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Boundary element transient analysis

of the dynamic 7T-stress and biaxiality ratio

Abstract. Inthis paper, we introduce a 2-D boundary integral equation (BIE) for
determining the T-stress for cracks under dynamic loading conditions (dynamic T-
stress or DTS). This BIE is only weakly singular and it can be used in the post-
processing stage of a boundary element dynamic analysis of cracks. The formula can
also be employed, in conjunction with any technique for the mode-I dynamic stress
intensity (DSIF), for calculating the dynamic biaxiality ratio (DBR). In this work,
the proposed BIE is formulated in the frequency domain so it can be used within the
framework of the symmetric-Galerkin boundary element method for elastody-
namics in the Fourier-space frequency domain. By applying the inverse fast Fourier
transform to the frequency responses of the DTS and mode-I DSIF, the time his-
tories (transient responses) of the DTS and DBR can be obtained. Numerical ex-
amples involving 2-D crack plates subjected to the Heaviside step loading are
presented. The DTS results obtained from the aforementioned BIE are compared
with some references available in the literature to validate the proposed technique.
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1 - Introduction
In classical theories of fracture mechanics, the stress and displacement fields in

the vicinity of a crack tip are characterized by a single parameter called the stress
intensity factor (SIF). However, numerous experimental work (e.g., [1, 2]) have
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shown that a second fracture parameter, known as the elastic T-stress (the first non-
singular term in the series expansion of the stress component parallel to the crack
and ahead of a crack tip) plays an important role in the linear elastic fracture me-
chanics of brittle materials under mixed-mode loading conditions. As a result, there
has been increasing attempts to describe the crack tip behavior in terms of both the
SIF and T-stress, and a larger and larger amount of investigation has been devoted
to the numerical evaluation of the T-stress. For example, finite element method
(FEM, e.g.,[3, 4]), boundary element method (BEM, e.g., [5, 6]), symmetric-Galerkin
BEM (SGBEM, e.g., [7]), complex variable function method [8], etc., have been
employed to calculate the elastostatic T-stress. Generally, the numerical techniques
developed for determining the T-stress can be classified into three groups [5]: the
methods based upon inspection of the numerical solution, the path-independent in-
teraction M-integral method, and the second-order weight function method.

As the use of composite materials in industry (e.g., airframes) has expanded, there
is a special interest in their fracture behavior under impact loading conditions. This
has motivated many studies on the dynamic SIFs (DSIF's) and dynamic 7'-stress (DTS).
However, while there is a large number of numerical investigations for the DSIF's (e.g.,
[9,10,11,12,13, 14, 15,16, 17]), the situation is less encouraging for the DTS. Only a few
studies on the DTS can be found in the literature such as those using BEM by Sladek et
al. [18], FEM by Jayadevan et al. [19, 20], and scaled boundary FEM (SBFEM) by Song
and Vreelj [21]. It is important to note that most of these DTS calculations ([18, 19, 20])
are based upon the interaction integral (or M-integral) method.

Although the T-stress and DTS can be computed directly from the asymptotic
expansion [22] for the crack-tip stress field, there was a concern over the fact that the
numerical result was sensitive to the distance from the crack tip to a point selected
for calculating the T-stress or DTS [18] (concern over the singularity of the nu-
merical result if the T-stress or DTS are evaluated at the crack-tip location).
However, as demonstrated in [6], a non-singular boundary integral equation (BIE)
can be derived using the asymptotic stress expansion and thus, the 7-stress can be
directly computed at the crack-tip location. A similar technique is proposed in this
paper to derive a weakly singular 2-D BIE in the Fourier-space frequency domain
for determining the DTS. This BIE is general and it can be employed as a post-
processing step in any version of the frequency-domain boundary element analysis.
Within this work, the SGBEM for elastodynamics in the Fourier-space frequency
domain is the version of choice.

As frequency-domain analysis is employed in this work, the DTS produced from a
SGBEM analysis is a function of frequency. If a time history (transient response) of
the DTS is needed, fast Fourier transform (FFT) and inverse FFT (IFFT) can be
used to obtain the time-dependent quantity.
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By normalizing the T-stress relative to the mode-I SIF (K1), Leevers and Radon
[23] proposed a dimensionless parameter called the biaxiality ratio B. Although this
is a preferred choice for normalizing the 7-stress or DTS, the accuracy of B depends
on that of both the 7-stress and Kj. Motivated by the accuracy of the proposed BIE
for numerically evaluating the DTS and that of the technique using the modified
quarter-point (MQP) element for computing the DSIFs reported in [16, 17], the
computation of the dynamic biaxiality ratio (DBR) is also a subject of this paper.

Four test examples are presented to demonstrate the accuracy and effectiveness
of using the proposed BIE in evaluating the DTS and DBR for two cracked plates
subjected to animpact loading in the form of the Heaviside step function H(t) where ¢
is time.

2 - Elastodynamic SGBEM for fracture analysis in the Fourier-space frequency
domain

A review of the elastodynamic SGBEM is given in this section as the proposed
BIE for evaluating the DTS is implemented as a post-processing step of a fracture
analysis using this method.

2.1 - Symmetric-Galerkin formulation

Consider a finite domain containing a crack composed of two surfaces ") and I,
symmetrically loaded as shown in Fig. 1. Let the boundary of the domain be I” and
I'=T,urIfu I, .Also, let the non-crack boundary I'y = I'y, U I'yy where Iy, is
part of I, where displacement is specified and Iy is part of I'y where traction is
prescribed. Finally, let I'y = I'y; + I"; and note that traction is supposed to be known
onl.=I Url;.

Fig. 1. A domain containing a crack.
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The Navier-Cauchy governing equation for elastodynamies without body force is
given by

(1) (@ — i@, 1) + Guj(Q, 1) — i;(@Q,1) = 0
where commas and dots denote space and time differentiations, respectively, and

u;(Q, 1) represents the displacement vector at a field point @ and at time ¢. The
compressional (c,) and shear (c,) velocities are known to be

A+2
@) gt et
p p
where A and p are the Lamé constants, and p is the mass density.
The Fourier transform of Eq. (1) gives the following frequency domain re-
presentation:

3) (C,z, — A if(Q, ) + Euj (@, ) + Fui(Q, ) = 0.

Use of the reciprocal relation for two elastodynamic states of the same angular
frequency wresults in the following displacement BIE for a source point P interior to
the domain in question:

UP, ) =u(P, w) — J [Uki(P, Q, 0) (@, w) — T(P, Q, ) u;(Q, »)]dQ

Iy

+JT¢RQ¢wmw@wMQ:0

re

4)

where @ denotes a field point, u; and #; are the displacement and traction vectors,
respectively, and Au; is the displacement jump vector across the crack surfaces. As
Auy; is used as the unknown on the crack, only one crack surface, e.g., I” ¥, needs to be
discretized.

For P off the boundary, the kernel functions are not singular and it is permissible
to differentiate Eq. (4) with respect to P, yielding the displacement gradients.
Substitution of these gradients into Hooke’s law and then Cauchy’s relation results
in the following BIE for surface traction:

ﬂR@zMR@fmmﬁmewa@@wsMRQ@w@@wQ
r

+@®J%ﬁ@wm@ww=o

re

()

where 7, is the outward normal vector to the related boundary. It is well known that
this traction BIE is essential for treating crack geometries.
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The expressions for the elastodynamic kernel tensors Uy, T, Dije and Sy, in
Eqgs. (4) and (5) can be found in, e.g., [17].

It can be shown that the limits of the integrals in Eqs. (4) and (5) as P ap-
proaches the boundary exist. From now on, for P € I', the BIE is understood in
this limiting sense.

The Galerkin boundary integral formulation is obtained by taking the shape
functions y,, employed in approximating the boundary tractions and displacements
as weighting functions for Eqs. (4) and (5). In order to obtain a symmetric coefficient
matrix as the name implies, Eq. (4) needs to be employed on 7, while Eq. (5) needs
to be used on I3, i.e.

(6) J v, (PYUP,)dP =0
Iy,

() | vy 7®.rar 0.
Iy

One of the advantages of the frequency-domain analysis is that Eqs. (6) and (7)
have a similar form as those in elastostatics. Thus, the reader is referred to, e.g.,
Reference [24] for more details on some aspects of the numerical implementation of
these equations.

2.2 - Treatment of singular integrals

The main computational task in implementing Eqs. (6) and (7) is the evaluation of
the singular integrals. These integrals can be decomposed into two parts as follows:

®) JJIdeP:JJISdeP+JJ(IfIS)deP

where I and I* denote an elastodynamic kernel and its elastostatic counterpart,
respectively. It should be noted that I involves modified Bessel functions of the
second kind.

As the general procedure for treating the singular and/or hypersingular integrals
in the first part | [ I* dQ dP has been presented in [24, 25], we therefore focus on the
second term.

As the distance r between P and @ tends to zero (Vo > 0), the modified Bessel
functions of the second kind take the following forms:

2

9) Ko) = ~In g

7+ Oz)
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1 =z 2 1 9
(10) Kl(z>_g+§(1n§+y—§)+o<z>
1 1
11 Ky(z) =— —= 3
(11) 2(:) = =5+ 0@)
where z could be either z; = iwr/c, or 2o = iwr/cs, * = -1, r = ||P — Q|| and y is

Euler’s constant.
Use of these above equations in the elastodynamic kernels results in the following
asymptotic behavior for the kernel functions,

] Ew
(12) Ui = Ulj =g, % = OW)
(13) Ty — T} =OCrInr)
(14) Dkﬂ - D?cﬂ 20(1"111 7")
(15) Skjg — S?cjé =O(In7r),

where Jy; is the Kronecker delta and (v is Poisson’s ratio)

-1 i 1 1 e\ ?

It can be seen that the second part [ [ (I — I*) dQ dP is regular except when the
integrand is Sy — S',Zj/. However, this logarithmic singularity can be treated
straightforwardly by Gauss quadrature using the following conversion [26]:

1 1
(17 Jf(r)lnrdr = — Jf(sr)dsdr.
0 0

C—

Finally, it should be noted that, since both I and I* are singular, the singular terms
in the kernel difference (I — I*) must be algebraically canceled out to avoid large
round-off errors. By doing that, the integrand (I — I*) can be accurately obtained by
using the expression for the elastodynamic kernel I where Ky(z), Ki(z), Ka2(z) are
replaced by their less significant parts (O(z), O(z?) and O(z?), respectively, in Egs. (9)
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through (11)), and v ,, x,, ¥, X, are replaced by v, —AA, y, - AA+ BB,
¥ — CC, x . + DD, respectively. Here,

(18) AA:;%<1HZ22_H,_;)
(19) BB(S_;>2§<11122_1+y%)
(20) CC:l(%>22j<ln22—1+y—%>+z_§ .

3 - Dynamic T-stress

An exact boundary integral formula for the DTS is derived in this section for
cracks of arbitrary geometry. The formula is based upon the series expansion for the
stress field in the vicinity of a crack tip [22] (Fig. 2)

K, K
(22) oii(r, @) = ﬂ%fi}@m \/Z%J”i}l(qb)JrT&ﬁerO(’r‘l/z)

where K; and Ky are the mode-I and mode-II SIFs, and ZJI and in are universal
functions of angle ¢.
For ¢ = 0, one gets

ou(,0)| 1 [K; T 1/2
(23) {m(rvo)}— _2W{KI}+{O}+O(T )

Fig. 2. Global coordinate system X; X, and crack tip coordinate system zz.
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which results in the following expression for evaluating the T-stress:
(24) T = lim [011(7, 0) — o2 (r, 0)} .
r—

The Fourier transform of this equation yields the following expression for the
T-stress in the frequency domain:

(25) T() = lim [an(r, 0,) — Ga(r, 0, w)} .

Consider an interior point P’ ahead of a crack tip P and in the direction of ¢ = 0 as
shown in Fig. 2. In this work, Eq. (25) is evaluated using the BIE for the stress
components at P’ (see Eq. (5)) and a limit process is carried out as P’ tends to the
crack tip P (r — 0),

(P, w) = J [Dké‘j(PaQaw)tj(Q7(0) = Sij(P, Q, ) u(Q, ») | dQ
(20 )
- Jim, | 814(P".@.0) 41,Q. ) 4@

It

Use of Eq. (26) in Eq. (25) results in

1@ = | [4DP.Q.0)1Q.0) + 4S(P.Q.0) 1@, )| 4Q

Iy

(27)
+ Jim, | 45,0, Q.0) 4@ 0)0Q
re
where ADk = Dllk — D22k and ASk = Szgk — Sllk-

Forallw > 0 and as P’ — P, the second integral in Eq. (26) tends to infinity (the
stress field oy, is known to be singular at crack tips) whereas the second integral in
Eq. (27) should be bounded as T-stress is a non-singular term. In fact, by using
relation (15), Eq. (27) can be rewritten as

70) = | [ADiP.Q.0)1@.0) + 45P.Q.0) 1@, )] 4Q

Iy

(28) + Jim J ASi(P", Q) Au(@) dQ

r;

c

+ Jim, | [48P".Q ) - 451P", @] 4@, 0@

rt

c
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If this equation is discretized, the only limits that need to be taken care of are
those associated with the crack-tip element. Let these limits be denoted as T, we
have

T = Jim, | 4SiP".Q 4@ aQ
ry
(29) ’
+Jim, [ [48.P",Q.0) ~ 48P, Q)] 4@, 0)0Q

+
rct

where I'}, is part of the I} discretized by the crack-tip element.

By numerically implementing this equation using a standard quadratic element,
as proven in [6], the first integral on the right hand side is continuous as P’ — P.The
second limit in Eq. (29) should also be bounded as its integrand is only weakly sin-
gular as discussed in Section 2.2. In other words, the limit processes in Eq. (29) are
not necessary and the two integrals in this equation can be directly evaluated at the
crack tip (P’ = P).

4 - Dynamic biaxiality ratio

The biaxiality ratio B, proposed by Leevers and Radon [23], is a dimensionless
quantity and defined as
T/ra
B —
(30) e
where K is the mode-I SIF and a is the crack length.
For dynamic analysis of cracks, the same concept can be adopted to define the
DBR B(t) given by
Tt)y/7a
31 Bt)=———
31) O ="%®
where Ki(f) is the time history of the mode-I DSIF.
There are several available approaches for numerically evaluating the SIFs.
Among these methods, the displacement correlation technique (DCT) based upon

the displacement jump in the vicinity of the crack tip is one of most effective. Details
of using this technique to obtain the time history of the mode-I and mode-II DSIF's

can be found in, e.g., [17]. A brief review is given as follows: For stationary cracks (as
those considered in this work), the frequency-domain mode-I SIF is given by

Jr . 2n
lim /=% 4
14—y 1/ Aun(@)

(32) Ki(w) =
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where Au,, is the normal component of the displacement jump vector, and r is the
distance to the crack tip.

The dynamic analysis of cracks reported in this work is performed using the MQP
element developed in [28]. By using the MQP shape functions in Eq. (32), the mode-I
SIF can simply and accurately be obtained as

I 2n
(33) Ki(w) = =i /Z (84u? — Au®)

where L is the distance between the two end-nodes, and the superscripts (2) and (3)
denote the quarter-point node and non-tip end-node of the crack-tip element, re-
spectively.

As K is directly given in terms of the nodal values of the displacement jump of the
crack-tip element, and the MQP element enhances the accuracy of the nodal dis-
placement jump [28], this enhances the accuracy of the obtained frequency response
Ki(w) [16].

At this point, IFFT can be employed (see, e.g., [17]) to convert T'(w) in Eq. (28) and
Ki(w) in Eq. (33) to T(t) and Kj(t), respectively. These transient parameters are
required for determining the dynamic biaxiality ratio B(¢) as seen in Eq. (31). For
more details of this frequency-to-time conversion, the reader is referred to, e.g., [15]
or [17].

5 - Test examples

Four numerical examples involving viscoelastic materials under impact loading
are given in this section to illustrate the accuracy and effectiveness of the proposed
BIE (28) when it comes to evaluating the DTS and DBR. The type of impact loading
considered in these examples is the Heaviside step function oy H(f) as shown in
Fig. 3. Note for this type of function that an unloading needs to take place well before
the end of the analysis period in order to create an impact situation. The internal
damping of the viscoelastic materials is considered by means of a complex shear
modulus defined as p, = (1 + 2i{) where ( is the damping ratio. The following
material properties and damping ratio are employed for all the test examples:
u="176.923 GPa, v=10.3, p = 5,000 kg/m?, and { = 1%. Undamped cases are not
considered here as their transient responses never decay which violates the periodic
nature of the standard FFT and IFFT algorithm discussed in Section 4. This ex-
plains why spurious oscillations were observed in the time solution for cases with
zero damping ratio [15, 10]. Note that the referenced numerical results, employed in
this paper for the purpose of comparison, are digitized data.
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Fig. 3. Heaviside step loading.

5.1 - Dynamic T-stress for a mode-I crack in a finite plate

The first two examples involve a mode-I crack of length 2¢ = 4.8 mm in a
finite plate of size (2H x 2B) = (20 mm x 40 mm) as shown in Fig. 4. The plate
is subjected to a uniaxial tension o(t) = g9 H(t) depicted in Fig. 3. Note that the
geometry and material data employed here are adopted from Ref. [9] for the
purpose of comparing our results with other numerical solutions available in the
literature.

L X,

o(t) = 2“[ :

| B B

Fig. 4. A plate with a centrally located mode-I crack.

Based on a convergence study, a total of 20 elements is employed on the boundary
and 10 uniform elements are used to discretize the crack. For the frequency re-
sponse analysis of the DTS, another convergence study reveals that a frequency step
Af = 0.001 MHz and a number of samplings N = 2!! = 2 048 are needed. This re-
sults in a Nyquist frequency fnyq of 1.024 MHz. Figure 5 depicts the conjugate
symmetry about fyyq for the frequency response T'1(w) of the DTS (due to a unit
Heaviside step loading o(t) = H(t)) obtained by using Eq. (28). According to this
figure, the chosen value for fyy, is justified as there is no significant peak for fre-
quencies larger than 1.024 MHz.
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Fig. 6. Normalized DTS under Heaviside step loading (# = 0 and { =1%).
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By applying the FF'T to gy H(t) and IFFT to the frequency response 71(w), the
transient response 7T'(f) can be found. Here, the DTS is normalized by the corre-
sponding static T-stress T (the T-stress for the same problem, but under a constant
tension og). For the sake of comparison, the value of T reported in [18]
(Ty = —1.058 ) is also used here. Figure 6 shows that the time history of the
normalized DTS T'/T, obtained from this work agrees very well with those reported
in [18] using the BEM and interaction M-integral method. Of particular importance
is the fact that the SGBEM curve shows similar oscillations caused by various
scattered waves as on the two BEM curves. Specifically, the SGBEM and BEM
solutions agree on the time needed for the incident longitudinal wave to travel from
the vertical edges of the plate to the crack (I; ~ 2.5 us).

Finally, it should be noted that the resolution of the SGBEM curve seen in Fig. 6
was doubled using a very simple interpolation technique available with the FFT (see,
e.g., [27]).

5.2 - Dynamic biaxiality ratio for a mode-I crack in a finite plate

The numerical result for the DBR B(t) for the mode-I crack problem described in
Section 5.1 is given next. Toward this end, it is necessary to obtain the mode-I DSIF
first, using the technique proposed in [17] and summarized in Section 4. As expected,

3 T T [ T [ T [ T I T I T
2.5 |
2 — -
1.5 —
L .
] e —
B +—e SGBEM )
0.5 - BEM, [10] N
' = —-u SBFEM, [15]
(s
1 | 1 | 1 | 1 | L I L I L
0 2 -+ 6 8 10 12 14
Time (us)

Fig. 7. F1 under Heaviside step loading (0 = 0 and { =1%).
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2.5 T [ T | T | T ] T I T

. |

6
Time (ps)

Fig. 8. Dynamic B under Heaviside step loading (0 = 0 and { =1%).

the same frequency step and sampling number are employed to convert Kj(w) to
K;(t). Figure 7 depicts some numerical results for the normalized mode-I DSIF,

K
Uom
agreement between the SGBEM F solution and those obtained from finite differ-
ence method [9], BEM [10], SBFEM [15], etc.

Finally, the DBR B(t) can be found (see Fig. 8) by using the DTS solution 7'()
(mentioned in Section 5.1) and the above Ki(t) in Eq. (31). Note that B(?) is not
available before I; as both T'(t) and K;(¢) are supposed to be zero during that time. To
the best knowledge of the authors, no reference is available in the literature to be
compared with the result shown in Fig. 8.

defined as F'1 = . As reported in [17] and seen in Fig. 7, there is a very good

5.3 - Dynamic T-stress for a mixed-mode crack in a finite plate

The last two test examples deal with a mixed-mode crack in a finite plate under a
uniaxial tension o(t) = g9 H(t) (see Fig. 9). The crack has an orientation 6 = 45°
relative to the direction of the load and alength 2a = 10v/10 mm. The size of the plate
is 2H x 2B) = (30 mmx 60 mm).
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‘ N

- | ‘

| 20 H : o(t)
0
U{I) - 6\//1 ] - -

| B B

Fig. 9. A plate with a centrally located mixed-mode crack.

Based on a convergence study, a total of 20 elements is employed on the boundary
and 10 uniform elements are used to discretize the crack. For the frequency re-
sponse analysis of the DT'S, a frequency step 4f = 500 Hz and a number of samplings
N = 2'2 = 4,096 need to be selected. Figure 10 shows the frequency response 71 (w)
while Fig. 11 depicts the normalized 7'/Ty curves where T, is adopted from
Reference [18] (T) = —1.058 g¢) for the purpose of comparison. It can be seen from

50 T I T T I T I T I T I T I T I T I T [

40 i

30 :

20 H real .
i - 1maginary

10 H 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
f=w/2n, MHz

Fig. 10. Frequency response T1(w) (0 = 45° and { =1%).
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Fig. 12. F1 under Heaviside step loading (§ = 45° and { =1%).

[16]
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Fig. 11 that while the SGBEM solution does not agree with the BEM [18] one, there
is a very good agreement between the SGBEM and SBFEM [21] curves.

5.4 - Dynamic biaxiality ratio for a mixed-mode crack in a finite plate

The same approach, as described in Section 5.2, is employed here to evaluate the
DBR B(t) for the mixed-mode crack problem under consideration. Although there is
no available reference to assess the accuracy of the DBR time history shown in
Fig. 13, this SGBEM result can be justified as both the related DTS (Fig. 11) and
mode-I DSIF (Fig. 12) agree well with some referenced solutions. In fact, for the
normalized mode-I DSIF, a good agreement between the SGBEM, BEM [29] and
FEM [30] results can be observed in Fig. 12.

0.8 L T T T T T T T T T T T T T T T T T
0.6 — —
r *— SGBEM 7

04—

021

0 2 4 6 8 10 12 14 16 18 20
Time (ps)

Fig. 13. Dynamic B under Heaviside step loading (0 = 45° and { =1%).

6 - Conclusion

In this paper, a weakly singular 2-D BIE in the frequency domain was developed
for numerically calculating the frequency response of the DTS in the post-processing
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stage of a frequency-domain boundary element analysis of stationary cracks under
dynamic loading conditions. The transient response of the DTS can easily be ob-
tained by applying the IFFT to its frequency response. This BIE is simpler than
those used to determine the stress components at an interior point to a domain. It
can be employed at the crack tip to accurately evaluate the DT'S without any concern
about the numerical sensitivity of the result. The technique is much more compu-
tationally effective than the M-integral method as the latter requires evaluating both
the stress and displacement at several interior points used as Gauss integration
points.

For the test examples considered in this work, the numerical results for the DTS
agree very well with a few referenced solutions available in the literature. Although
these comparisons cannot be used to judge the accuracy of the BIE developed, at
least they have helped to validate the proposed technique.
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