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Direct methods for CSIE in weighted Zygmund spaces

with uniform norm

Abstract. In this paper the authors propose two projection methods to solve
CSIE having smooth or weakly singular kernels. They prove their stability and
convergence in Zygmund spaces equipped with uniform norm. Some numerical
examples illustrating the accuracy of the methods are given.
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1 - Introduction

This paper deals with the numerical treatment of Cauchy singular integral
equations of the following kind

1 1

O e+ J J%va-ﬂ(y)dy + J ke, ) Fr )y = g,

-1 -1

where |x| <1, k and ¢ are known functions, a, b are constant coefficients such that
a2 +b% =1and b # 0, f is the unknown and v*#(x) = (1 — 2)*(1 + 2, —1<a, f<1,
is a Jacobi weight. The kernel k(x,%) can be a smooth or a weakly singular
function in [ — 1, 1. The exponents of the weight v*# are related to the coeffi-
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cients a and b by

1 a+ b 1 a+ b
OCM%log(a_lb> and ﬁN+%lOg(m>7

with M and N integers chosen so that the index y = —(« + ) = —(M + N) is equal
to 0.

For the sake of simplicity and without loss the generality, we shall consider the
equation

(2) D +K)f =g,

where

1
(DF)() = cos (am) v~*(@) f (@) — o (o) J Mvm—“(y)dy,
7 y—u

-1

1
(KF)(@) = J k(e ) f o (y)dy
]

and 1/2 < a<1. In other words, we take f = —o and the constant coefficients ¢ and b
appearing in (1) as cos (na) and —sin (na), respectively. Note that the case o« = 1/2
includes the well known airfoil equation.

Denoting by L2 = LZ([ —1,1]) the collection of all measurable functions s.t.

1
||oof ||§ = j(fw)z(m)dac< + o0, it is well-known that (see, for example, [23])
1

D:L; — L%, ,w=1v""% is a continuous and invertible map. This important
property has suggested to consider equation (2) in the couple of spaces
(Lfv, L? /w), w = v*~ %, and to study the stability and the convergence of the proposed
numerical methods (projection and quadrature) there.

A considerable literature exists on this topic in the case where £ is smooth (see,
for example, the surveys [9, 6, 7, 8, 10, 23, 24, 11, 12, 13, 27, 2] and the references there
in). Whereas, when the kernel is weakly singular, equation (2) has received less at-
tention [12, 17, 15].

Some years ago, in [19] (see also [3]), the authors showed that the dominant
operator D is bounded and invertible in the couple of spaces (Z>(v*?), Z> ("))
(see the definition in Section 2). This result allows to use an indirect method, i.e., to
regularize equation (2) and to obtain a Fredholm equation that can be studied in a
weighted space of continuous functions with uniform metrie. This procedure has
been shown in [20, 4, 2].
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In the present paper we use a new idea. We consider equation (2) in a couple of
Zygmund spaces with uniform norm. Without regularizing the equation, we use two
projection methods in the different cases in which the kernel is smooth or weakly
singular. We prove their stability and convergence and the well conditioning of the
related linear systems. The error estimates are given in the Zygmund norm and we
improve all the estimates available in literature [17, 15, 11, 12]. Numerical examples
confirming the error estimates are shown.

The paper is organized as follows. In Section 2 we give some notations and pre-
liminary results. In particular, Subsection 2.1 is devoted to the mapping properties of
the operators D and K. In Section 3, we propose a numerical method that can be
applied both when the kernel and the right-hand side are smooth and when the right-
hand side is smooth and the kernel, although presenting weak singularity, can be
written in a suitable form (see (24)). The case of weakly singular kernels is con-
sidered in Section 4. In Section 5 we prove the main results. Finally in Section 6 we
show some numerical tests.

2 - Basic facts and preliminary results

In the following C denotes a positive constant which may have different values in
different formulas. We will write C # C(a, b, . ..) to say that C is independent of the
parameters a,b,.... If A, B > 0 are quantities depending on some parameters, we
write A ~ B, if there exists a positive constant C independent of the parameters of A
and B, such that

B
- <A<CB.
c=4s

Let LP be the space of all measurable functions f such that

1 »
1Nl = ( J If(ﬂc)”doc) <400, 1<p<+o0.

1
With the Jacobi weight v*#(x) = (1 — 2)*(1 + x)ﬁ, o, f > —1/p,wesetf € L/]UJ«./; if and
only if fv*# € L”,1 < p< + oco. We equip the space Lf)’y_ﬂ with the norm

1

1 »
Lo, = ( J |f(oc)v“'”(x)|pdac> , 1<p< + 0.

-1

When p = +oo we define, for o, f > 0,

%y 1= Cpp = { fecC(-1,1) : ‘lilml (o)) = 0},
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where C°(A) is the collection of the continuous functions in A C[—1,1]. If a =0
(respectively, f = 0) Cys (respectively, C,.0) consists of all continuous functions on
(—1,1] (respectively, [ — 1,1)) such that

lim ( f"P)@) =0, (respectively, lim ( F* O @) = 0).
r—— xr—
Incase o = f = 0,we set Cyoo := C°( — 1,1]). The space C,., equipped with the norm
— “:/’) — O(ﬁ
1., = mas (@] = 1.

is complete. For the sake of brev1ty, we will write ||f] = max| f(x)| and

Lol ) = ( I If(ac)v“”(ac)|pdac)p 1< p< + o0,

We will study equation (2) in Zygmund spaces. For 1 < p < +oo, these can be
defined as follows:

<oo,k>reR+},

Q(f )
ng(vaﬁ) — {f = Lq;i/f : Sup%
' t>0

where
K of gk
Q¢(f7 t)v“'/f,p = Sup Hvxﬁdhgﬂf”lﬁ([khﬁ
0<h<t

k>1, 0<t<l, Iy, =[—1+ @kh)? 1— @kh)?], p@)=+v1—a® and

k .
A @ =3 (- l)l(l;)f<x+g¢(x)(k —2i)).
=0

In the sequel we will briefly denote the above spaces by Z!(v*f), omitting the
subscript k& > r. Moreover we will set Q,:= Q;, QZ( [ty = QZ( Sy Do, and
ZP .= ZP("9). The norm in Z-(v*f) is defined as

QI;;(fv t)v“«/’,p

1f 1l 2y = F0*7,, + sup ”
t>0

Now we recall some inequalities involving the error of best approximation

Eyn(f)yop = Jinf (|(f = Puy*’|l,,

where P, is the set of all polynomials of degree at most m. For simplicity we will
write B (oo := Em(f)po o - The following inequalities are well-known [5]

F QE(f )
3) By < cJ Mdt
0
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and
(4) (L <£§:(1+i)k’lE~(f)-;
"NV mY T mE vl

where C # C(f,m),k<mand 1 < p < co. For example, if f € ZF(v*#) with s > 0 and
1 < p < oo, we have

(5) EDip <l C# Clm.f).
Moreover, by (3) and (4) it is possible to deduce that, for s > 0and 1 < p < oo,
(6) 1Nl zzgasy ~ 1A%, + sup KB ()t s

where the constants in ~ are independent of f.
Now, letting

Em(f)zg(vu,/f) = Pil'el% ”f - Pm”zgf(vx,/i)a

by (6) we get
(7 En(D gy < Csupm Ey(ypsp, 1 <p<oo, C#Cm,f).
m

Consequently, E,( f)Zz;(w.ﬂ) =0Om"*),s>r, if and only if feZl@*F), ie.
En(ips ), = Olm™?). Finally, the following inequality will be useful

EAULIET

k>3
7 K>

®) En(f)o <C

o% |

The inequality (8), that estimates the error of best uniform approximation by means
of the L!- modulus of smoothness, follows by [14, eq. (2.15)]. As a consequence of it,
we deduce Z! (") C Z2,s > 0.

Since our numerical method is based on the Lagrange interpolation, we introduce
the Lagrange pro;jectlon L*’ based on the zeros ym »J=1,...,m, of the Jacobi
polynomial p%’ | i.e., for every f € Cos

m o:, ( 96')
L) =Y U@ fayl), 1@ =
;J S [pil7 <y;‘;fj><x vl

We will also consider the Fourier sum of a function f € L, in the system {pm b It
is defined as follows

m—1

Sz%ﬁ(fv y) = Z C‘,pvﬂ(y)
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where

1
ey = Jf(t)pi"ﬂ(t)v“’ﬂ(t)dt, v=0,....,m—1,
-1

are the Fourier coefficients.
The following theorem is crucial for our purposes.

Theorem 2.1. For1/2 <oa<1and |x| <1, we have

9) @)L @) < Clogm)||fo*]|, f € Cpo,
(10) WO @)(L " f)@)| < Clogm)|| .., W € Cpa,
1
(11) j L5 @) < Cfll, VF € CO— 1,1,
-1
and
(12) 1072 ()l < ClIA* Elly, Yf € Lioﬁ%,
where C # C(m, f).

The bounds (9) and (10) are consequences of [18, Theorem 2.2], the bound (12) can
be found in [21] and (11) is a special case of the Nevai’s result in [22].

Since in our numerical method we will use simultaneously the projectors L2, ~*
and L, **, we will denote by ¢;,j = 1,...,m, the interpolation knots of L;~* (zeros of
pL~*)and by x;,7 = 1,...,m, the interpolation knots of L, ** (zeros of p,**). We will
also denote by im L%’ the range of the operator L*F. Note that

L)
{(p;’“(ac) e j=1,... ,m}

D“'O(tj) ’

is a basis of P,,_1. Obviously, Vq € IP,, 1 one has
m
D oF @) @) € im L
j=1

and, in virtue of (9),

m

vx,O Z (p;cA,—oc(q,Uo:,O)(ti_)

J=1

< Clog m)|qv™*|

00"

o0
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Analogous observations hold true for the basis

{ore@ =ty =1

00 (;)”

of pm—l-

2.1 - Mapping properties of the operators D and K

Regarding the operator D the following theorem proved in [19] (see also [3]) holds
true.

Theorem 2.2. Forallr >0
D : Z>Xw) — Z2 ")

18 a continuous and invertible operator.

Moreover, with the notation k(x,y) = k.(y), concerning the operator K, we state
the following

Lemma 2.1. Letting
I' = sup vo’“(ac)”kxvo’*“ﬂl and I, = sup vo*“(ac)E’m(kx)vM’l,

|v|<1 v|<1
we have
(13) [0 Ef |l < TN
and
(14) Eu(Kf)c,, < Tulfo?.

Moreover, if for some s > 0 it results supm*l, < C< + oo then, for any r<s,
m

K : 722" — 720
1s a compact operator. Consequently, assuming that Ker(D + K) = {0},
D+ K : 220" — Z2w™)
18 a continuous and imvertible linear operator.

We remark that the assumption sup m* I, < C< + oo is fulfilled by any kernel &

m
satisfying sup v"*(@)[|k| j1(0- < + 00, i.e, I’y ~m®. For example, the kernel
|v|<1 ’
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k(e,y) = A+ x)~Y 4|x — y|3/ % satisfies the previous equivalence with s > 5/2 and for
any o > 1/2.

3 - Numerical method for continuous kernels and right-hand sides

Coming back to the equation (2), in this section we assume a certain smoothness
of the known term g and of the kernel k. More precisely, we assume
(15) g€ ZX0") and sup v*"*@)|ky| g < + 00, s>0.

<1 !

Note that, under the assumptions (15), Lemma 2.1 holds true and then K is a
compact operator. Moreover, by Theorem 2.2, D is invertible. It follows that if
Ker(D + K) = {0} the equation (D+K)f =¢ admits a unique solution in
Z2*0), r<s.

The quadrature method is the following. Recalling the projectors L%~ and L, **,
we set

(16) Fu@) =" ¢f @y € im L5, a5 = (£,
J=1
(17) gn@) =" 0 @i € im L, b = (90" @y),
i=1
and
(18) Ko f)@) = Ly (Ko fin, %),
where

1

R o)) = J L2 ey, ) fon 0™y

-1
Then we solve the finite dimensional equation (D + K,,) fi, = 9., being [9]
Dpli*=p, ", m=012....
Since it can be also written as
L, *Dfw + K fun, ) = L, (g, ),

comparing the coefficients to both sides, we get

WO Df) @) + @OV Ko ) i) = @"g)@y), i=1,...,m.
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Moreover, since (see, for example, [11, Lemma 1.15])

~ sin(om) & 4 ;
(19) DD =3 5
and i
(Kmfm)(xl) = Z k(xwt ) “O(t )

we get the linear system

A [sin(om) 1

00( .. . — b ) —
(20) (acl)z ) (xi_tj)w(xl,t,)}%_bl, i=1,...,m,

that is equivalent to the equation (D + K,,) fn = G-
Note that the above system is well-defined, in fact, letting x,,; = cost,,; and
tm,j = €080y j, 1,7 =1,...,m,in [16] the authors proved that
C

21 mm _p. 1L
@ i,j=1,..., IT”“ gl > poo

from which it is easy to deduce that there exists a positive constant C # C(m, j,1) s.t.

(@)
— > (.
v 0|t — ;]
Ifa=(ay,...,a,)" isthe unique solution of the linear system (20) then f,,, defined in

(16), is the unique solution of the equation (D + K,,) fx = G-
Now we prove the stability and the convergence of the method.

Theorem 3.1. Let 1/2 <a<1. Assume that Ker(D + K) = {0} in Zﬁo(v“*o)

and that

sup 0" (@) ||kyl| g < + 00 and g€ ZFXO), 0<r<s.

|e|<1
Then system (20), for a sufficiently large m (say m > my), is unisolvent and, de-
noting by A,, its matria and by cond(A,,),, its condition number in uniform norm,
we have

A

22) cond(A,)

su < 4o
mp log® m
Moreover the following error estimate

logm

(23) I = Fllzz oy < € S 1911232 o Sup UO“(%)H’C 2

holds true, where C # C(m, k, g).
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3.1 - Special case

The previous procedure can be used when the kernel k(x, %), although presenting
weak singularity, can be written as follows

(24) ko, g) = MDD,
Note that if k is a weakly singular kernel of the form
k(e y) =le—yl", —1<u<0,

then the representation (24) holds true with k(x, %) = (y — x)|x — y|*.
Concerning the function h(x, ), we will assume

sup Hthzgc < +00.
| <1 )

We approximate the equation (2) by the equation (D + K,,) f;, = g Where f;,, ¢, and
K,, are defined in (16), (17) and (18), respectively. Then we get the linear system

m o3P Tsinan 1 (s, ) — h(x;, ;)
9 0,0/ o J il 15 R
(25) v ml);w”@p { r @1 + r— a; = b;,

1=1,...,m,
in the unknowns a4, . . ., a,, that is system (20) with k(x, ) having the form (24).
Theorem 3.1 becomes
Theorem 3.2. Let1/2 < a<1 and assume Ker(D + K) = {0} in Z>@*?) and

sup |||z < + 00 and g€ ZX0"), 0<r<s.
lz|<1 ;

Then equation (2) is unisolvent in Z*@*%),r<s, system (25), for a sufficiently
large m (say m > my), admits a unique solution and its matrix A,, satisfies

cond(A,,)s
72 < + o0
m  log“m

Moreover the error is estimated as follows

log®m
1(f —ﬁn)v“’onzgcww) <C T HQHZ:F(W“) sup ||hx‘|zgw r<s,
ja]<1

where C # C(m, h, g).
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4 - General case

When the kernel k£ cannot be represented in the form (24), for example it has weak
singularities along stretches of curves contained in[ — 1, 1]2, we go to solve the finite
dimensional equations

(26) D + K;;@)fm =Gm,

where f,, and g,, are the same defined in (16) and (17), respectively, and

(K fu)@) = L (Ko fin )
with

1
R o)) = j S5 g ) )y,
|

where S%~*(k,, y) is the Fourier sum of the function k, in the system {pZ~*},,. By
(19) and taking into account that

m o=
Ko fr) i) = ZISn(k @)W{O—@j)aj, aj = (fur")t),

= .

the finite dimensional equation (26) is equivalent to the system
" 207" Tsinam 1
27 0% (a; ! 2 (kg b)) | @ = b
(27) P i e 2 o+ S )]0y = b
1=1,...,m,

that is system (20) with k(x;, ;) (that may not exist) replaced by S%~*(k,,,t;). Of

course the computation of the Fourier coefficients ¢,,v =0,...,m — 1, requires the
main computational effort.
Ifa=(ay,...,ay)" is the unique solution of the linear system (27) then f,,, de-

fined in (16), is the unique solution of the equation (D + K*) fin = gm.-
Now, making an L?—assumption on the kernel k, we prove the stability and the
convergence of the method.

Theorem 4.1. Let 1/2 < a<1 and assume that Ker(D + K) = {0} and that,
for some s > 0, it results

sup " ()| |k | < +oo and g€ ZX™).

0%
le|<1 Z0T D)

Then equation (2) admits a unique solution in Zﬁo(v“’o),r<s, system (27), for a
sufficiently large m (say m > my), is unisolvent and the condition number of the
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matrix A, satisfies
cond(4,,)u

S logm

Moreover the following error estimate

< + o0.

logm

(28) 1GF = £l gy < €2

1915 9D L X @ |5
<1 :
holds true, where C # C(m, k, g).
As already announced in the introduction, equation (2) has been previously
considered in weighted L? spaces. In particular, in [15, Theorem 3.2], assuming

sup ||kl 2 < +00,  sup [|kyll 2020y < +00, g€ Z2(w),
lv]<1 ly|<1

the following estimate

(29) H(f *fm)v%'% §’

has been proved. It improves an analogous estimate proved in [17].
Using [15, Theorem 3.5], the L*> version of (29) is

I(f = ™|, = Om~72)

that, in Z2°(*?),0<r<s, becomes

Y 1
If = Fnll gz oy = On="77%).
=)

5 =00m™%), s>

It implies the convergence of the error for s >+ 1/2, while, by (23), the con-
vergence follows for s > r.

5 - Proofs

Proof of Lemma 2.1. We first prove (13). We have

V() (K ) ()| =v"*(x)

1
j ke, ) o) ap)dy
—1

1
<O @) j o, )y
|

<[If*° o sup v (@)l
|v[<1
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Now we prove (14). We preliminary observe that a polynomial g,,(x, y) of degree m
with respect to both the variables separately can be represented as follows

m
g, y) = Zpi,m(x)?/nﬂ, Pim € P,
=0

and
1

|| aute sy
21
is a polynomial in x of degree m. Thus

1
En(Kf) s oo < sup v"*(x) J (e, ) — g, I (fo™ ) (y)dy

<1
-1

1
ﬁqumemjmmw—%mwwﬂ@@.

jal<1
-1

Taking the infimum on all polynomials (in the variable y) of degree m, we deduce
(30) E(Ef ) v < 100 o sUp 0% @) E (ko1 = Tl o™ -
<1
In order to prove the second part of the lemma, let » > 0 and » < s. Then applying (7)
with Kf in place of £, by (30), we get
Eni(Kf) ge ) <Csupm” By (Kf )y o
m

<C||fo*°| o supm’ Iy,
m
SCHf”ZCrX(WO) sup mTFM_
m

Since we assume sup,, m*l ', <A< + o0,s > r, we obtain

BBz _ CA
I f 1z ey — ms="”

s>,

and, using [26, p. 44], the compactness of the operator K : Z>(v*?) — Z>(1%*) fol-
lows.
The last part of the lemma is a consequence of Theorem 2.2. O

Lemma 5.1. Let1/2 <a<1. If, for some s > 0,

sup vo’“(oc)||kx||zgc < + oo,
|v|<1
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then, for every 0<r<s,

logm

0,
(K — Kn) fll oy < CllF Il 7o om0y SUP 07 @) [ || 5o —=-,
Jv|<1 m

where C # C(m, [, k).

Proof. By definitions of K and K,, we have

1

(K — Ky)f (@) = j ke ) f o™ (pdy

-1
1
~L," ( J Ly (ke y)(fv“'“Xy)dy,x) :
-1

The following notation will be useful. With @ : [ — 1,1 — R, we set
1
(Kf)a) = J alee, ) )dy
-1
and

1
(K, @) = L, ( J Ly (al, -),?/)(fv“’_“)(y)d%%) :

-1

Then if a(x,y) = P, (x,¥y), being P,,(x,y) a polynomial of degree m with respect to
both the variables separately, we have

KPm _ K'r[y;m — 0
and then, with R(x,y) = k(x,y) — P,.(x,y), we get

WK — K)o < 10K oo + 07K o

m

Regarding the first addendum, we use (13) and obtain

KRl <17l sup W (@)|[Ra" )y
LIRS

SC”fva‘O”oo sup vo’a(x)”km = Pzl
lv|<1

being R, (y) = k;(y) — Py »(y). For the second addendum, we use (10) first and
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then (11). We deduce

[0 KE £||.. < Clogm) sup v"*(x)

o<1

1
| ey
1

1
<Clog )] sups**(@) [ |Li*(Res )o@y

Je|<1
-1

gC(log m)”ﬂ)a'onoo sup ’UO’O{(-%')Hkx - Pm,x”:)c'

Je|<1
Then we obtain

[V *(K — Kn)f o < Clogm)||fo]|., |Sl‘1p V@)K = Pl
x|<1

and, taking the infimum on all polynomials (in the variable y) of degree m, we get

[0 (K = Kl < Cllogm)|lfo™®|| sup v @) B k)

v|<1
Finally, in virtue of the assumption on k, we estimate E,,(k,). by (5), and obtain

logm

ms

(31) [v"*(K = K f o < CIIS Il o) sup V(@) e[
x|<

Now, taking into account the equivalence (6), we get

(K — Ko) fll 70y < Csupm|[o"*(K — Ky)f| -
m

Therefore, applying (31), the thesis follows. O

Proof of Theorem 3.1. By the identity
(D + K)fm = (K - Km)f:m + (D + Km)fm

we get
1foull 2,20y < 1D + )l 7,000 2,050 LN E = Ko Full g, 080y + 1D + Ki) | 7, 00)]
and, taking into account Lemma , it follows that

C||ﬁ7’b||Z,.(v°‘v0) S ||(D + Km)ﬁ”'lz,.(vo~“)7
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where

s>

14— logm
C < D+ K Mz wn-z,000) — O( ; )

mS*’V‘

Consequently D + K,, : 9m L3;~* — @m L, ** is invertible and, for a sufficiently
large m (say m > my), (D + Ky,) fin = gn has a unique solution f,,, € im L%~
Now we prove (22). By (20) we have

m ;i“ o ;{o:.fx
< 0,0/ na.
HAm”oo 70231173)(7”7) (xl)[zvao(t)m—ﬂ—’—z O(O(t)|k(x“t)|‘|

Recalling that [25, p. 353, eq. 15.3.10] 2/"* ~ 4t;v*~*(t)), 4t = tj+1 — t;, and that in
virtue of (21) we have (see, for instance, [1, (5.16)])

nA
(32) Z ]t () < GV (w;) log m,
j=1 |xL - j|

we get

142l <C max vo“(ﬂcl)[z Atj 0 “(t)—i—ZAtv T Koy, T)|

44444 pa |oe; — =

1
< Clogm +C ( J vo““(x)dx) sup v"*(@)|| k.|

|v[<1
-1

Then, by the assumption on k, we obtain
(33) Ao < Clogm.

It remain to estimate ||4;!(| ... In virtue of the equivalence of the system (20) with
the equation (D + Ky,)fy = gm, for every 0 = (0y,...,0,,) there exists a unique
E=(&,...,&,) such that A0 = & if and only if (D + K,,) '0(x) = &), where

O) = Z 0; @0, 0 = 0" )@

and
m

&) = Z g, &= CrO).

Then, for all 6, we get
14,100 =1l < €00 = 1D + Kn) 7 00"

1
§||(D+Km)m>m,1||cvo_ﬁcv, 100l (1L, Hcoﬁcw
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Using (10), we obtain

(34) 14, M. < Clogm.

lloo

Now, combining (33) with (34), (22) follows.
In order to prove (23), we use the following identity

(f —fu) =D +EK) (g —gn) — K — K fn)
Then, since by (6), (10) and the assumptions on g, we get

logm
lg — 9m||z;c(vﬂ-1) <C P ||9||zg°(v0-v)a

using Lemma 5.1, (23) follows. O

In order to prove Theorem 3.2 we need the following notations and results.
We denote by a)f; the complete p— modulus of smoothness [5]:

W (f sy =2(f Dys
. 7/; .
+ 008 10 = 90 e
; v
Jrqg[}kfil 1 = @O0 | oz 1-
We will set @, := o}, and wf(f, ) := &fi(f, D0 -

Lemma 5.2. Let1/2 < a<1. Ifthe kernel k has the form (24), where, for some

s> 0,
’ sup |h| 7 < 4 oo,
e|<1 !

then, for every 0<r<s,

logm
By (Kf) 7,000 < C||fv%70||oo sup ”h’”LHZ;C e’
lel<1 m

where C £ C(m, f, h).

Proof. We can write

1

W2 @) KF)@) = (1 + )" J hix, y) — hix, ©)

= (o dy

(35) O hy) - i)

e )
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We have
(36) L] < C|lfo) sup 1722

<

Concerning I5, we have

x+%
h(x,y) — h(xe,x
A R e
ot
14+.'t
” he(x + V1 + 2u) — hy(x)
il | e

fi

=

+o

<C|f ). J {IAWh @), |Awhx(ac)|}du,
0

w

where Z)W and (ZW denote the forward and the backward finite differences op-
erators of step ug, respectively, and, recalling that [5, p. 26]
gz, )oe ~ SUD || Auphslo ~ sUP || Aughl| o, ~ sup. A gl

0<u<t O<u<t O<u<

we deduce

1
J w(p(hﬂé‘v u)oo du
7,“ .

(37) || < Cllf™ 0l
0

Combining (36) and (37) with (35), we get

oD
||v°’“<Kf>||oc<C||fv°ﬂ‘r°||ocsn|1p{|hx||oo J—“’v’( )dt}
x|<1

0

1
Let py(x, %) be a polynomial of degree N = {%J with respect to both the vari-

ables x and y separately. Then q(x,y) = Py, yy) — z (@) is a polynomial of degree

N — 1 with respect the variables y and of degree m with respect to the variable x and

1
Po(@) = J 9, ) F )y

-1
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is a polynomial of degree m. We have

1

0() j (e, ) — qle, I )y

-1

E (K ) oo < suplv

] <1

= sup
<1

1
vO,a(m) J [hw(y) - pNx(ij : :Ech'v(-%') - pNx(x)] (fva,foc)(y)dy
1

and, proceeding as done for (35), we get

t
0

1
h, — t)so
B Kf) e < ClLF0].. sup {Hhx vl + J“’“’( v = PN dt}-
ec]<1

Taking py , for every fixed «, as the polynomial of best approximation of the function
hg, recalling that [20, Lemma 2.1]

1

ok
Ol =P gy o B Ry
0

and applying the Jackson theorem [5], we deduce

1
T ()
BB o0 < CJLf0* Il S0P (’%,i) logm+J Pl Do |
Je|<1 m) )

[SY SN

t

Finally, in virtue of our assumption on the function Z(x, ), by (56), we obtain
(38)

logm
B (Kf) -0 < € 5 ] f o) o

Now, using (7) with Kf in place of f and (38) we get

Ei(Kf) g 0 <Csupm” By, (Kf )0
m

logm
<C|[f*0 Rl g0 ——
1" ;Tlpll [

i.e. the thesis.

O
Lemma5.3.

Let1/2 < o< 1. Ifthe kernel k has the form (24), where, for some
s> 0,
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sup Hthzgc < + 00,
v|<1 )

then, for every 0<r<s,

log?m

(K — Km)fm”Z:“(vM) < C||fm||z~;.°(va-0) Sup ||hx||zgo v
Jv|<1 m

where C # C(m, f, h).

Proof. Letpy(x,y) be the polynomial of degree N = {%J with respect to both

pn(x,y) — pn(a, )
X

the variables x and y separately. Then q(x,y) = is a polynomial of

degree N — 1 with respect the variable y and of degree m — 1 with respect to the
variable x and

1

Yy—x

(¥ Ny)dy

-1

1
_ L;Zocﬁ% ( J L:;Z—a (pN(x7 ) : pN(ﬁC, x) 7 ?/) (ﬁnva,—a)(y)dy’ .’)C) )

xr
-1

Then, setting R(x,y) = h(x,y) — py(x,y), We can write

1

(K—Ky) f@) = j

-1

1
— L ( J Ly <wy> (fmv“*‘“)(y)dy,ac>

xr
-1

R(QC, ?/) - R(x; 9(:)

(™ )y

and, letting

Fx) = JL“"“

m

(R(m, ) — R(x,x)

— X

, y) (fmv™ ) y)dy,

-1

[ RG@,y) — R(@,2)
y P

V@) (K — Ky f(@)] < [0 () (fu0™ ) y)dy

-1

+ |?)0’“(90)L;7,“’“(F, )|
=:A+B.
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Now, using (9), we have

(maxvo"‘(ac)zﬂ 7(%)|> max vo”(xk)|F(ack)|

t|<1 0 () | k=1,...

<C(logm) max vo”(xk)IF (a0y.)|-

.....

Moreover, applying the gaussian rule and (32), we get

R -R
B <Clogm) max " )§ | (“’“’|t (lx CLLIIPHS J
..... —
0,0 0,0 S Atl 0,—o
<Clogm) || fmv™"|| - Jmax v (@) | Ry]) o E v ()

..... — x|

< Clog*m) IIﬁnv“’Olloo sup [ — pxxllo

v|<1
Now, taking the infimum on all polynomials (with respect to ) of degree N, we have

B < Cllog®m) || fu0™°||,. sup Ex(e)s
2] <1

and, in virtue of the assumption on £, by (5), we obtain

. log®m
(40) B < Cl|fuv™’|l. SUp ||l 2 = =

Jel<1
On the other hand, proceeding as done for the proof of Lemma 5.2, we obtain

logm
(41) A < Ol Nl s el =

Therefore, combining (39) with (41) and (40), we get

, " log“m
[0 — K finll o < ClLuv™ | < SUp 17l 2 gz
and then, taking into account equivalence (6), the thesis follows. O

Proof of Theorem 3.2. By Lemma 5.2 and using [26, p. 44], the com-
pactness of the operator K : Z>(v*%) — Z2(1%*) follows. Moreover, using Theorem
2.2 and the assumption Ker(D + K) = {0}, equation (2) admits a unique solution in
720,

Taking into account Lemma 5.3, the other part of the proof is similar to the proof
of Theorem 3.1. O
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In order to prove Theorem 4.1 we need the following lemma.

Lemma 5.4. Let1/2 <oa<1. If, for some s > 0,

sup vO*“(x)Hka
<1

z200H < T 00

then, for every 0<r<s,

logm
0.-3y ">
v 2) ms="r

(K — K:n)f||Z?C(v0v“) < C||f||zg¢<mv0) r‘?“g‘ v”’“(x)llkxllz;f(

where C # C(m, [, k).

Proof. Proceeding as done for the proof of Lemma 5.1, we get

(42) 4K ~ K)o < 10 KR f 1l + 0" K N s

[22]

being R(x,y) = k(x,y) — P,,(x, ). For the first addendum, by (13) and the Cauchy

inequality, we get

[0 K5 | < A0l ‘Sllllfi V@) R0y
x|<
(43) 2
< C”f?)l’ouoo sup vo‘l(x)H(kx - Pm,x)vo’7§||2-
<1

While for the second addendum, by (10), we have

1

99K < CIAlCogm)maxe*@) [ 185 (o) ")y
B -1

and, using the Cauchy inequality and (12), we get

0K < I Qogm) max @83~ (B~

(44) o0 0,0 0,—3%
SC”f,U ' ”oc(logm)r‘nlilliv ' (-%')H(kw _Pm‘a:)'v T2

2-

Combining (42) with (43) and (44), we deduce

V0K ~ K)o < Gl Qog my maxa @) ks — P~

and, taking the infimum on all polynomials (in the variable y) of degree m, we get

v 22"

[V — K3 f |l < ClLA™| Qogm) max V@) k) o4
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Thus, under the assumption on k, using (5) we get

logm

0,00 o 0,00 Y
(K ~ K5 e < €I o max e @Kl g

|

and then, using the equivalence (6), (42) follows. O

Proof of Theorem 4.1. Since

Iy = sup v*°(x)E,, (kx)yay < Csup U%’O(QC)Em(km)vo_f

o2
22’
<1 <1 '

in virtue of the assumption on k., by (5), we get

¢
Iy < ) 00 (@)| k. | 2200

,% .
] <1 )

Then, proceeding as done for the proof of Lemma 2.1, under the assumption

Ker(D + K) = {0}, the equation (2) admits a unique solution in Zf,o(v""o), r<S.
Moreover, taking into account Lemma 5.4, the remainder part of the proof is

similar to the proof of Theorem 3.1. O

6 - Numerical Examples

Now we give some numerical tests. Of course, according to the theoretical esti-
mates, the convergence order of the errors depends on the smoothness of the kernels
and the right-hand sides, while the condition numbers depend on the construction of
the systems which are equivalent to the finite dimensional equations.

In all the tables that follow we show the values of the weighed approximate so-
lutions v*°f,, in two different points. When we do not know the exact solutions, we
will think as exact their values obtained for m = 512 and we will report only the digits
which are correct according to them.

ExampLE 1. We first consider the following equation

1 1
1 foy) [1—y V2 [, -y, V27 cos (x)
_EJy——x 1—+ydy+7jy cos () f(y) mdy—1+f7

-1 -1

whose exact solution is the function f(z) = 1.

Since both the kernel and the right-hand side are very smooth, we compute the
weighted approximate solutions v2°f,, by solving system (20). The convergence is
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very fast, in fact, it is sufficient to take m = 8 to get approximations with 15 exact
decimal digits. The condition number in uniform norm of the matrix A,, of the solved
linear systems is less than 28.

ExamMPLE 2. Now we take the integral equation

1
(T
cos (g v - 7 [ L g
-1
1 Je—yb
T—YP 11 .
+ - | —————— fvou(y)dy = sin (1 + x).
4[(5+x2+y2)2fy vy

Its exact solution is unknown.

Also in this case we compute the weighted approximate solutions v, by solving
system (20), but, since the kernel is less smooth than in the previous example, as
shown in Table 1 and according to estimate (23), we need to increase m to get exact
decimal digits. The condition number of the matrix A,, is less than 22.

Table 1.
m @,,)(0.1) @) — 0.8)
8 0.83449 1.23694
16 0.8344928 1.2369480
32 0.83449289 1.236948044
64 0.8344928964 1.2369480441
128 0.83449289646 1.23694804410
256 0.83449289646 1.23694804410

ExamPLE 3. Finally, we consider the equation

1
Sin(%ﬂ) J fw vé"%dy
T

Yy—x

cos (g n) vé"g(x) flx) —

0 1
+ J | — yl_if(y)v%”%(y)dy = (% + @) cos (1),
0

whose exact solution is unknown.
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Since here the kernel is weakly singular, we compute the weighted approximate

solutions véﬁofm by solving system (27). In order to compute the Fourier coefficients

we use the recurrence relation showed in [20]. In Table 2 we show that, according to

estimate (28), it is necessary to take m = 256 to get approximations of the solution
with 8 exact decimal digit. The condition number of the matrices of the solved linear
systems is less than 49.

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

Table 2.
m @3%£,,)(0.1) @50f,,)( — 0.5)
8 0.7581 —0.046
16 0.7581 —0.04660
32 0.75810 —0.04660
64 0.7581070 —0.046605
128 0.7581070 —0.046605
256 0.758107081 —0.04660563
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