+ d% — 2i(ac + df — 21)).

When one or more of these solutions are real and belong to the outer interval of
integration, (42) will be decomposed into the sum of double integrals of the form

b My
(43) j@;z»(s) j SOr, b, t) W7 (2) dz ds
M

a

where [a,b] C [My,m;]. Without this subdivision, one should use a lot of
quadrature nodes for the outer numerical integration in order to achieve the
single precision accuracy. Of course, when no subdivision is needed, we will have
to deal with only one double integral (43) where [a,b] = [M1,m1]. Note that for
some values of s it could happen that ms; — M; < 0: in this case the inner in-
tegral does not give any contribution to the final result and its evaluation has to
be avoided.

4 - Basic quadrature rules

A quadrature formula widely used to generate Galerkin matrix elements is a rule
introduced in [31], that efficiently integrates functions with weak singularities at the
end-points of the integration interval. In fact classical Gauss-Legendre formula

1
(44) | r@as = >~ ns0 + Ru)
1 k=1

is very accurate for regular integrands, but looses its efficiency in presence of mild
singularities of the integrand functions. Indeed, given any f € C™[ — 1,+1] we
have, for example, R,,(f) = o(1) when m = 0 and R, (f) = O(n~™) otherwise. We
will however show that, using very elementary tools, with this rule we can also easily
handle several other cases where the function f(x) is not smooth at all.
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1
Now, let us consider an integral of the form f f(s)ds where f(s) presents weak

0
singularities at the end-points of the integration interval. If we introduce a change of
variable s = ¢(s) mapping (0, 1) onto itself, with ¢'(s) > 0, we obtain

1 1 1
(45) Jf(s)ds - Jf((p(§))(p’(§)d§ _ JF(&)dé.
0 0 0
Further if
(46) P =0, p’1)=0, i=1,....p-1, j=1..,¢-1

we can make function F'(s) in (45) as smooth as we like, simply choosing integers p, ¢
sufficiently large, and then we can use for the last integral in (45) the Gauss-
Legendre rule. In the following we will consider the transformation proposed in [31]

S
Jup’l(l —w'du,  p.g>1
0

-~ (@+q-1)
(47) 78 = —Dilg =1

Integral in (47), with n = LMJ , can be efficiently evaluated by a n—points Gauss-

Legendre formulaZ Then, if we apply the n-point Gauss-Legendre rule to the final
form of (45) we obtain

1
(48) | r@rde =3 2iso@pne ) + R,
1 =1

For this formula, with p = 1, we have the following convergence result (see [32]).

Theorem 4.1. If f(x) = 1 — x)"log (1 — x), with m € N, then we have
(49) R,(F) = O(,},LZq(erl) IOg' n).

This smoothing procedure has been actually generalized to integrals (44) with
f(x) having also a fixed number of internal weak singularities (see [31]).

In the following section, we will use certain product quadrature rules of inter-
polatory type, based on the zeros of Legendre polynomials. They are of the form

1

(50) | sw.arwar =Y wra + Rasip,
k=1

-1

% Here and in the sequel || denotes the greatest integer less then or equal to x, while [z]
denotes the smallest integer greater then or equal to x.
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and are obtained by replacing f(x) by its Lagrange polynomial, of degree n — 1,
associated with the zeros {wx;} of the Legendre polynomial P, (x), of degree n [36].
For the coefficients {wy} the following expression can be easily derived [14]

n—1

1 .
(51) wey) =5 % ; (@i + D (y)Piacy,)

where {43} denote the classical Christoffel numbers associated with the n-point
Gauss-Legendre formula (44) and P;(x) is the 7 — th degree Legendre polynomial,
and ;(y) is the so-called modified moment of the kernel S(y, x)

1

(52) 13y = J S(y, »)Pi(x) de.

-1

Therule (50) has degree of exactness n — 1,1.e.it is exact whenever f(x) is a polynomial
of degree n — 1. Expression (51) reduces the evaluation of wy(y) to the knowledge of
modified moments recurrence relationships which stem from the well-known three-
term recurrence satisfied by Legendre polynomials [36]. The kernels S(y,x) of
interest in this paper are: In(|x —a, | ), In[(x — OL?,)2 + b;], with b, # 0, rational
function containing factors of the type (x — a,), divisors of the type (x — a,) and
[(x — be)z + b;]. For these kernels, recurrence relations giving (52) are shown in [3].

The next rule we need to consider is

1
(53) {é 1) g = wiFO) + > wif (s + RGE(f)
s 8 =1
1+ a Ak -
GR _ GR _ _ GR _ GR
i == wy, = o5, k=1,...,n, w; ——;wk ,

where {s¢%} denote the Legendre zeros {w)} mapped on the interval (0,1) and the
integral is defined in the finite-part sense (see [30]). This rule is obtained by re-
placing f(x) by its n — th degree interpolation polynomial associated with the nodes
{0,s1,...,8,}. [tis a Gauss-Radau type quadrature formula, i.e. it is exact whenever
f(x) is a polynomial of degree < 2n and has the convergence property stated in the
next theorem proved in [30].

Theorem 4.2. Let be H, the space of Holder continuous functions of order 1,
if f(x) € CP[0,1],p > 1, with fP € H,[0,1], for some 0<u < 1. Then

ROE(f) = 0P+,
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5 - Numerical integration schemes

Looking at (25), (27) and (29), we will have here to consider, up to suitable con-
stants, the numerical treatment of kernels of the type

Y

r-ng |/ r-ny)(r-n ny - N \/Az —r*
(54) log 7, = g A%Lk — 72 { ( xiz( 2) - x2 3 } h;cz
which present weak, Cauchy type and hyper singularities respectively when » — 0.
Hence these types of singularities arise in the double integration over coincident or
adjacent boundary elements, while they haven’t to be considered on a couple of
disjoint elements.

Before going into the details of numerical quadrature schemes we have used to
integrate these kernels, we observe that in (25) and (29) there is also another function,
i.e. log (4, + \/A%k — 12) which of course is not singular for » — 0; nevertheless the
inner numerical integration of this function has to be performed carefully even on
couples of disjoint elements, when the boundary of the 2D region r < 4y, where the
Heaviside function is not trivial, is contained in the rectangle [0,2;] x [0, 2[;].

The problem we have to deal with is due to the presence of the square root

function |/ 42, — 2. We will illustrate this issue for the case of the double integration
over a couple of coincident elements e; = e; of length 2;, where r = |s — z| in the local

variables of integration s,z € (0,2l;). The argument of /A%, — |s — z|2 is always

positive but it can assume very small values and in the limit for the argument tending
to zero the derivative of the square root with respect to the inner variable of in-
tegration z becomes unbounded. This behavior happens along the oblique bound-
ary of the double integration domain, as shown in Figure 1 for 4, = 0.05, 0.025,
and produces a bad performance, for instance, even in the inner numerical
integration of

2l; mg
(55) J Jlog(dhm \ A — |s — 2*) deds,
0 M,

with a classical Gauss-Legendre quadrature formula, in the sense that one should
use a lot of quadrature nodes to achieve the single precision accuracy. To overcome
this difficulty, we have considered, for the inner integration, the regularization
procedure (45), which suitably pushes the Gaussian nodes towards the endpoints of
the interval [M;, ms] and modifies the Gaussian weights in order to regularize in-
tegrand functions with mild boundary singularities. The outer integral in (55) is
performed with a classical Gauss-Legendre rule.
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=0.15 .
A 4,,=0.05

[ = Gaussian Integration || [—e Gaussian Integration 1
; | --== Regularization Technique _:p=q=2} |

2 4 8 16 32 64 128 256
number of nodes for inner integration number of nodes for inner integration

Fig. 5. Comparison between computational costs of Gaussian Quadrature and Regularization
Procedure for the inner numerical integration of (55).

In Figure 5, we show the computational cost of the Gaussian quadrature formula
and of the regularization procedure just explained in relation to the achievement of
the single precision accuracy (horizontal line) in the evaluation of the double integral
(565) for 21; = 0.1 and 4y, = 0.15,0.05 (results for 4;;, = 0.025 are similar to those for
A = 0.05 and they have not been reported). The outer integral has been numeri-
cally evaluated with 8-nodes classical Gauss-Legendre formula, recalling that for
Ap, = 0.15 the outer integration interval does not need a subdivision while for
A = 0.05 the outer interval has been divided in two subintervals, and taking into
account the numerical analysis presented in Table 1. To conclude, when the
boundary of the 2D region » < 4, where the Heaviside function is not trivial, is
contained in the rectangle [0,2[;] x [0, 2/;], we will have to treat hypersingularities,
on coincident and consecutive elements, together with the mild singularities related

to the presence of the function /A7, — 2.

Case I: log r kernel

Coincident boundary elements

We have to numerically evaluate
b My
(56) Jwggfi)(s) J log |z — 5| %) (2) dz ds
a M,
Outer integral: since the inner integral, as a function of the variable s, is analytic

everywhere except at s = a, b, where it has mild singularities, we compute the outer
integral by the regularization procedure (45);
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Inner integral: is evaluated by the corresponding (d; + 1)-point product rule (50)
for logarithmic kernel.

Table 2 reports the relative errors in the numerical evaluation of integral (32)
with 2]; = 0.1, d; = 0 (constant functions), 4t = 0.025,0.05,0.15 and varying para-
meters p and ¢ of the regularization procedure (45) for the outer integration; the
inner integration has been performed with 1 node.

Table 2. Relative errors in the numerical evaluation of integral (32) for different
values of parameters p, q in the outer integration.

At n. nodes p=q=1 p=q=2 p=qg=3

0.025 4 3.8963 - 1075 25899 -10°° 4.1954 -1074
8 2.9342-10°° 8.8273-1078 2.8553 1078
16 2.0422 - 1077 —— ——

0.05 4 1.0397-10~* 6.9113-107° 1.1195-10°6
8 7.8300- 1076 2.3555 - 1077 7.6194-10°8
16 5.4497-107" - ——

0.15 4 3.4143-1071 2.2695 - 101 3.6764 1073
8 2.5712-107° 771354 - 1077 2.5021-1077
16 1.7896 - 105 —— ——
32 1.1852-1077

Consecutive aligned boundary elements (¢; = ¢;41)

We have to numerically evaluate

My

W (s) J log |z + 5| %) dz ds.
0

(67)

R —

eifa =0

Outer integral: regularization procedure (45);

Inmer integral: (d; + 1)-point product rule (50) for logarithmic kernel;
e otherwise

Outer integral: Gauss-Legendre rule;
Inner integral: Gauss-Legendre rule.
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In Table 3 we present the relative errors in the numerical evaluation of the integral
(35) with 2[; =0.1, 2l; =0.15, polynomial functions of degree d;=d;=0,
At = 0.05,0.12,0.20,0.26 and varying parameters p and ¢ of the regularization pro-

cedure (45) for the outer integration; the inner integration has been performed with 1
node. Note that for At = 0.2we break in two subintervals the outer integration interval.

Table 3.

of parameters p, q in the outer integration.

Relative errors in the numerical evaluation of integral (35) for different values

At n. nodes p=gq=1 p=q=2 p=qg=3

0.05 4 3.7141-10* 2.4688 - 104 3.9992 - 1073
8 2.7969 - 105 8.4144 -10~7 2.7217-1077
16 1.9467 - 1076 3.5509 - 10~ ——
32 1.2892 - 1077 ——

0.12 4 3.5223-10~* 2.3413-10~* 3.7927-1073
8 2.6525 - 105 7.9799 -10~7 2.5812-10~7
16 1.8461 -10°6 3.3676 - 10~ ——
32 1.2226 - 1077 ——

0.20 4 5.2266 - 10° 2.9853-10°° 7.2134-104
8 3.9358 .10 1.1828 - 107 6.4862 - 108
16 2.7393 - 107 —_ -

0.26 4 1.9692 - 10~ 1.6627-10~* 1.3194-103
8 1.4829 - 107> 4.4629 - 107 8.8858 - 1078
16 1.0321-10°° —— ——
32 6.8355 - 108

Consecutive not aligned boundary elements (¢; = ¢;11)
Having set a; = —s cos w and b; = s sin @, we have to numerically evaluate

(58)

DO| =

b

jws;;%f><s> J log[(z — a,)? + 2]

a

eifa=0and M; =0

Outer integral: regularization procedure (45);
Inner integral: (d; + 1)-point product rule (50) for logarithmic kernel;

e otherwise

ms

M;

Outer integral: Gauss-Legendre rule;
Inner integral: Gauss-Legendre rule.

% (2) dzds .
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Table 4. Relative errors in the numerical evaluation of integral (68) with different
values of the angle o and varying parameters p and q in the outer integration.

(&) Vil n. nodes p=gq=1 p=q=2 p=q=3
n/4 0.08 4 7.9010 - 1075 6.1641-1075 7.4587-1074
8 5.9409 - 10-° 1.6886 - 107 8.3889- 1078
16 4.0423-1077 — —
n/2 0.05 4 1.7935 - 1073 25718 -107° 2.0949 - 1073
8 2.6073 -10°* 1.0739 - 1079 3.4341-1077
16 3.5439-10°° —— ——
32 4.6304 -10°°
64 5.9213 - 1077
/2 0.12 4 5.2240-10°8 3.0974 -107° 2.9088 - 104
8 —— 1.2340 - 10710 8.4666 - 1078
5n/8 0.095 4 4.3607 -10°° 3.9587-107° 4.8712-107*
8 1.8580 - 1077 3.1168 - 1078 2.4127-10°7

In Table 4 we present the relative errors in the numerical evaluation of integral
(68) with 21; = 2[; = 0.1, polynomial functions of degree d; = d; = 0, different values
of time step 4t, angle w = n/4, /2, 57/8 and varying the parameters p, ¢ of the
regularization procedure (45) for the outer integration.

Case II: \/A%Lk — 12 kernel

Note that, due to the presence of the scalar product r - ng, the coincident and

consecutive aligned elements cases have not to be considered.

Consecutive not aligned boundary elements (¢; = ¢;;1)

Having set a; = —s cos w and b; = s sin w, we have to numerically evaluate

ms

b
59 | §;'f><s>j(z e N

Two subcases arise:

(2 — as) + b2) 0 (2) dz ds .

i) the boundary of the 2D region <4, is not contained in the rectangle
[a,b] x [My,m], i.e. My = 0,m, = 2I;

eifa=0
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Outer integral: regularization procedure (45);
Inner integral: product rule (50) for [(z — as)2 + bg]f1 kernel;

e otherwise

Outer integral: Gauss-Legendre rule;
Inner integral: Gauss-Legendre rule.

ii) the boundary of the 2D region r < 4y, is contained in the rectangle [a, b] x [M, m]

e if @ = 0 and M, = 0 we rewrite the double integral (59) in the form:

3

R~ (@ - 0+ ) @) — dyl 0) — iy (0)2

(z — ag)’ + b2

b
7=~ Jbs W% (s) dzds
0

My

bs W%(s) J _ dzds

~ (d))
— Ay Wy, (0)
e o , (z —ay)® + b2

ms

_
(z — as)® + b2

b
A ®(0) Jbs W9 () J
0

0

dzds =:71+Zy+Z3.

In particular, to evaluate Z; we use:

Outer integral: Gauss-Legendre rule;
Inner integral: regularization procedure (45), because of the square root mild sin-
gularity.

For T, after a simple analytical inner integration we have:

ms — Qs
by

2,
To = —Au 71)521"')(0) J W' (s) [arctan ( )+ arctan(%)] ds
S
0

and we use a Gauss-Legendre rule.
For Z3, after an analytical inner integration we have:

2,
T3 = —dy ﬁ);ﬁd-")(O) J W (s) ag [arctan (

m

My — Qg

bs

)+ arctan(%)] ds
0 S
2,

e 0) j % [log (omy — 0, + 1)~ log (a? + B ds

m

0
= I} + T2
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For the numerical evaluation of 7} we use a Gauss-Legendre formula, while for 7% we
use regularization procedure (45), because of the logarithmic mild singularities.

e otherwise

the singularity point is not contained in the domain of integration, hence for the
numerical evaluation of (59) we proceed as follows:

Outer integral: Gauss-Legendre rule;
Inner integral: regularization procedure (45), because of the square root mild sin-
gularity.

Table 5. Relative errors w.r.t. the integral value I, evaluated with Mathematica.

n. nodes n. nodes p=1¢g=1 p=1,q9g=2 p=1q9¢=3
(n) (m)

4 4 7.9857 - 1073 9.5113 - 103 9.3910- 103

8 9.1143 - 1073 9.3177 - 1073 9.3178-1073

16 9.2897 - 1073 9.3177 - 1073 9.3177-1073

8 4 43570 -107° 1.5686 - 1073 1.4399 -1073

8 1.1713-1073 1.3747-1073 1.3748 - 1073

16 1.3467-1073 1.3745-1073 1.3747-1073

16 4 1.1435-10°3 3.8142-1074 2.5237-1074

8 1.5780 - 10~° 1.8757-10~* 1.8762 - 1074

16 1.5953 - 10~ 1.8757-107* 1.8757-1074

32 4 1.3066 - 1073 2.1839-10~* 8.9323-10°°

8 1.7881-10* 2.4538 -107° 2.4592 -107°

16 3.4971-1076 2.4533 -107° 2.4534 -107°

32 2.0857-106 2.4530 - 107° 2.4533-107°

64 4 1.3066 - 1073 1.9699 - 104 6.7929 - 10~°

8 2.0021 - 1074 3.1456 - 10~¢ 3.1988-10°¢

16 2.4890 - 10~° 3.1401- 1076 3.1409 - 106

32 5.3597 - 107 3.1399 - 106 3.1406 - 106

Tables 5 and 6 report the relative errors obtained in the numerical eva-
luation of integrals 7, Zp, T3 with 2I; =2l; = 0.1, 4, = 0.05, = n/2 and in-
terpolation polynomials with local degree d; = 0, d; = 1, respectively. For 7, the
integration has been performed with n x m nodes Gauss-Legendre rule and
varying the parameters p, ¢ of the regularization procedure (45) for the outer
integral.
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Table 6. Relative error w.r.t. the integral value I, and the integral value Is evaluated

with Mathematica. The symbol —— means that the single precision accuracy has been
achieved.
n. nodes Zs I3
p=q=1 p=q=2 p=q=3

4 1.6361-1073 2.5968 - 1073 1.7261-1073  2.7960 - 102
8 2.3865 - 1074 1.9568 - 10~* 6.0198-107%  2.0397 .10~
16 3.2469 - 10~° 1.8747-107° 1.6171-10°7  1.3719-1077
32 4.2433-107% 1.0382 - 1076 —— ——
64 5.4266 - 1077 1.9494 - 1077

. . . \/A2 — 72
Case III: [(r “";Z(r no) _ Nx “ﬂ h:Z

3 kernel

Coincident boundary elements (e; = ¢;)

Note that in this configuration r-ny =r-n: =0, ny -ng =1 and we have to
numerically evaluate

b my 2
A A5 — 12
(60) T= —ljojédi)(s) J VY ") deds.

2 & — s
a

S
Two subcases arise:

i) the boundary of the 2D region <4y, is not contained in the rectangle
[a,b] x [Mg,mg],i.e. Mgy = 0, mg = 2l;.
We rewrite double integral (60) as follows:

b 2l; [ 2 ~(d) - (d))
_ 1 A — |2 — s|"wy, " (2) — Ay, (S)
T =— J w%’)(s) J e | [ ! d
a

zds

|z — s 2|z — s

b 2l;

A o 1
-5 e | g e =ht T
-

a

For the numeriecal evaluation of Z; we use:

Outer integral: regularization procedure (45);
Inner integral: product rule (50) for |z — s|71 kernel, to treat the strong singularity
(here we recall that the square root mild singularity is non present).
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For Z,, after an analytical inner integration we have:

b
_ (s) I S
To = 2 J (s)wy,’ (s) — 2l . ds=I5+75.

T % and I% can be evaluated with the [(d; + d;)/2] points HFP quadrature rule (53) if
respectively b = 2[;, a = 0, otherwise with the Gauss-Legendre formula.

ii) the boundary of the 2D region r<4,, is contained in the rectangle
[0/7 b] X [Ms7ms]-
In this case, we have to rewrite the double integral (60) as:

b s ~ ~
2 [y [ VA= 12— sPB@ — 4uin” ) — duthy” 6z — )
=— |w,,”(s) > 2 ds
o i |z — s|
y b M
Tk J (d)(s)w(d)(s) J dz ds
2 2 — s
a S
y b My
_% J W9 (s) ) (s) J ﬁolzols_ Iy +Ts+7Ts.
a

For the numerical evaluation of Z; we use:

Outer integral: Gauss-Legendre rule;
Inner integral: regularization procedure (45), to treat the square root mild singu-
larity alone (the hypersingularity has been completely removed).

Table 7 shows the relative errors in the evaluating the integral Z; referred to
the discretization parameters 2[; = 0.1, 4;; = 0.05, d; = d; = 1 and varying the

Table 7. Relative errors w.r.t. the integral value I, evaluated with Mathematica.

n. of nodes p=q=1 p=q=2 p=q=3
4 1.4476 - 1073 1.9274 - 104 8.0499 - 104
8 2.0551 - 104 2.5891 - 106 1.3695-10°
16 2.7796 - 10~° 1.2145-1077 1.2213-10°7

32 3.6601 - 106 —— ——
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parameters p and ¢ for the inner integration. The outer integration has been
performed with 16-nodes Gauss-Legendre rule. For Z,, after an analytical inner
integration we have:

b
Ank ~ (d:) ~ (d;) 1 1 1 2
Ty = — 1 i . - =75+ 17,.
2 5 me (s)w (S)s—ms P ds =T+ 15
T % and Z % can be evaluated with the [(d; + d;)/2] points HFP quadrature rule (53) if,
respectively, ms = 2l; and b = 2[;, M; =0 and a = 0, otherwise with the Gauss-
Legendre formula. For 73, after an analytical inner integration we have:

b

A4 1d;
I3= —% J ng,‘fi)(s)ivéd’)(s)[log |ms — s| —log M — s||ds =: T3 +T5.

a

If mg=2l;and b=2[;, T é can be evaluated with the regularization procedure (45),
because of the logarithmic singularities, otherwise with the Gauss-Legendre for-
mula. Analogously, if M; = 0 and a = 0 for the integral Z.

Consecutive aligned boundary elements (¢; = ¢;,1)

Note that in this configuration r - ny =r - ng= 0, ny - n; = 1 and the singularity
point is only in ¢; N g;,

b My 2 2
\ A — (2 +8) _
(61) 7= —%J@%i)(s) J VI T 5B ) deds.
0

w,
(Z + S)z n
a

Two subcases arise:

i) the boundary of the 2D region <4y, is not contained in the rectangle
[a,b] x [0,m], i.e. m; = 2I;

o if b = 2[;, we rewrite double integral (61) as follows:

2 2; L L
T 1 J 0 (s) f 1\~ G+ S (2) — Ay iy (0) o
=5 | WS zds
2) " (z+s) z+s)
0 0
y 21; ms )
B L AC (i) _.
D) wy,”"(0) J Wy, (s) l P 3)2 dzds =71+ 7.
a

For the numeriecal evaluation of Z; we use:
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Outer integral: regularization procedure (45);
Inner integral: product rule (50) for (z + $) ! kernel.

For Z,, after an analytical inner integration we have:

l,
A - o 1
T, = _ A @) J W(s) [S

- ]@:£+ﬁ

+2i;
a

7} can be evaluated with the [d;/2] points HFP quadrature rule (53) and 73 with the
Gauss-Legendre rule.

e Otherwise, i.e when the singularity point is not contained in the integration do-
main, for the numerical evaluation of (61) we can proceed as follows:

Outer integral: Gauss-Legendre rule;

Inner integral: Gauss-Legendre rule.

ii) the boundary of the 2D region r < 4, is contained in the rectangle [a, b] x [0, m;]

e if b = 2[;, we have to rewrite the double integral (61) as:

21; My —(d: N
T e [V A= G970 @) — Ay 0) — Ay, (O)2
IZ=—|w,’(s) 5 dzds
' 2(z + s)
a 0
2li mg
Ak @ J - () J
70) | w,y,”(s) dzds

2 ) , (2 +5)?
A 2l; Mg

Ik ~/(d)(0) J ~r(,zi)(8) J i 5 deds =:T1+1Zs+13.

2 ! (+s)

For the numerical evaluation of Z; we use:

Outer integral: Gauss-Legendre rule;
Inner integral: regularization procedure (45), because of the square root mild sin-
gularity.

For Z,, after an analytical inner integration we have:

]%:Q+ﬁ

s + my

_ e o Jj ey | L
Tz =—— wa () | W, ()|

7} can be evaluated with the [d;/2] points HFP quadrature rule (53) and Z3 with the
Gauss-Legendre rule.



178 A. AIMI, M. DILIGENTI and C. GUARDASONI [32]

For Z3, after an analytical inner integration we have:

Ig=— ® _log(—ay)l|ds

ne #90) Jﬁ(d)( ){(ms — ay)log (ms — ag) —m

2 Mg — Qg
a

=T} 4+ 12

For the numerical evaluation of Z} we use the Gauss-Legendre formula, while for
72 we can use the regularization procedure (45), because of the logarithmic mild
singularity.

e Otherwise, i.e. when the singularity point is not contained in the domain of in-
tegration, for the numerical evaluation of (61) we can proceed as follows:

Outer integral: Gauss-Legendre rule;
Inner integral: regularization procedure (45), because of the square root mild sin-

gularity.

Consecutive not aligned boundary elements (¢; = e;,1)

Having set a; = —s cos w and b; = s sin w, we have to evaluate

)wj COS(/O\/AI'LIC (z_as) + ) ~(d)

b
7= J w'%(s "(2) dzds
J o (z — a,)’ + b2
(62) toa By~ (2 — 0, +02)
—qu;gﬂ(s) (bszsina))\/ T gbz) W7 (2) dads
a M, s + $
=11+

Here, we will treat only the double integral Z», the integral Z; being evaluated in a
similar way.
For the evaluation of Z5 the standard two subcases arise:

i) the boundary of the 2D region r <4y, is not contained in the rectangle [a,b]
x [My,ms), i.e. My = 0, mg = 2;.

o If b = 2[;, we rewrite double integral Z, as

2li 2lj

b, sin w
Ty =— mdﬁs)J—z*’
? J ( RCETS T

[ WP @ By — (& — 4 + 02) — 2 (0) — 4, ()2 | deds
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2l; 2l; b si
~ (d;) ~ (d;) 20g SIn
— Ay Wy, (0) J w5 (s) J— dz ds
" ") (2 — ag)? + b2
a 0
2L 2l; 2 o
— At (0) J W9 (s) J _ EIND  Geds = T + 12+ 13

) (- asf + b2

For the numerical evaluation of 7} we use:

Outer integral: regularization procedure (45);
Inner integral: product rule (50) for z [(z — OLS)2 + bz]’1 kernel.
For 7%, after an analytical inner integration we have:
73 =~ dusinwis ) | {6 1f2L,9 - £0,9)]ds.

a

with

1 |za— (a2 +05) 2 — ag
(63) fz,8) = 0. [m — atan (w) atan (b—sﬂ ,

that can be evaluated with the HFP quadrature rule (53).
For Z g, after an analytical inner integration we have:

21;
T3 = — Ay sin wiv, 7 (0) J W) f L, 5) — £(0,8)ds ,

a

with

_ 2., _ «in2 _
(64) f(z,s):bS( as + z(cos“w — sin co))_} tan(z as)’

a
2sin’m (2 — as)* + b2) 2

that can be evaluated with the Gauss-Legendre formula.

179

e Otherwise, i.e when the singularity point is not contained in the integration domain,

for the numerical evaluation of Z, we can proceed as follows:

Outer integral: Gauss-Legendre rule;
Inner integral: Gauss-Legendre rule.

ii) the boundary of the 2D region r < 4, is contained in the rectangle [a, b] x [M, m].

o If b = 2[; and M = 0, we have to rewrite the double integral 7, in the form
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21;

" bszsinw
65) Ip=-— |w® J—
S J G ar ey

W@ £y — (- a )+ )

2 ~ (d;)
— Apin(0) — Ahkw;gd)(O)z—%(N”(d)(O)A _ o (0)> deds

A,

2l; My

_ () ) zbg sinw
+ i w (O)wa‘(s)J—
hke Wn ) n ) ((z — as)Z er?)z

2[; Mg
2b, sin w
) J W9(s) J OSSO s
ST e a0

~ (d;)

//(d)(O)A U)Z (O)] J ~(d)( ) T sz sin w

— Ay o ush
(2 — a)* + b2

= I3+ I5+Is+13.
For the numerical evaluation of Z} we use:

Outer integral: Gauss-Legendre formula;
Inner integral: regularization procedure (45), because of the square root mild sin-

gularity.
For 73, after an analytical inner integration we have:

2l;
73 =~ dusin o ) | 460, ~£0,91ds
a
with f(z, s) given in (63), that can be evaluated with the HFP quadrature rule (53).

For 73, after an analytical inner integration we have:
T3 = — Ay sinw @ (0) j () [f(my, 5) — £(0, 5)lds
a
with f(z) given in (64), that can be evaluated with the Gauss-Legendre rule.

For 73, after an analytical inner integration we have:

2l;

74 = — [, 04, — i 0) qu;?(s)(bs sin ) [f(ms, 5) = f(0,9)lds

a
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Table 8. Relative error w.r.t. the integral value T} evaluated with Mathematica.

n. of nodes p=q=1 p=qg=2 p=qg=3
8 1.0515 - 1073 1.8047 - 1073 2.6107-1073
16 3.9256 - 107° 3.4677-107° 1.9690 - 10~°
32 2.0713-10°¢ 2.8574-1077 2.7491 - 1078

Table 9. Relative errorw.r.t. the integral values I3, T3, T3 evaluated with Mathematica.

n. of nodes 73 T3 T,
2 1.2324 10715 3.4275-107°
4 — 1.1839-10°°
8 3.0919 - 106 4.8014-10~4
16 — 3.3186- 1075
32 2.1933-10°6
with

(cos3w + 3 sin’w cos w) (z - as>
atan

3 bs

£z 8) = log (2 — a)? + 1) — ,
2 2sin’w

at — b} — za® — 3za,b?
20%((z — ay)’ + b2)

that can be evaluated with the Gauss-Legendre rule.

Tables 8-9 are referred to the calculation of the integral 7 as sum of the four
integrals I;, Ig, Ig, I‘z1 (see (66)), with o =n/2, 2l; =2l; =0.1, 4, =0.05. In
particular Table 8 presents the relative errors in the numerical evaluation of I%
varying parameters p and ¢ of the regularization procedure (45) for the inner
integration; the outer integration has been performed with 16-nodes classical
Gaussian rule.

e Otherwise, i.e. the singularity point is not contained in the domain of integration,
for the numerical evaluation of Z we can proceed as follows:

Outer integral: Gauss-Legendre rule;
Inner integral: regularization procedure (45), because of the square root mild sin-
gularity.
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EEERIRIEEREERE: l—L s

Ll | T c

(9] L=1

DL'1

A
= : _n_o_o_t_
u=0

Fig. 6. Domain and mixed boundary conditions for the first test problem.

6 - Numerical results

To validate the presented discretization approach, we consider a standard
benchmark (see for instance [16]), involving a strip Q of unit height, unbounded in
horizontal direction, fixed in the inferior part where the Dirichlet boundary datum
u = 0 is assigned, and subject to a uniform traction p = H[t] in its superior part, as
shown in Figure 6. A finite portion of the strip is taken into account, in such a way that
vertical dimension of the resulting rectangle is five times the other one. On the “cut”
sides of the domain the equilibrium condition p = 0 has been assigned. In order to
apply energetic Galerkin BEM, we have introduced on I” a uniform mesh with 48
elements (4x = 0.05) and we have used, in spatial variable, constant shape functions
for the approximation of p and linear shape functions for the approximation of %. The
time interval of analysis [0,10] has been discretized with different time steps. In
Figure 7 we show the recovered numerical solution obtained with A¢ = 0.035. In
particular time history of traction in the point A, p(A, ) is shown on the left, together

Fig. 7. Approximate solution p and » of the first test problem.
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A | A
p=H[t] - -o._____.. 1 1 .._'_.- ——a
i/ i .\‘\E /'
05 ¥ 4 N ¢ 1 0.5 I \*__
/ \ ' /
H »D € ¥
f \ | |
0 ' Q ; 2 { o + Q s
\ J
-05 05 . /i:
| \ ’
P
u=0 . P
- | -1t M, " p=HIM]
= |

15 -05 0 05 1 15 15 1 -05 0 05 1 15

Fig. 8. Domain and boundary conditions of the second (left) and of the third (right) simulation.

with the corresponding analytical solution, while displacement in the points B, C, D,
respectively w(B,t), u(C,t), u(D,t) are shown on the right: here the three curves
overlap with their respective analytical solutions. Note that the oscillations in the
graph of p(4,?) are due to the difficulty of approximating the jump discontinuities of
the analytical solution; anyway, the obtained numerical solution is substantially
better with respect to those found in literature, which present much more instability
(see e.g. [16]).

As second simulation, we consider a unitary disk, whose upper semi-circular
boundary is subject to the Neumann boundary datum p = H[t], while its lower semi-
circular boundary is fixed. Domain and mixed boundary conditions are shown in
Figure 8 on the left. For the discretization phase, we have approximated the boundary
I" introducing a uniform mesh with 24 straight elements and we have used, in spatial
variable, constant shape functions for the approximation of p and linear shape func-
tions for the approximation of «. The time interval of analysis [0, 10] has been dis-
cretized with different time steps. In Figure 9 the approximate solution obtained with
the energetic approach, fixing At = 0.2, is presented. In particular, on the left the time

oy [
B = |=pFR]

0 2 4 [ 8 10

Fig. 9. Approximate solution of the second simulation.
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1500, 5
4

1000+
3
2

500~
1
0 : Y

[1] 10 20 30 40 4] 10 20 30 40

t 1

Fig. 10. Approximate solutions of the interior (left) and exterior (right) problem on the
unitary circle with Neumann boundary conditions.

history p(E,t), p(F,t) of p on the elements £, F' is shown and one can note that while
the element £ near the Neumann boundary is immediately affected by the wave, the
solution on the element F is trivial till the time instant ¢ ~ 1.5. On the right the time
history of the solution # at nodes A, B, C, D is shown: of course, the nearer these nodes
are to Iy, which is fixed, the lower is the value of the corresponding solution.

At last we consider the same domain of the previous simulation, subject to pure
Neumann boundary conditions p = H[t] (see Figure 8 on the right). For the dis-
cretization phase, the boundary I” has been approximated introducing a decom-
position in 24 straight elements, equipped with linear shape functions. The time
interval of analysis [0, 12 7] has been discretized with 4¢ = 7/10. In Figure 10, on the
left, the time history of the approximate solution %#(A,t) in the point A of the mesh,
obtained with the energetic approach, is presented for this interior problem. For the
sake of completeness, the approximate solution u(A,t) of the exterior wave propa-
gation problem, defined in € = R?\ Q with the same Neumann boundary condi-
tions, obtained with the same discretization parameters, is shown on the right. This
latter is in perfect agreement with that one reported in [1].
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