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A quadrature method for Cauchy singular integral equations

with singular given functions

Abstract. Cauchy singular integral equations with index zero and with singular
given functions are investigated. In order to improve the smoothness properties of
the known functions, following [29] (see also [31]), a regularizing procedure is in-
troduced and a Cauchy singular integral equation with fixed singularities of Mellin
convolution type is obtained. Thus a quadrature method is proposed whose stability
and convergence is shown by means of numerical tests.
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1 - Introduction

In this paper we consider the Cauchy singular integral equation with index zero
1) D+K)f=yg

where ¢ is a given function on (—1,1), f is the unknown, D is the dominant
operator
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sin o % f(x) ),
i1 x—y
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2) (Df)(y) = cos maf (Y™ *(y) —
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and K is the perturbation operator

1
3) KF)) = 1 J k@, )f @r @)

-1

with u € R, k a known function and v*» *(x) = (1 — )*(1 + ) %, —1<a<1 a Jacobi
weight. The symbol § means that the integral has to be interpreted as the
Cauchy principal value.

The case when the right-hand side g and the kernel k are smooth functions was
extensively investigated and today there exists a wide literature about direct and
indirect numerical methods (see, for instance, [3], [4], [7], [9], [14], [16], [17], [18], [21],
[22], [23], [24] and more recently [8] ) to approximate the solution of (1) in suitable
weighted spaces.

In 1997 in [29] the generalized airfoil equation (i.e. equation (1) with o = 1/2) was
investigated in the case when the right-hand side has a jump in an inner point
—1<xy<1. There, the authors introduce a regularizing procedure to improve the
behavior of the given functions and obtain a Cauchy singular integral equation with a
smooth right-hand side and with a kernel which contains a Mellin convolution. Then
the authors prove the stability and the convergence of a Galerkin method based on
high-order polynomials. Moreover they also give numerical evidences which show
the stability and the convergence of a collocation method. Later in [31] the author
considers the same type of equation and proves the stability and the convergence of a
modified collocation method.

In this paper we consider an integral equation more general than that examined
in [29] and [31]. Indeed, we will investigate on equation (1) having known functions
with fixed singularities of algebraic type and with a generic —1<a <1, instead of
o = 1/2. More precisely, we will examine the case when the right-hand side and/or
the kernel w.r.t. the variable y (k,.(y)) are of the form

1 1
4 (y) = o k() = ——,
(4) 9y R W =T
or, more in general, may be decomposed as
91(¥) k1 (e, y)
5 ():7—"_ ()7 k(%, ): g+k(x7 )7
(5) 9ty Gty 92(y W=y ey

where g¢; and k; are smooth functions and A,¢ > —1. In other words we will assume
that the known functions have a fixed singularity in —1. However we remark that a
singularity at 1 can be treated in analogous way. In this situation the low smoothness
of the known functions gives a very poor theoretical order of convergence. Thus an
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alternative numerical approach is necessary to remove or to smooth the singularities
of the kernel and/or the right-hand side in order to approximate the solution of (1)
with a higher order.

In [29] the authors apply with success a regularizing technique to the parti-
cular case o = 1/2 and to the case of inner singularities. In this paper we use a
similar strategy to regularize the more general equation (1), whose known
functions have a fixed endpoint singularity. We will give theoretical results about
the boundedness of the involved operators and the smoothness properties of the
known functions in suitable weighted spaces and we will show promising nu-
merical results.

Then at first, following [29] (see also [31]), we will define a non linear transfor-
mation y, which is a continuous monotone function mapping [ — 1,1] onto [ — 1, 1],
depending on a parameter q arbitrarily chosen and having the first derivatives up to
¢ — 1 vanishing in —1. Subsequently, we will introduce a change of the variable
x = 7,(t) and y = y,(s) and we will multiply both sides by y’q. In this way the new given
functions become smooth but, as in [29], also here the regularization has a price: the
Cauchy singular integral equation

D+Kf=g

is transformed in a Cauchy integral equation with a fixed singularity of Mellin
convolution type

(6) D+Z+Ky=¢.

Indeed the new equation contains the operator

1
1+s 1 B
P — o, —0o
(7) (Zy)(s) J "(—1 - t) VOt
i.e. a noncompact operator in which the kernel has a fixed singularity at ¢ = —1.

At this point we will consider the new equation in suitable weighted spaces
equipped with the L? norm. We will prove that the new given functions are smoother
than the previous ones and we will give the boundedness of the involved operators by
assuming that the transformed unknown function belongs to a suitable weighted
space.

Then we will apply a quadrature method to the transformed equation and we will
show that the numerical results obtained by this procedure are better then those
obtained without the regularizing transformation, even if we have to handle with a
Mellin convolution operator. The numerical procedure consists to approximate the
operators D, 2 and K by means of a Gaussian quadrature rule and to collocate at
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suitable points. In this way a linear system is obtained and its unknowns allow us to
construct the approximate solution of (6). Once the numerical method is introduced,
the next step should be to prove its stability and convergence. Nevertheless the non
compactness of the operator 2 makes difficult the theoretical study of (6) by means of
standard techniques. This difficulty was emphasized in [5] where it was shown that,
in order to solve the simplest equation (I — K)f = g, there exist piecewise poly-
nomial collocation methods which converge when K is compact but which diverge
when K assumes the form (7). In 2002, in [19] the authors proposed a polynomial
collocation method based on Chebychev nodes of the second kind for Cauchy sin-
gular integral equations with fixed singularities and with non constant coefficients
and they proved the stability and convergence in weighted L? spaces under neces-
sary and sufficient conditions.

Here at the moment we are not able to prove a theorem of stability and con-
vergence for the proposed quadrature method. However the numerical experiments
seem to suggest that it is stable and convergent and stimulated by the higher pre-
cision of them, we will take the theoretical study of the considered problem in a
future work.

The paper is structured as follows. In Section 2 we describe the spaces of func-
tions in which we consider equation (6). In Section 3 we give the main results, in
Section 4 the numerical tests are shown and in Section 5 the proofs of the main re-
sults conclude the paper.

2 - Spaces of functions

Let v(x) := v"9(x) = (1 — 2)’(1 + x)°, 3,6 > —1 a Jacobi weight and we denote by
L%(A), A C[ —1,1] the set of all functions such that

1/2
1 lzzea) = <Jf2(x)v(x)dac) < 4 .

A
For the sake of the simplicity if A = [ — 1, 1] we will use the following notations
L3 =L - 11D, [Ifolly = [ g1

In order to introduce a subspace of L2 we define the main part modulus of
smoothness as (see, for instance, [25])

(8) pr(f Dy 1= sup ||A§L¢f HL%(I,“-)
0<h<t
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where ¢(x) = V1 — a2,
L@ =3 (~ 1) (; )f (x n (% —j) h(p(ﬁﬁ)) ,
=0

i€ N, and Ij; = [ — 1+ (2hi)*, 1 — (2hi)*].
Thus for a real number r > 0 and an integer ¢ > r we define the following norm

.sz (fv T)v,Z

/112, := Ilfollz + sup
>0 T

and introduce the following weighted Zygmund-type space
Zw)={f € L 1£1l7,) <00}

3 - Main Results

In order to give the main results let us first introduce some notations.
We will denote by {p,,(v?)} the system of polynomials with positive leading
coefficients orthonormal with respect to the Jacobi weight v/, Moreover we will

denote by 2" = x,ﬁ‘ﬂ the zeros of p,,(v”’) (ac’l”e <ac§”€ < ... <0’ and by

mk "

m p,0
im0 )
L =S lwf@), 10w = —Lmro
il * Py, 0r0 ") — )

the Lagrange polynomial based on the zeros of p,,(”?).

3.1 - Why a regularizing procedure

In [21] the authors revised in several aspects a quadrature method proposed in
[23] to solve equation (1).

The procedure consists in using a Gaussian quadrature rule to approximate Df
and Kf and collocate at suitable points. In particular, the zeros x}‘é‘f“ of p,,(v*~~%) are
chosen as quadrature nodes and the zeros 90];” of p,,,(v~**) are chosen as collocation
knots. In this way, denoting by A;** and 2~ the Christoffel numbers related to the
weight functions v*~* and v~**, respectively, and setting b; = /A ""g(x;”),
Vi =1,2,...,m, one has the following linear system

[ 4 —oo & o, —at sin 7ot —ooo,—0
(9) }Z ’ kz; )uk' {—W + k(%'l ’ ,%k' ):| N, = b»L
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whose unknowns 7, allow us to approximate the unknown solution f' of equation (1) by
means of the interpolating polynomial of degree m — 1

m

(10) @ =S &l @, & =—D
kz:; kY k ;{Z’_a

The authors prove the stability of the method, the well conditioning of system (9),
and under the assumptions

1
g€z, r> 5

1
Sup ||k(9€, ')HZr(v*"v") <00, sup ||k(a y)HZ,.(’DZ"“) <o 7> é
ol <1 lyl <1
prove that the approximate solution f;; tends to the exact one f* in L2, _, with an error
of the following type

* %7, 40— 0 C *
(11) ILf = F 20l < L 2, 0n

where C is a positive constant independent of /* and m.
Now if we assume that the kernel £ and the right hand side g are singular in —1,
for instance if we assume that

1
9@ = k(y) = —, 0<i<l
(1+y)
the numerical procedure still works in the sense that it is stable and convergent.
Nevertheless, since g, k,(y) € Zay— 1110~ *%), according to (11), we have

1 2(—A)+1 1
ILF — Ty = O (%) Ca<lia

Consequently if A ~ o the convergence estimate could be very poor.
The following example shows that the numerical results confirm our theoretical
expectations.

ExAMPLE 3.1. We consider the following integral equation

1
1 22 . sin(1 + y)
(12) DH@) + m[ B+ yfnt-feds = P

We solve system (9) and we construct 7 according to (10). By (11) we have that the

m
approximate solution f,;, converges to the exact one f* with an error of the order



[7] A QUADRATURE METHOD FOR CAUCHY SINGULAR INTEGRAL EQUATIONS, ETC. 105

O(%) Table 1 shows the numerical results. We take as reference solution the

approximated one obtained with m = 600 and compute f,:(y) with y € (—1,1).

Table 1.

m S (—0.9) £,:(0.9)

16 0.1383751322128960 -0.1688096432661728
32 0.1357564274602711 -0.1740784457307186
64 0.1404195576847663 -0.1769422117588976
128 0.1414869626097728 -0.1765004042704331
256 0.1414788386196226 -0.1766499690881158
512 0.1416500039154950 -0.1767070774209447

The aim of this paper is to improve the smoothness properties of the given
functions in order to have the approximate solution with a satisfactory order of
convergence. To this end we will use a well known technique (see, for instance, [29],
[31]): introduce a regularizing procedure based on a smoothing transformation in
order to remove or smooth the singularities of the kernel and/or the right-hand side.

3.2 - A reqularizing procedure

We consider equation (1) with g and k as in (5). For the sake of the simplicity, but
without loss the generality, we assume g, = kg = 0. In other words we are examining
the following equation

1

u o )
(13) PO + 2 Jl b ) e~ =

In order to remove or smooth the singularity of the right-hand side and of the

kernel at y = —1, following an idea of [29] (see also [31]), we introduce a regularizing
procedure.

We consider the following one-to-one map Vg : [-1,1]—=[—-1,1]
7, =291 +17 -1, 1<geN

and we introduce the change of the variable x = yq(t) and y = yq(s) in (13).
Then, by observing that, for each Jacobi weight v*# it results

vy, ) = v OM* 1)
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with
o

L1+t
M“’/”(t):2(1’q)ﬁ(l+t)qﬁfﬁ Z( 5 >
=0

and by multiplying both sides of the new equation by y,(s) we have

1
sin
cos mo y(s)™ " (s) — % 74($) J

-1

w (i)

OEEE L

1
+ u J k(t, sy~ *()dt = ¢(s)

]
where

(14) w(s) = f QN7 (HM*~*(s)

is the new unknown function and

(15) #(s) = ¢ 20791 A + 5710135, (9))
and
(16) K(t,s) = q 207001 4 )17 Py (3,(8), 7,(5))

are the new known functions.
Now we rewrite the previous equation as

1
sin 7o 4; w(t)
v t—s
-1

cos 7o w(s)v*~*(s) —

v (t)dt

n 74 = 7,(8)  t—s

1

Fu J wlt, SOt = 4(s)
|

or equivalently as

(17) D+2+Ky=¢

L /
_ sinmo J { 74() ! }l//(t)v“'“(t)dt
4

[8]
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where D is the dominant operator defined in (2),

1
_ sinm V;(S) 1 -
(18) Ep)s) = —— J {yq O - S}u/(t)v (t)dt

-1

and

1
(19) K)s) = j Kt SAD (D)t
1

We immediately remark that, by choosing ¢ > the original singular

1 — max{e, 1}
given functions k and ¢ are transformed in two smooth functions x and ¢, respec-
tively. We also note that the regularizing procedure produces an additional term: the
operator 2.

About this operator we remark that being

e 1 _0<1+s> 1
YD =) t—s T\1+t)1+t

with
14224 (g1
14+z4...+201

o(z) =

it can be rewritten as

1

sin 7o 1+s\ 1 v
w)(s) = — . J 6(1 +t> 1 +ty/(t)v (t)dt.

-1

In other words 2 is an operator which has the peculiarity that its kernel contains a
Mellin convolution.

In definitive the regularizing procedure removes the singularity at ¥y = —1 but
the Cauchy singular integral equation
D+Kf=yg

is transformed in a Cauchy singular integral equation with a fixed singularity of
Mellin convolution type

D+2+Ky=2¢.
Moreover we mention that the regularizing technique maps

2 2
f € Lv"”“ - l// € Lyi-q(x—l)Jrl—Zw
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Thus, by assuming that the original equation is unisolvent in L2 _,, since
w € L2, o 1.1, We might study the regularizing equation in L2, ., by as-
suming that it is unisolvent in this space. Nevertheless, in order to have the
boundedness of the involved integral operator we need some additional assump-
tions on the parameters of the weight of the space. One of this is
q(oe — 1) + 1 — 20 > —1 which implies ¢ <2. And this is impossible being 1 <q € .
Then for this reason, from now on we assume that the solution /* of the original
equation exists and is unique in L2, , and, moreover, we assume that the solution
y of the regularized equation exists in L2, .. Its uniqueness follows by the uni-
queness of f* (see, for instance, Lemma 4.1 in [29]).

In the following proposition we show that the new given functions are smoother
than the original ones.

Proposition 3.1. Assume that

g1 € Z,(v*%)

(20) SUD [k, | oy <00, SUP Ry )] ey <.
lz]<1 lyl <1

Then if ¢ > m, the functions defined by (15) and (16) are such that
(21) ¢ € Z,(v*"), n=min{r,2(¢q — 1 —ql) + 1},
(22) sup [|x(, 8)| 7 n-n <00, I =min{r,2(q —1—qe) + 1},

Is|<1
(23) sup HK(t, ')Hzr(v—x,x) < 0.

[t|<1

To give an example let us consider the right-hand side of equation (12)
sin(1 + )

m IS Zl(v*%%). After the transformation it becomes
+Yy

9y) =

8(s) = 21701 + )3 Tsin@ U1 + 8)) € Zygs 1), 0 H).

The following result gives the properties of the operators involved in equation
an.

Proposition 3.2. Let D, 2 and K be the operators defined by (2), (18) and
(19), respectively with —1 <a<1. Then
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(@) D: L2, — L., is a linear bounded invertible operator such that

Dy

o, — 0o

s = llwv™ |,

and its inverse D : L2, — L2,_, defined as
1

(ﬁl//)(s) = cos moup(S)v™*(s) + Sir;m fi; ;//_i)sv“*‘“(t)dt,
21

18 a linear bounded operator.
(b) X: L%, — L2, is a linear bounded operator.

(¢) If 20) is satisfied, K : L2, — L2, is a compact operator.

o

3.3 - A quadrature method

In this subsection we propose a direct method to solve equation (17).
The numerical method consists in approximating the unknown solution y of (17)
by means of the polynomial of degree m — 1

(24) V@) = > a (@),
k=1

To this end we approximate the integrals 2 and K by means of the Gaussian rule
based on the zeros of p,,(v>~*). Hence, we define

m
) (G 6) = 3 7Kty ™)
k=1
(26) (Z,0)(s8) = i L 1+s \ we ™)
my/ = £ K 1+ xz,—a 1t xZ’_“

where /1;’7" denotes the k-th coefficient of the Gaussian rule.
At this point we project the equation

(D +2m + Icm)l//m = ¢

on the set of polynomials of degree at most m — 1 by means of the operator L, **.
Hence we consider the finite dimensional equation

LD+ Zp+ Ky, =L,""¢

or equivalently

(27) (D + L;lll,izm 4 L;loc.me)V/m _ L;ni’a¢
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in virtue of the well known property of the dominant operator (see, for instance, [30])
Dp,,(v"™%) = pp(v™*7).

Then by using the linear property of L%, by applying the Gaussian rule based on

m
the zeros of p,,,(v*~*) and taking into account that (see, for instance, [26, p. 448])

_ Sin7o o .,y W, (")
Dy, ) ") = — R s B
( l//m)( j ) T " (xlo; I xj oc,x)

k=1

we get the following linear system
o es [ | sinma 1 1+, 1
;;%06 20— [ _ _ J _ _
! kZ:; & n G —w I\ Tval ) Ta

R ocﬁ“)] me=\J5 e =12, m

(28)

)72

—o,0

where 7, = ar(A; )" =y, (x, )()v,i’f“)l/ % In this way we have proved the fol-

lowing result.

Proposition 3.3. Let y,, as in (24). Then it is solution of equation (27) if
and only if its coefficients are given by ay = r]k(i‘zﬁ“)’l/ 2
[y, 19 - - - o1, ]- 1S the solution of system (28).

where the vector

At this point the next steps should be to prove that

1 equation (27) has a unique solution and i.e. that there exists the inverse ope-
rator (D + L;@x’azm + Ly_n“‘“’cm)_l;

2 the operator (D + L, "%y, + L;;”‘ICm)*1 is uniformly bounded with respect to
m. This assures the stability of the method;

3 denoted by f* the unique solution of the original equation, it results
ILf = F ™|l — 0

where, according to (14),

. W (@)
2 LY =
(29) In®) v MG (y))’

with y,, defined in (24). This assures the convergence of the method.

Now in order to prove 1-3, because of the non compactness of the operator X, it is
not possible to use the same technique, employed in [21] and then it is necessary to
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proceed in a different way. At the moment we are not able to give this proof but the
numerical results seem to suggest the stability of the method. Moreover numerical
tests have shown that the approximate solution £ converges to a value which is the
exact one. This was observed by comparing £ with the approximate solution defined
in (10) f,» which converges to the exact solution f*, according to (11).

Moreover, if we compare the numerical results obtained by the regularizing
procedure with those we have without this technique, we can note that the former are
better, even if one has a kernel with a fixed singularity. Furthermore it seems that
the order of convergence increases as g does. Intuitively, it is possible to understand
this, because it was proved in several papers that regularizing procedures applied to
Fredholm integral equations (see, for instance, [28], [13]) and to equations with a
Mellin convolution type (see, for instance, [10], [27]) give a good order of convergence
which improves as ¢ increases.

Obviously it is natural the following question: can the regularizing parameter be
taken large as we want? At this point we cannot give a precise answer because the
error estimate is not known. Of course in this estimate will appear a constant which
will depend on ¢ and could be very large if q increases (see, for instance, [11], [12]).
Consequently, the numerical results can be compromised. In any case our numerical
results underline that also by taking ¢ large (for instance g =7) the speed of
convergence does not slow down. This denotes that the constant does not become
very large.

In the next section we will give some numerical results which confirm all the
observations made here while the theoretical study of the stability and the con-
vergence will be subject of a future work.

Finally we underline that, in the case when we have a Cauchy singular integral
equation in which the given functions are singular at inner points, it is possible to reduce
it in a system of Cauchy singular integral equations or to apply an appropriate reg-
ularizing transformation to smooth the inner singularities. Nevertheless, we mention
thatin this second case, all the involved operators and all the known functions have tobe
studied in a weighted space L? with a generalized Jacobi weight «. On the contrary, by
proceeding as suggested in the first case, the inner singularities become singularities at
the endpoints and then the procedure shown in this paper can be applied and the the-
oretical results still hold true. Further investigations are however needed.

4 - Numerical Tests

In this section we show some numerical experiments. To this end we proceed in
the following way. By applying the procedure given in Subsection 3.2, we first
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transform the considered equation in (27). Then we solve system (28) and we con-
struct y,, according to (24). Thus, in virtue of the adopted procedure, we compute the
approximate solution f,‘,ﬂ of the original equation defined in (29).

In each example we take as reference solution that obtained with m = 600 points
and with the larger g, and we give él,(y) = |(f6%0 — )| with y e (—1,1).
Moreover in each test we compare the obtained results with those we have without
regularization i.e. solving system (9). In this case we compute e, (y) = |( fgoo — @)
withy € (—1,1)wheref, is constructed according to (10). In the sequel for the sake
of the simplicity when we fix the value of ¢ or g, we will write ¢ xed valuie jpstead of
ﬁ‘,’, or ﬁg. All the computations were performed in 16-digits arithmetic.

ExampLE 4.1. We consider equation (12). By applying the numerical
procedure shown in Section 3 we obtain equation (27) with

&(s) = ¢251-0(1 + s) 'sin@U(1 + 5)7)
and

lt, ) = @201 + ) @A+ 0 + (14 )] — 4.

We immediately note that if q is a multiple of three the given functions are
analytic. Table 2 shows the numerical results obtained without reqularization while
Table 3 and Table 4 give the errors él,(y) with ¢ = 3 and q = 6, respectively in the
pointsy = 0.9 andy = —0.9. In the other points the absolute errors are very similar.
We take as reference solution f,g with ¢ =6 and we mention that ];quzﬁ( —-0.9)
= 0.1416373878379730, ]%‘156(0.9) = —0.1766939981739069.

Finally, we underline that system (28) is well conditioned. Indeed, denoted by
Ay, its matrix of coefficients and by cond(A,,) its condition number, it results for
each m cond(A,,) < 21if q = 3 and cond(A,,) <37 if g =6.

Table 2.
m oo =S )(—0.9)] (oo —13)(0.9)]
16 3.26e-003 7.88e-003
32 5.88e-003 2.61e-003
64 1.21e-003 2.48e-004
128 1.50e-004 1.93e-004
256 1.58e-004 4.40e-005

512 1.26e-005 1.30e-005
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Table 3.
m (&’ = (= 0.9)] (&0’ —£275)(0.9)|
16 5.07e-004 4.68e-004
32 1.83e-005 7.79e-005
64 9.32e-006 8.78e-006
128 2.51e-007 1.41e-006
256 4.67e-008 1.29e-007
512 2.00e-008 2.37e-008
Table 4.
m T —FEO— 09 (& —F=5)09)]
16 6.78e-007 6.13e-006
32 5.85e-008 2.16e-007
64 7.37e-009 1.15e-008
128 2.95e-010 4.82e-010
256 1.02e-011 3.09e-013
512 1.52e-014 1.26e-013

In Table 5 the values of f,%zG(y), my =0.9andy = 0.9 are given.

Table 5.
m f2=5(~0.9) £275(0.9)
16 0.1416367093338771 —-0.1766878650149057
32 0.1416373292861998 —-0.1766942147830024
64 0.1416373804621628 —-0.1766940097614645
128 0.1416373875425943 —-0.1766939986563052
256 0.1416373878482631 —-0.1766939981736002
512 0.1416373878379556 -0.1766939981737810
ExamMpLE 4.2. We consider
11/2

1
D) + % J @+ )

v3

-1

F@)d 3w)de =

oY

113
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By applying the numerical procedure showed in Section 3 we obtain equation
17) with
&(s) = ¢ o1-q)} a+ 3)1_71‘1‘1 62174(1+s)f'—1,

and

11/2
Kk, s) = (1 +2791 + 5)9)

2l-q9(1 qg_°
(1+s) 5

The nwmerical results we have in the case when g =3 and g =7 are shown in
Table 6 and Table 7, respectively. We take as reference solution f,} with § = T and we
remark that ]%qoﬂ( —0.8) =0.1872792001336907 and ]%‘70:7(0.5) = 0.8286337335141194.

Table 6.
m_ | —A08) (' — i 05)
32 4.63e-007 1.28e-006
64 1.92e-007 1.34e-007
128 8.12e-009 3.03e-009
256 3.14e-010 3.72e-010
512 4.57e-011 5.13e-011
Table 7.
m (oo —FED(=08)] | =S5 0.5)]
32 5.94e-010 2.31e-009
64 7.81e-012 1.29e-011
128 5.03e-013 5.81e-013
256 1.02e-013 4.72e-013
512 1.28e-013 4.39e-014

By comparing these results with those obtained without the regularizing
procedure (see Table 8), we note that the former are better. Indeed, by solving
system (28) with m = 32 and q = 3 we have an error of the order 10~" in y = —0.8.
The same order was obtained by solving system (9) with m = 128. Moreover we
remark that if q is large the order of convergence increases and the system we
solve is well conditioned. In fact it results for each m cond(4,,) < 40 if ¢ =3 and
cond(A,,) <91 ifq="T.
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Table 8.
m |(fioo” —S3)(—0.8)] (o' =S )05
32 3.96e-004 7.64e-005
64 8.94e-005 5.43e-005
128 4.13e-007 2.60e-006
256 2.34e-006 2.28e-006
512 1.05e-006 8.25e-008
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Table 9 and Table 10 show the values of f,, and fﬂbﬂ m the points y = —0.8 and

y = 0.5.
Table 9.
m £:(—0.8) f1=3(-0.8) f=7(=0.8)
32 0.1876755663312321 0.1872796638463117 0.1872792007285498
64 0.1873686715211495 0.1872790073133861 0.1872792001258752
128 0.1872787864734236 0.1872791920044783 0.1872792001331868
256 0.1872815497301738 0.1872792004485168 0.1872792001337930
512 0.1872802525324761 0.1872792000879634 0.1872792001338190
Table 10.
m £,(0.5) f530.5) f5770.5)
32 0.8287101391766663 0.8286350225621202 0.8286337358315067
64 0.8286881305050452 0.8286338681002020 0.8286337335012025
128 0.8286363393311549 0.8286337304801502 0.8286337335135402
256 0.8286360200441175 0.8286337338861416 0.8286337335145958
512 0.8286338160378816 0.8286337335654589 0.8286337335141653

ExAMPLE 4.3. We consider equation

By applying a quadrature method directly to the given equation we have that for

1

D \(y) + é J cos(@ +y + 3)f @ ¥ (x)dx =

-1

(1+y)

(4
m + log(l + y)

m = 256 in y = —0.9 we have an error of the order 10~°, as we can see in Table 11.
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Table 11.
m |( 600 —f)(=0.9)] |( 500 —f;,;><0-3)|
32 6.67e-003 1.78e-004
64 7.89e-004 2.04e-004
128 4.96e-004 4.47e-005
256 5.76e-005 9.06e-006
512 8.97e-006 2.98e-006

Now we apply the procedure suggested in Section 3. Then we have equation (17)
with
$(s) = q 2070 (14 )71 2 4 g 2170 (14 57 log(@9(1 + 5)7)
and
K(t,8) = q 279 (1 + 8)7 cos@ 9 + 8)7 + (1 + )7 + 1).
The numerical results are given in Table 12 and Table 13. In this

example we take as reference solution ﬁ;i with ¢ =3 and we mnote that
feoo (—0.9 = —1.447979122000331 and faoo (0.3) = 3.745425426376415.

Table 12.
m (oo —F37(—0.9) (oo — £ (0.3)|
32 2.01e-005 7.00e-007
64 9.26e-007 8.23e-008
128 2.95e-008 2.76e-009
256 1.34e-009 2.16e-010
512 4.58e-010 6.62e-011
Table 13.
m I(feoo” =S~ 0.9)] I(fihe? = f22)(0.3)|
32 2.14e-008 5.71e-009
64 5.88e-010 1.03e-010
128 2.37e-011 1.65e-012
256 2.56e-012 1.60e-012
512 1.42e-012 3.51e-012

We mention that the system we solve is well conditioned. Indeed for each m it
results cond(4,,) < 1.8 i ¢ = 2 and cond(4,,) < 2.6 if ¢ = 3.



[19] A QUADRATURE METHOD FOR CAUCHY SINGULAR INTEGRAL EQUATIONS, ETC. 117

Table 14 shows the values of f*, f2% and £ in y = —0.9.

Table 14.

m £i(-0.9) f172(-0.9) f173(-0.9)
32 —-1.441300158921933 —1.447999239495348 —1.447979143406848
64 —1.448768220755139 —1.447980048448261 —-1.447979121412321
128 —1.447482626607250 —1.447979151536435 —1.447979121976605
256 —1.447921446106832 —-1.447979120651159 —1.447979121997767
512 —1.447970144847015 —1.447979121541527 —1.447979121998908

5 - Proofs

In order to prove the main results stated in Section 3.2 we introduce the best
polynomial approximation of f € L%m, by means of polynomials of degree at most m
(P e Py)as

Ep(f)yo = inf ||Lf — P,
PEPM
Then we recall that Vf € Z,(v"°) it results
C
(30) Enp(f)ype < o ||f||Z,.(q;:w5) C # Cm,f)
and Vf; € quﬂ,_d and Vfs € qujo‘0 there holds (see, for instance, [25])

(31) EZm(flfQ)m-o' <C[ ||f17}y’5|‘2 Em(fZ) + Hf2||2 Em(fl)pr-d]
c 7& C(mafhfé)-

Here and in the sequel C denotes a positive constant which may take different values
in different formulae and we write C # C(a, b, ¢, . . .) if such constant is independent
of the parameters a, b, c, . . ..

Proof of Proposition 3.1. We begin by proving (21). By definition (15) and
by applying (31) we have

Ep(@)y-2a < CL [|g1(@ 0| o B (A + yo-1-a
+ Ep(@1 (@) o |0+ 7,1,

Now by the assumption ¢g; € Z,.(v~**) and since 91(y,) is the composition of ¢g; with a
polynomial then gl(yq) € Z,(v™**), too. Thus, taking also into account that
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q—1-q2>0and (1 + )" € Zy, 1_g111(0*?), by applying (30) we have

1 1
E(@)y-0 < C[ o W] :

Hence, setting # = min{r,2(q — 1 — g4) 4+ 1}, by the well known Stechkin-type in-
equality (see, for instance [25])

[
Q@ Dyrnp < CF Y~ A+ T B (@)
=0
we get

QI;;(¢; T)v’“,z S ct'

and then (21) is proved. In the same way it is possible to deduce (22). Finally (23)
follows taking into account that (¢, -) = kl(yq @), yq( -)). Thus it is the composition of a
function k4 (x, -) € Z,(v~**) with a polynomial and then it belongs to Z,(v=*%), too.

Proof of Proposition 3.2. The properties of the dominant operator D are
well known. The reader can consult [1, 2, 15, 20, 23, 30] and the related references. In
order to prove (b) we first write X = (Xg o v*™I): L2,_, — L%, where X, : L2,

— L2, is defined as

1

B 1+s 1
@ﬂ%Q—JG<LH>1+ﬂ@Mt

“1
and

va,ial . L%u.—u - L%—a{.a{

is an isomorphism. Now we compute the Mellin symbol

o0(2) := Jyz‘la(y)dy
0
of the kernel
q—2
¢+ 1y’ ,
oly) =~ S
a1 ' h(y)

?/

T
(=]
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g1 i ;
Since (y — Di(y) = y? — 1= H (y —e”"), wj = 2%] we have
j=0

q-1 ] q-1 q-1 ]
hy) =@ -e", Waop=>Y_ [[w-e,
=1 =1 =
J#t

from which we deduce

<

-1
1
7 y_ew/i.

a(y) = —

~
Il

Thus taking into account that for 0 <w <27 we have (see, for instance, [6])

00 L
yzfl _efuuez(wfn)z
-dy = -

J Y — ewt Y sin 2

we deduce that the Mellin symbol & is analytic in the strip {z € C: 0<Rz<1}.
Moreover since

k

B @A + 2

(32) SUp |

2:ico <Rz <y

<00, k=0,1,2,....

in virtue of a vizell known result (see, for instance, [19]) we deduce that X is bounded
inL%.,if0<; - % <1 from which (b) follows being —1 <« < 1. Now we prove (c). To

this end we have to prove that (see, for instance [32])

lim< sup E’m(ICy/)W,1> =0.

"\l <1

By applying the Schwarz’s inequality we have
1/2

1 1
w2, < ||1//1)°"“||2< J Jx(t,s)zv“*“(t)dtv“‘“(s)ds)

4
< Cllyv™ ™|l

Moreover

145, Koy |2

Upi)

1-(2hi)? 172

| | ueere e

—1+@hi)?



120 LUISA FERMO [22]

1-@w? 1 72 172
= J | Jx(t ™ *t)dt| v="*(s)ds
“1+@nif L -1 .
1-@hif [ 1 72 172
_ J [, W | v (s)ds
—1+@hi? L ~1 -
1 1-@hi} 1/2
< lyo™ Iy J J [4,,5<(t, ) Pv"(s) ds v*~*(B)dt
1 _142hi)?

1/2

1
- ||w»“v“||2( | 1t 3071 v“v“(t)dt)
-1

Thus taking the supremum on 0 </ < t by (8) we have

1/2

o oW, Dyna < [lwv™ |, sup o) (K(t ), r)v“(

[t|<1

L

v“’“(t)dt)

Q. (k(t, ), 0
50

IN

Cllyv**|ly" sup sup
[t|<1 0>0

¢’

IN

according to Proposition 3.1.
Thus by the well-known weak Jackson’s inequality according to which

1/n .
Q(f,u),
EM»SCJ#W VfeL?
0

we have
L
By < C Jy" j | <
0

from which (¢) follows.
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