Riv. Mat. Univ. Parma, Vol. 2 (2011), 77-98

R. GRZHIBOVSKIS and S. RJASANOW
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mechanical engineering

Abstract. Three new applications of the Adaptive Cross Approximation will be
reviewed. The first one is devoted to the reconstruction of the three-dimensional
metal sheet surfaces obtained via incremental forming techniques by the use of the
radial basis functions. In the second application, a calculation of effective elastic
moduli in three-dimensional linear elasticity for highly anisotropic composite ma-
terial is considered. The third application is a coupling of the Finite and Boundary
Element Methods for elastic-plastic deformations arising in deep rolling processes.
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1 - Introduction

The Adaptive Cross Approximation (ACA) was first introduced in [6], [9] in
mathematical and in [17] in engineering literature. Now it is a well established
technique for approximation of dense matrices of different origin. The main appli-
cations lie, however, still by three-dimensional Boundary Element Methods (BEM).
In the last years a significant progress has been achieved in both theoretical foun-
dation of the ACA [8], [7] and in the practical use of this technique in engineering and
industry [18]. We refer also to the monograph [21], where a number of detailed
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academic and more complicated numerical examples are presented. A search string
“Adaptive Cross Approximation” in Google gives in March 2010 more than 64 000
matches.

In this article, after a brief description of the ACA in Section 2, we consider three
recent ACA applications to three very different problems from mechanical en-
gineering. In Section 3, a smooth reconstruction of three-dimensional metal sheet
surfaces obtained via incremental forming techniques with the help of radial basis
functions [4] is considered. A calculation of effective elastic moduli for highly ani-
sotropic composite materials [1] and a coupled FEM/BEM approach for elastic-
plastic deformations arising in deep rolling processes [2] are based on the ACA
accelerated BEM solver. These applications are presented in Section 4.

2 - Adaptive Cross Approximation

When using BEM for the numerical solution of boundary value problems for three-
dimensional second order partial differential equations, one has to deal with matrices
which are dense, i.e. all their entries do not vanish in general, leading to an asympto-
tically quadratic memory requirement for the whole procedure. Thus, classical
boundary element realisations are applicable only for a rather moderate number N of
boundary elements. Fortunately, all boundary element matrices can be decomposed
into a hierarchical system of blocks which can be approximated by the use of low rank
matrices. This approximation can be computed by the use of the ACA algorithm.

A typical element of a Galerkin-BEM matrix A € R¥*¥ is of the form

1) ak,g:“K(m,y)y/k(x)w(y)dsydsm, k=1,....N, ¢=1,....M,
rr

where K : R® x R® — R is either the fundamental solution of the underlying dif-
ferential operator or one of its derivatives. The trial functions ¢, as well as the test
functions y;, are usually with compact support. Let us denote the centers of these
supports by

X={n}, and Y={y}!,

If the kernel K is smooth then the singular values of the matrix A are exponentially
decaying and the matrix can be approximated by a low rank matrix A as follows

|A—A|p <e|Alp, rankA =),

where the rank » = r(¢) is a logarithmic function of the required accuracy but does
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not depend on the dimensions N and M. Therefore, a linear memory requirement for
the matrix A is achieved

Mem(A) = O(r(e)(M +N)) .

The best possible approximation in any unitary invariant norm is given due to the
Mirsky theorem [20] by the truncated Singular Value Decomposition (SVD) of the
original matrix A. In BEM, however, the kernel function, as we already have men-
tioned above, is the fundamental solution of a differential operator, and, therefore,
exposes an algebraic singularity for x — ¥ and is infinitely smooth for x # y. Such
functions are asymptotically smooth, i.e. it holds

2) |02 BK (@, y)| < cpp! o —y|P|KG,y)|, foralla,fe NG,
where p = |« + f|. For asymptotically smooth functions, the admissibility condition
(3) min {diam X , diam Y} < pdist (XY ), 0<y<1

guarantees existence of a degenerate approximation

B 7(e)
K(x,y) ~ K(x,y) = Zuk(m)vk(yL forallee X, yeY,
k=1

where the rank r = r(¢) depends only on the required accuracy e Thus, the
Galerkin matrix (1) constructed on an admissible pair (X, Y) will be of the low rank
r(e) independent of its dimension. However, the original sets X and Y are, of
course, not admissible. The usual way to obtain an approximation is an hierarchical
decomposition of the matrix in a system of blocks which corresponds to an hier-
archical decomposition of the sets X and Y in two systems of clusters and de-
termination of the admissible cluster pairs corresponding to the condition (3).
Instead of going into details, we refer to the monograph [21] and demonstrate a
hierarchical decomposition of an approximation of the surface of the unit sphere
with N = M = 1280 plane triangles in a system of clusters on Figure 1 as well as
an admissible cluster pair on Figure 2. The final matrix is then so called hier-
archical matrix [14] and we illustrate its structure in Figure 3, where the quadratic
matrix of the single layer potential is shown on the left and the rectangular double
layer potential matrix is depicted on the right. In practice, the optimal approx-
imation of the single blocks of a hierarchical matrix can not be computed with SVD
due to its high computational costs. The ACA algorithm instead delivers a good
quality approximation in almost linear complexity. In this paper, we present a
version of the ACA, so called “Fully pivoted ACA” which is also not asymptotically
optimal but very clear and easy to understand. Let A € R¥M be a block of a
hierarchical matrix.
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Fig. 3. Partitioning of the BEM matrices for N = 5120 and M = 2562.
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Algorithm 2.1.
1. Initialisation

Ry=A4A, So=0.

2. Fori1=0,1,2,... compute
2.1. pivot element

(Kiv1,0i1) = ArgMax|(Rg| ,
2.2. normalising constant
Vi = (Ree) s
2.3. new vectors
Uip1 = yiRier,,  visn =R} er,,,
2.4. new residual
Rii =R — ui1v},4,
2.5. new approximation

.
Siv1=8i +uit10;,1 -

In Algorithm 2.1, e¢; denotes the jth column of the identity matrix I. The whole
residual matrix R; is inspected in Step 2.1 of Algorithm 2.1 for its maximal entry.
Thus, its Frobenius norm can easily be computed in this step, and the appropriate
stopping criterion for a given ¢ > 0 at step » would be

1B llp < ellAllp -

We refer again to [21] for more complicated but asymptotically optimal partially
pivoted ACA algorithm.

3 - Interpolation with radial basis functions

Radial basis functions (RBFs) have become increasingly popular for the con-
struction of smooth interpolant s : R” — IR through a set of N scattered, pairwise
distinet data points (x;, fi)ﬁil, x; € R" (see [15, 10, 5, 13, 11]). The interpolant is in-
troduced as

N
(4) s@) = > il — a;]) + P (),
i=1
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where a; are unknown coefficients, P, is an mth-degree polynomial, and ¢ is a basis
function. In addition to the interpolation condition s(x;) = f; at each data point, we
require

N
> argila) =0
k=1

for each basis function g;(x), j = 1,...,l(m), in the l(m)-dimensional space of mth-
degree polynomials in R”. This yields a system of linear algebraic equations,

(& 9()-0)

where @;; = ¢(|x; — x;|), f is the vector of data values f;, a is the vector containing the
unknown coefficients a;, ¢ is the vector of coefficients of P,, with respect to the basis
(qk)fc(fl) ,and Q; = q;j(x;). The system has a unique solution if ¢ is strictly conditionally
positive-definite of order m + 1 and the set of data points is unisolvent for the space
of polynomials of degree m [19]. This procedure does not require an underlying mesh
and produces an accurate, differentiable interpolant.

In our application, the data comes from optical measurements of sheet metal
parts. The top and the bottom surfaces of the part are measured in a fixed frame of
reference, and a distribution of thickness along the part is sought. We, therefore,
restrict ourselves to data in R?, i.e. x; = (;1,%;2), and make use of the thin plate
spline (TPS) basis function

(6) ¢(r) = r*log(r)
which is econditionally positive-definite of order two. Thus, a first-degree polynomial,
Pi(@) = c1 + ((c2,03) ", @)

must be inserted into (4) to guarantee the invertibility of system (5).

The form of (6) implies, that the matrix @ is fully populated. It is easy to check,
however, that the function (6) satisfies (2) i.e. is asymptotically smooth. Therefore,
the matrix @ can be efficiently approximated by a blockwise low-rank (hierarchical)
matrix as shown in Section 2. The approximant can then be utilised to solve the
system (5) by means of GMRES iterative procedure [22]. In these settings the whole
interpolation procedure has almost linear complexity and almost linear storage re-
quirement. Because of the large condition number of the system matrix in (5) the
quality of the blockwise low-rank approximation has to be high. In our computations
the value of the ACA epsilon was set to 10719,

The performance of the resulting interpolation procedure on synthetic data sets
is summarized in Table 1. The memory requirement ("Mem”) is given along with the
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Table 1. Performance of the interpolation procedure for a smooth function given on
synthetic random data points.

N Mem rat. compr. t. GMRES sol. t.
[10%] [MB] [%] [s] # [s]
1 2.5 33.80 <1 25 <1
28.1 14.73 3 27 1
10 69.2 9.07 6 29 4
25 199.5 4.18 22 30 12
50 466.4 2.44 55 33 33
100 1122.4 1.47 141 40 110
500 7540.8 0.39 1028 199 3693

compression rate (“rat.”) for the approximation as a measure of the data reduction
achieved through ACA. The number of GMRES iterations (#) and CPU time
(“sol. t.”) are also given. We observe the almost linear storage and computation time
increase. Similar results are obtained on measurement data sets depicted on Figures
4, 5, 6. The performance of the interpolation procedure is summarized in Table 2.
After the system (5) has been solved, the interpolant (4) needs to be evaluated on a
set of points X' = {y; }jﬂil,

N
s =Y aigae; — yi) + Py, j=1,...M.

=1

Evaluation with a desired accuracy ¢ can be accomplished efficiently by constructing
the blockwise low-rank approximant to the rectangular N x M matrix filled with

=100 =50 0 S0 100

Fig. 4. Data set A and the corresponding interpolation results.
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Fig. 5. Data set B and the corresponding interpolation results.
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Fig. 6. Data set C and the corresponding interpolation results.

Table 2. Performance of the interpolation procedure for data sets A, B and C.

set N hx Hy rat. compr.t. GMRES sol. t.
[%] [s] # [s]
A 10 201 6.0E-03 7.2e-03 8.40 10 36 6
B 30 727 4.3E-05 2.7e-02 3.97 25 118 64
C 118 205 2.9E-04 3.9e-03 1.35 220 141 413

entries ¢(lv; —y;)), i=1,...N, j=1,...,M. Now the value of the ACA approx-
imation accuracy ¢ can be chosen so that ¢ < ¢. With the coefficients a; at hand, we
can also find partial derivatives s/ (x) and sy(x) of the interpolant. The evaluation of
partial derivatives on X’ is accomplished efficiently using the same blockwise low-
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rank approximation strategy. In the case of s}, we rewrite the derivative as

N
$i) =Y aigy, (o — yi) +

~
—

a;logla; — y;| + D(wi1 — yj1) + ¢1

Il
M=

S

1
a+ ¢y,
where x; = (2;1,%;2)

@logla; — y;| + D(x;p —yj1)  for |a; —y;) >0,

=1

0 otherwise.

This generating function is asymptotically smooth. Therefore, the matrix @' can
be approximated by a blockwise low-rank using the ACA. The same argument holds
for s;, and the corresponding matrix a°.

Data sets for the interpolation are shown on Figures 4, 5 and 6 together with the
corresponding interpolants. The performance of the ACA accelerated TPS inter-
polation procedure is summarised in Table 2.

In our application values of the partial derivatives are useful for computing the
normal to the graph of s, which is necessary to estimate the thickness of the part. The

l 0.28

1.04

-t -0s 0 es 0

Fig. 7. Estimated distribution of thickness in mm along the deformed metal sheet.
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computed thickness distribution for the data set A is shown in Figure 7. The initial
thickness of the undeformed sheet is 1 mm. Comparing this distribution with the
shape of the metal part, we see that the sheet appears thinner in areas where the
slope is steep. Some small thickening regions along the sides of the deformed area
are also observed. Overall, the developed interpolation technique can be used to
calculate the thickness distribution of a sheet metal part non-destructively, provided
that both sides can be accessed by a digitiser.

Although our study focuses on two-dimensional considerations, the method of
constructing blockwise low-rank approximants to the corresponding matrices also
applies to RBF interpolation in three or more dimensions.

4 - Fast Galerkin BEM for the Lamé system

Consider an elastic body @ c R® with a Lipschitz boundary I". Suppose that a
displacement of the body gp is given on I'p C I" and some force gy is applied to
I'y C I'. We also require that I" = I'p U Ty. The displacement field u : Q@ — R?
satisfies the Lamé system of equations, therefore

divoe(u,x) = 0, forx e 2,
(7 Quw@) = gp@), forxelp,
W) = gy, forxely.

Here the divergence of stress o(u, x) relates to partial derivatives of the displace-
ment field u(x) and the material properties 4, u

div o(u, %) = p du(x) + (4 + p) grad divux) .

Lamé constants A and u are functions of elasticity modulus £ and Poisson ratio v of
the material

. Ev B E
TUend-2n “Taavw

Dirichlet and Neumann trace operators are defined as

(VO%)('%.) = lim @(?/)7 for UAS Q7 LS F?
Y—u

(w@) = (yeolu, ))(@) n(x),

where n(x) denotes the outer unit normal of I".
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The problem (7) admits the following symmetric boundary integral formulation
(for details we refer to Sirtori [23] and Steinbach [21]):

Vi) — (Kga) = (;1 + K> Gp@) — (Vi) forx e I'p,
E'D@) + (Do) = @1 - K) in@) — (Dgp)a) forz e Iy,

where g = (yow) — gp, t = ();u) — gn, gy and gp are extensions of gy and gp to the
whole boundary I". The following boundary integral operators are involved in (8)

Vw)@) = 7, J U* (@, yywiy) ds, |
I

(Kv)(w) = %Q(%) + 7% J 71, U @, puy) dsy ,

I
(K w)(x) = — %w(x) + 7 J Uz, y)w(y) ds, ,
I
DY@ =~ |1,V @9 ds,

r

are the single layer, double layer, adjoint double layer potentials, and a hyper-sin-
gular operator respectively. Here

1+v
87kl —v)

Oke (@ — Y1) (@we — Yo)
x —

9 Upela, y) =
( ) ke y y| |gc—y|3

[(3 —4v) |

is the fundamental solution. For the mapping properties of the above operators we
refer to [21]. In the special case when the displacements are prescribed on the whole
boundary (i.e. I'p = I'), the traction forces ¢ can be computed from the first equation
of (8)

(10) t@) = (Sgp)@), xel.

Here S is the Steklov-Poincaré operator

1
—_yv-1(Z
(11) S=V (21+K).
It can also be written in a symmetric form as
1 Nor1/1
(12) S_D+(§I+K)V <§I+K>.
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As soon as the complete Cauchy data is obtained as a solution of (8) (or by (10)), the
displacements u(x) inside 2 can be computed as

wx) = JU*(% iy) ds, — Jh,yU*(% Yy ds, forwxe Q.
r T

To obtain a boundary element discretisation of the problem, we approximate I” by a
conform surface triangulation with N triangles and M nodes. We use the piecewise
constant functions (w,(x) is 1 on triangle 7, and 0 outside 7,) as basis and test func-
tions for the discretised single layer potentials. These functions also serve as test
functions for the double layer potentials.

The basis functions for the hypersingular and the adjoint double layer potentials
are chosen to be piecewise linear: ¢;(x;) = dj;, p;() is linear on each 7,. These func-
tions are also used as trial functions for hypersingular operators and double layer
potentials. The Galerkin discretisation of (8) leads to the system

( Vh _Kh ) ( ) ) _Vh %Mh + Kh (gN ) (fN )
= 1 = .
Kg Dh 9n éMh - K}f 7D/’L gD fD

The above fully populated matrices are composed of the following three by three
blocks

Ve = (V) yy), Ky = (K, wi),  Di)y = (D(g;b), 9;),

where i is a three by three identity matrix, (-, -) denotes the scalar product on L2(I"),
and k,/=1...N,1,j =1... M. The sparse mass matrix M), consists of blocks

M) =1 | g s,

Tk

We renumber the degrees of freedom according to Cartesian directions. Thus,
instead of composing the matrix V), as N by N table of symmetric 3 by 3 blocks,
we compose 6 symmetric N by N blocks. In these settings, elements of these
large blocks have form (1). Because the integral kernels U}, are asymptotically
smooth (i.e. satisfy (2)), the entire matrix V), can be approximated by a blockwise
low-rank hierarchical matrix. This approximant is efficiently obtained by means
of the ACA.

To avoid computing entries of K, and D;, actions of operators K, K’ and D are
expressed through actions of the single and double layer potential operators for
the Laplace equation V;, and K, and certain tangential differential operators (see
[16] and also [21]). Thus, the matrix-vector products K;v, Kjv and D,v are ob-
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tained by repeated applications of V7, K, 5, and some sparse matrices. As a result,
the BEM for (8) is implemented with just eight blockwise low-rank matrices. They
approximate Vr,;, Ky j, and the six symmetric matrices corresponding to the
second term in (9).

4.1 - Effective elastic moduli of composite materials

Many composite materials can be described as hard inclusions (e.g. particles
of fibers) in a relatively soft medium (see Figure 8). Even if these inclusions
constitute a small volume fraction, the effective mechanical properties of such
material differ significantly from those of the pure soft medium. It is common to
denote the inclusions by the term ‘phase’ and to refer to the medium by the term
‘matrix’. Suppose that both the phase and the matrix materials are homogeneous
and isotropic, then the composite may still exhibit strongly anisotropic behavior.
In the range of linear deformations this anisotropy is completely described by
21 effective elastic moduli. One way to estimate these moduli is to perform a
series of six numerical experiments, in which a representative volume element
(RVE) is subjected to certain Dirichlet boundary conditions, and its reaction in a
form of traction forces is obtained. Thus, the mathematical formulation of the
problem consists of solving the Dirichlet boundary value problem of linear
elastostatics in a domain with piecewise constant, isotropic material properties
(see Fig. 8)

—f, Au@) — Ay +p,)graddivae) =0, e Q,, 0<ua< Ny,

1) ) = gr@), x eIy,
Ww@ = Ghww@), €Ty, 1<k< Ny,
@) = —ww), €€l 1<k< Ny,

where I'g is the boundary of the RVE, and gz : I'r — R? is given. Dirichlet and

[h’

C ) s
Qo
e

Fig. 8. Computational domain Q with V;,. = 4 inclusions.
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Neumann trace operators are defined for each Q2,, « =0,..., Ny,

pw@) = limu(y), foryeQ,, xerl,,
Y-

Olw@) = (hou, ))(@)ny(w),

where n,(x) denotes the outer unit normal of I",. We denote the Cauchy data for
the matrix domain Qy by go and fp and introduce the globally defined local
Cauchy data for x € I'g and k =1, ..., Ny,

{(V’éz)(x), for € Iy,
Ir\L) =
0, forx e I'g\ Iy,

(Fuw)w), forwe Iy,
be(x) =
0, fOI’ﬁ(IGFo\Fk.

We also extend the given Dirichlet datum g on I'p by zero to the whole
boundary I'y. The continuity of the displacement field (the third condition in
(13)) enables us to express the displacement gy on the whole boundary a sum

Nl',?zt

go(x) = gr(x) + Zgﬁ(ac) forxel.

j=1
The equilibrium of forces on boundaries of inclusions (the fourth condition in
(13)) yields the system for the unknown displacements gi,k =1,..., Ny

Ni,nc

(14) (SO@> () + (Sk,gi) (@) =— (So@) (x), forweIy.

1

<

The Steklov-Poincaré operators S, are selfadjoint and, in general, positive semi-
definite. However, the Dirichlet boundary condition in (13) ensures that an appro-
priate Galerkin discretisation of the boundary integral equation (14) with (12) leads
to a symmetric, positive definite system of linear equations. ACA accelerated
Galerkin BEM was implemented for both symmetric (12) and non-symmetric (11)
forms of the Steklov-Poincaré operator. The efficiency of the resulting solver can be
demonstrated on the following example.

ExaMpPLE 1. Consider a cube shaped RVE of a two component composite
material depicted in Figure 9. The phase material with E; = 7.2 -10* and v; = 0.4
occupies the three balls, and the rest of the cube (about 90% of the volume) is
filled with the matrix material with Ey =1.9-10° and vy, = 0.3. The entire
boundary was discretised by the use of 4218 triangles. Distribution of magnitude
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Fig. 9. Computational domain Q with NV;,. = 3 inclusions. Discretisations of I'; (left) and
L e (right).

of tractions along the boundary of inclusions for one of the numerical
experiments is depicted on Figure 10. We have also plotted the distribution of
this quantity over the part of I'p, where x = 0 (here # = (x,y,2)"). The resulting
effective elasticity tensor of the equivalent homogeneous medium is dominated
by its isotropic component (more than 90% of the tensor norm). The
corresponding effective Young modulus and Poisson ratio are £ = 2399.9 and
v =10.288. To demonstrate that the numerical complexity of the proposed
solution method is almost linear, we perform the computations on a series of

148, % 10°

134.3 10°

AVAVAVAVAY 120. % 10°
TAVAVAVAVAVAY _—
AVAVAVAVAVAVAV L 5
VAVAYAVAVAYAY, 106, x 10

7AN ¢v¢v¢v YA, I

FANAVANAY

Yegn FAVAYAY ——91.5x%10°

AVAVAVAY) L

-77.5% 10°

——634x%10°

—494x10°

354x%10°

21.4x%10°

7.34%10°

Fig. 10. Example 1. Distribution of the traction modulus |))u| along I';,,. (left), and along
the part of I'g, where x = 0 (right).
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Table 3. Efficiency of the Galerkin BEM procedure. The ACA accuracy value is
&= 107" for all experiments.

ref. elem. mem. compr. gen. t. sol. t. iter. E v
(MB) (%) (s) (s)
1 1092 36.7 52.68 116 32 138 2346.2 0.290
2 1994 975 42.10 257 85 120 2374.4 0.289
3 4218 270.5 26.18 580 221 145 2399.9 0.288
4 8204 634.4 16.22 1161 700 188 24134 0.288

2x8 10036 886.1 15.28 1867 1181 235 2337.1 0.291
3x8 19932 21234 9.29 4036 3597 290 2362.2 0.291

meshes. The efficiency results are summarised in Table 3. The number of
degrees of freedom nearly doubles from one mesh to the next. The amount of
memory required to store the H-matrices (column 3) and the matrix
generation time (column 5) grow in a similar manner. This effect is due to
increasing compression (column 4), and it expresses the almost linear
complexity of the H-matrix/ACA procedure. We also observe, that the
effective Young modulus E (column 8) converges to its exact value from
below. This should be viewed in contrast to FEM approach, when choosing
linear elements introduces an artificial stiffness to the domain. In column 7,
the number of GMRES iterations when solving the system in its non-
symmetric form with relative tolerance 107 is shown. During the iterative
solution procedure the Jacobi preconditioner was used. The last two lines of
the Table 3 summarise the results of computations, where the RVE was taken
to consist of eight copies of the one considered in Example 1. The difference
in values of E is now due to the fact, that the larger volume element is a
better representation of the heterogeneous material (which has a periodic
microstructure).

ExamMpLE 2. Consider a rectangular RVE of a two component composite
material depicted on Figure 11. Fiber shaped inclusions consist of phase
material with £; = 7.2 - 10* and v; = 0.23. The rest of the RVE (about 85% of the
volume) is filled with the matrix material with E,,;; = 1.9-10° and v,,.; = 0.44.
The entire boundary was discretised by the use of 26416 triangles. Distribution
of magnitude of tractions along the deformed boundary of inclusions for a
numerical experiment experiment (stretching in x direction) is depicted on
Figure 12. We have also plotted the distribution of this quantity over the part of
I'r, where X = X5, = — 7. The resulting effective elastic moduli are
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7337.5 5b56.6 5319.2 01 -11 -04
7323.9 53173 0.1 04 -56
13202.0 —-105 —-214 1.0

C= sym 900.6 —19 —0.1
9065 —0.1
886.5

In this example, the anisotropy is clearly observed. It expresses itself through the
large entry Cs3. The isotropic component of the effective elasticity tensor accounts
just for about 80% of the total norm.

4.2 - FEM/BEM coupling for plastic elastic deformations

The main drawback of BEM when applied to modeling of deformations lies in its
inability to handle complex nonlinear material behavior (i.e. nonlinear stress-strain
relations). For most materials these nonlinearities appear only when stress values
are high. Situations, where the regions of high stress are small in comparison to the
whole body, suggest the domain decomposition: deformations in the small plastic
zone are modelled by an appropriate non-linear boundary value problem, and an
efficient solution of the linear problem is arranged in the remaining large portion of
the domain. Continuity conditions are posed on the interface between the two sub-
domains. To realise this modeling approach, we couple the fast Galerkin BEM solver
with widely popular Finite Element solvers. The results are demonstrated on two
examples.

ExampLE 3. Consider a benchmark problem in computational plasticity [24].
A steel plate with a cylindrical central hole is subjected to surface load
P =360 -10°N /m? on its upper and lower edges (see Figure 13 (left)). Material
of von-Mises type is considered with no hardening and yield stress 450 - 105N /m?,
Young’s modulus E = 206.9 - 10°N /m? and Poisson’s ratio v = 0.29. Because of
symmetries only a quarter of the plate is modelled. The domain decomposition
and the meshes are shown on Figure 13 (middle). We couple the fast Galerkin
BEM with the Finite Element Analysis Program (FEAP) [25] by the use of
interface relaxation. The coupled system converged to the relative residual 10~* in
24 coupling iterations. Yielded FEM elements are marked on Figure 13 (middle)
and the x component of the resulting displacement field is plotted on Figure 13
(right). The results are in a good agreement with the reference solutions [24]. For
detailed description of the coupled FEM-BEM procedure as well as for estimates
of the FEM subdomain see [12].
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Fig. 13. Example 3. Domain and boundary conditions (left); subdomains, discretisation
and yielded elements (middle); z-component of the displacement field (right).

ExampPLE 4. An industrial application of the FEM-BEM coupling comes
from modelling deep rolling process. Plastic deformations are induced along the
surface of a turbine blade by means of rolling a spherical tool under pressure
(see Figure 14 (left)). The rolled surface has increased tolerance to damage
from eventual collisions with foreign objects. Experimental studies show, that
in this process plastic deformations normally occur in a 0.5 mm thin boundary
layer. The remaining part of the workpiece undergoes elastic deformations,
which can alter the geometry of the blade. The coupled FEM-BEM solver was
applied to the problem. The model geometry and the subdomains are depicted
on Figure 14 (right). The tool-workpiece contact and the elastic-plastic
modelling in the FEM subdomain was performed by the use of commercial
software package ABAQUS, while the elastic deformations were handled by the
fast Galerkin BEM solver. The continuity of displacement and stress fields on
the interface was achieved by Dirichlet-Neumann iterations. The path of the
tool was divided into a large number of increments (time steps), and the
equilibrium of forces was computed after each such increment. Distributions of

rolled area

Fig. 14. Example 4. Deep rolling process (left), turbine blade with a rolled zone (middle);
model geometry of FEM and BEM subdomains (right).



96 R. GRZHIBOVSKIS and S. RJASANOW [20]
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Fig. 15. Example 4. Distributions of z- and x-components of the displacement field along
the boundary of BEM subdomain after the final rolling time step.

x- and z-components of the displacement field along the boundary of BEM
subdomain after the final rolling time step are shown on Figure 15. The details
of the implementation and comparison to pure FEM modeling of this process
are described in [2, 3].
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