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On variational formulations for elastic
domain decomposition problems solved by SGBEM enforcing

coupling conditions in a weak form

Abstract. The solution of Domain Decomposition Boundary Value Problems of
linear elasticity is considered. The proposed approach can be deduced either from a
potential energy functional expressed in terms of subdomain displacement fields or
from a min-max principle of a boundary energy functional expressed in terms of
unknown boundary displacement and traction fields. The coupling conditions be-
tween two subdomains adjacent to an interface are enforced in a weak form. Two
novel features of both functionals are: a distinct role of subdomains lying on the
opposite sides of an interface and no requirement of Lagrange multipliers enforcing
the coupling conditions. The weak formulation of coupling conditions leads to an
easy implementation of SGBEM codes allowing for non-matching meshes along
interfaces between subdomains. The presented numerical results confirm an ex-
cellent accuracy and convergence behaviour of the numerical solutions, including
the cases with non-matching (non-conforming) discretizations of curved interfaces
and also with dissimilar materials in subdomains adjacent to an interface.
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1 - Introduction

The solution of Boundary Value Problems of linear elasticity using a Domain
Decomposition approach (DDBVPs) with non-overlapping subdomains is con-
sidered. A new approach to the solution of DDBVPs by Symmetric Galerkin
Boundary Element Method (SGBEM) [3, 16] has recently been introduced in [17].
In this approach the coupling conditions between two subdomains adjacent to a
common interface are enforced in a weak form. This feature leads to an easy im-
plementation of SGBEM codes allowing for non-matching meshes along interfaces
between subdomains. Previous approaches in SGBEM usually enforced coupling
conditions in a strong form and consequently required matching meshes at inter-
faces [5, 6, 7, 9, 10, 12, 16]. Different approaches in collocational BEM allowing for
non-conforming meshes were presented, for example, in [1, 11, 15].

The present approach is based on two new potential energy functionals for
DDBVPs. One of them is expressed in terms of subdomain displacement fields and
was introduced in [17]. This energy functional generalizes the energy functional
studied in the framework of the single domain SGBEM in [2]. A novel feature of this
functional is a distinct role of the subdomains adjacent to an interface. It was shown
that the compatibility along the interface is imposed through the displacement
(Dirichlet) boundary conditions on the first subdomain with ‘prescribed’ displace-
ments of the second subdomain, and the equilibrium along the interface is imposed
through the traction (Neumann) boundary conditions on the second subdomain with
‘prescribed’ tractions of the first subdomain. In this sense the present approach is
close to that used in collocational BEM in [1, 11].

The other energy functional, expressed in terms of unknown boundary dis-
placements and tractions, corresponds to the functional proposed in [14] for single
domain problems. This functional was introduced in [19] for DDBVP, where also the
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governing min-max principle was shown. The min-max principle for this new
boundary energy functional provides the same linear system of SGBEM as the
aforementioned domain energy functional. A relation between both energy func-
tionals was also deduced in [19].

The main focus of this paper is to study numerical properties of the resulting
linear system of SGBEM for DDBVPs. The numerical study presented has two aims:
first, testing the compatibility and equilibrium of the solution across the interface,
straight or curved, and discretized by matching or non-matching meshes and, sec-
ond, analyzing the behaviour of the solution for an interface between dissimilar
materials. With reference to the first aim, a series of simple problems involving zero,
constant and linear distributions of interface tractions is considered. The type of
problems solved is similar to those usually used for patch tests with finite elements,
see [4, 8]. With reference to the second aim, a series of problems with either real or
somewhat artificial but limit values of linear elastic material parameters is con-
sidered.

2 - Domain decomposition

Consider a linear elastic domain Q ¢ R? (d = 2 or 3) with a bounded Lipschitz
boundary I = 9Q. Let the domain Q be partitioned, for the sake of simplicity, into
two non-overlapping subdomains Q4 and Q” with respective bounded Lipschitz
boundaries I = 9Q* and I' = QP the common part of these boundaries being
denoted as I.. Let I C I, and I'] C I't (n=A,B), respectively, denote the
boundary parts where the displacements and tractions are prescribed. An example
of a bounded domain decomposed into two subdomains can be seen in Figure 1.

Then, a DDBVP for the Navier equation, called also Lamé system, considering
vanishing body forces for simplicity, can be defined in the form:

Fig. 1. An example of decomposition of a domain.
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(1a) Div (¢(u")) =Div (¢" : e(u))=0, on ", n=A,B,
(1b) u'=g" onI", t'=h" on I,
(1c) ut=uf onr, t*=—-t onr,,

with prescribed boundary conditions in (1b), and with coupling conditions pro-
viding compatibility of displacements and equilibrium of tractions (1c). o(u") and
£(u) are respectively the stress and strain tensors given by the displacements u”.
t" represents tractions on I calculated from the displacements u” defined in Q"
via traction operator 7., with n” being the unit outward normal vector to I, see
Figure 1. ¢ : ¢(u") defines the double contraction of the positive definite fourth
rank tensor of the elastic stiffnesses of 27, ¢”, with the strain tensor. Where one
subdomain Q7 is unbounded, suitable decay conditions at infinity should be
assumed in addition to (1) for this subdomain.

3 - Two energy functionals for a DDBVP
3.1 - A functional in terms of subdomain displacements

The quadratic functional of energy £ associated to a DDBVP introduced in [17]is
an extension of the concept of the augmented potential energy for a single domain,
studied in [2] in the framework of SGBEM, to DDBVPs.

In the case of two subdomains Q" , E can be written as a function of the subdomain
displacement fields u” (satisfying the natural conditions of continuity in each sub-
domain) in the following form:

2) Ew',u®)= Z % J o(u’) : e(w)dV — Jh”u”dS— J t"(u" — g"dS

n=AB ,
Il r

where ¢! = T ,,(u"). The last integral represents a new term, in comparison with the
original single domain formulation in [2], defining a form of interface energy asso-
ciated to both coupling conditions across I".. A noteworthy feature of this interface
energy is a non-symmetric role of the subdomains Q4 and @ in (2).

The critical point of £, giving vanishing (first order) variation of £, represents the
solution of the DDBVP (1) when no restrictions are applied to the used virtual dis-
placement fields, see [17] for the proof. In addition, the saddle point character of £
was shown in [19]. Let us choose appropriate virtual displacements du” and evaluate
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the variation of the functional £:

(3) OEw™,uf;ou’, ou®)

-y Jo-(u”) : s(ou")dV— Jh”&u”dS— J St (u"—g") dS— Jt”éu”dS
1=AB | r r rl
— J ot (u? —u®)dS - J 4 (ou” —ou®)ds,
I I,

taking into account the symmetry of the double contraction of the stress with strain
tensors a(u”) : e(ou’) = a(ou”) : ¢(u"), and the linearity of the traction operator:
t" 4+ ot" = T @ + ou’).

It should be stressed that the augmented potential energy functional £ itself does
not directly provide a variational formulation for a DDBVP discretized by boundary
elements, as F is expressed in terms of the domain displacements and requires
additional treatment of the volume integral with a special choice of ou”, see [2,17]. In
particular, ou” are chosen to satisfy the Navier equation (1a) so that the volume
integral in (3) can be eliminated integrating it by parts to obtain the vanishing
condition for the variation of the functional £

4 0= J u"St'dS+ Jy”ét”dS+ J ust"dS — Jh”&u”dS

=A.B
=L r e r

— | t'ou"dS— | t'ou"dS| — | ot (u—uP)dS + | ou” (t*+£7)dS.
[ rowas-- [ awas) - | |

r I I I

The displacements satisfying the Navier equation, together with the pertinent
tractions, can be represented by the boundary integral representations defined in
the following. Let us introduce the boundary integral operators Y, 7, 7* and S.
Their definition can be written formally by using a mask operator Z as

(5) (2@ = | 2% pe)as,,

ry

where the integral kernel symbol Z is obviously substituted by U, T, T" or S, re-
spectively. The integral kernel U”(x,y) = U" (y,x) represents the fundamental
solution in displacements of the Navier equation, and the other kernels represent its
derivatives, namely T7(x,y) = T U, y) with T"(x,y) = T”*T(y, x) and
S, y) =S"(y,x) =T i@y T (@, y), superseript T' denoting the transposed matrix.
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Recall that some of the integrals are evaluated in the sense of the Cauchy principal
value and Hadamard finite part, where required, due to the high order singularities
of the kernels T7 and T (strongly singular) and §” (hyper-singular). The re-
presentation formulae restricted by a limit-to-the-boundary procedure to the
boundaries of the subdomains can be written in the form:

(6) ou' = U — Ty +Cly, o =T — Sy +C ¢,

uc

where C! = 1/2Z on smooth parts of I"7 and vanishes on I'7 \ I"’. The subscript
denotes the boundary part according to the boundary conditions (1b) and interface
conditions (1c). Thus » can be u, ¢, ¢ or any of their combinations (say, I}, = I, U I,
etc.). As the boundary potentials ¢ and y are not uniquely defined, see [17], they can
be set to be advantageous with the present formulation of DDBVP. The appropriate

choice includes following conditions

(Ta) ¢"=0, onl}, ot = ot on I,
(7b) p'=0, onl", B =oul, onr..

The representations (6) together with the conditions (7) can be substituted into
(4). The order of the integrations (one from the representations, one from the
functional) can be interchanged and the dot products can be generalized by the

symbol of Ly-duality pairing over the boundary I, i. e. : (v",w"), = [ v"w"dS. The
r
obtained system of boundary integral equations takes the following form:

(8) 0= [(¢ @it' - T + Uk~ T}g" ~Clg"))
n=A.B

u
!, (< Tt + Sl — TUR +CIR' + S)g"),|
- <¢)A, (Ll;jctA — Tau? —Chu? + (uh—uP) + U — T‘;gA) >c
- <V/A, (—Tﬁgt“‘ FCMA + St — TR S;‘}g“‘) >c
— (o, (ULL? — Tu® —CPu® + UK ~Tlg"))
— (v (~T0t + € + S — (P4 0F) —T)'R" + STg") ) .
As expected, the final system shows the distinct role of the two subdomains Q* and
QF adjacent to the interface I',.
3.2 - A functional in terms of boundary displacements and tractions

A quadratic functional of energy /7 associated to a DDBVP expressed in terms of
the unknown displacements u and tractions ¢ defined along the subdomain bound-
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aries will be introduced in this section. In the case of one domain, an energy func-
tional of this kind, yielding a min-max principle for the unknown displacements and
tractions defined on the domain boundary, was proposed and studied in [14]. The
advantage of such a formulation for the application of SGBEM is obvious. A gen-
eralization of this functional to the case of a DDBVP (with two subdomains) can be
written in the following form:

1 1
(9) H(uA’uB’tA’tB) - - Z |:2 <t”’cht”>uc+é <u”7sgcun>tc<t”’T?cu”>uc:|
n=A,B

—g [t () | = S [ ), .
1=A,B
where Le-duality pairing (,), over the boundary "/ and the boundary integral op-
erators U, T and S were introduced in Section 3.1.

The unknown functions u” and ¢ are assumed to satisfy the natural continuity
conditions at each subdomain, u” being a continuous extension of the displacement
boundary condition g” to I'}.. The functions with bar (defined almost everywhere on
the boundary) represent the prescribed boundary data in the following way:

(10)  g"=UR"-T"g"—Clg", on I'!., h"'=—T]'h"+S"g"+C'h", on I'}.

The terms with the subscript ¢ in (9) represent new terms, in comparison with the
original single domain formulation in [14], defining a form of interface energy as-
sociated to both coupling conditions across 7. As in (2), here also the noteworthy
feature of this interface energy is the distinct role of the subdomains Q4 and Q.

Let us choose virtual displacements ou” (being able to be continuously extended
to I'7) and virtual tractions 0t”. The first order variation, 617, can be written in the
form:

(11) oI @™, u® t4,t5; out, ou®, 6t otP)

S (o e — T U - T - Cly))
n=A,B

+ <(5u’77 (—TZ;;t” + S?Cu’? _ T;’*h” _|_ct'7hi7 + SZQ”)%}
= (ot (Ut — Thut —Clut + (w'—u®) + Ulh' — Tiig*) )
— (ot (Tt +C2* + Sput — T b + Sig*))

— (ot (Ubt? — Thu® —clu® +ufh® - Tlg") )

uc

_ <5uB, (_TB*tB +CEE 4 SBub — (4 145) — TP hE +S§y3) >¢'
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The condition for vanishing /7 represents in fact the variational formulation of the
symmetric system of BIEs together with the coupling conditions deduced in [17] and
studied in [19]. Thus, the functions &” and ", defining a critical point of 17, represent
also a solution of this system of BIEs and coupling conditions. It can also be easily
seen that a solution of the DDBVP (1) represents a critical point of /7, as each ex-
pression in parentheses of (11) vanishes because the solution of DDBVP satisfies the
well-known displacement and traction BIEs [3, 6, 16] and the coupling conditions of
compatibility and equilibrium (underlined terms in (11)). In fact, the system of BIE
(11) is the same as that obtained from the functional £ (2), c.f. (8).

Finally, it should be stressed that the stationary point of the functional I7 is its
saddle point, see [19], and it can be found using the following boundary min-max
principle, minimizing I7 with respect to displacements and maximizing its value with
respect to tractions:

(12)  min mt;ﬂle (u u? 4 ¢7%) = max min 7 (u?, u® ¢4, %) = @, a® t4 tP).
u VT

This explicit min-max statement of the problem gives to the functional /7 another
advantage with respect to the domain based functional £ if the numerical solution by
boundary elements is considered.

4 - Discretization by boundary elements

Let us introduce an approximation of the boundary displacements and tractions
by continuous linear boundary elements [13] (allowing discontinuities of tractions at
the junctions of boundary elements if required):

(13) w'@) =Y NI @ul, @) => Nj@t
k k

where N7, (x) and N}, (), respectively, are diagonal matrices containing the shape
functions of displacements and tractions associated to node & at I, and uj and t],
respectively, are vectors containing the components of the displacement and traction
vector at the node k. Let u” and t7, respectively, denote the vectors containing all
unknown nodal displacements and all unknown nodal tractions associated to 7. Let
the subvectors of the nodal unknowns associated to the boundary parts I"?, I'! and
I'., respectively, be distinguished by the same subscripts «, ¢ and ¢, omitting the
superscript 7 refers to the nodal data for all the subdomains. Moreover, following the
notation introduced in (5) and (9), Z-matrices can be introduced:

(14) @ = (N1 ZINL) .
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with z, and z,, along with the nature of the integral kernel, determining the correct
choice of the nodal shape functions N?, and N},. Similarly, the prescribed boundary
data, calculated from (10), introduce the terms

(15) @D = <N;1k7g”>w (ﬁz)k = <NZk’]_lﬂ>r'

All the prescribed nodal boundary data associated to /™" are, with an obvious per-
tinency, denoted g” and h”, possibly with a subseript «, t or ¢ or without the super-
seript 7.

Additionally, two kinds of mass matrices M are introduced, in order to correctly
discretize the free and interface terms of /7. The matrices are generated as follows:

(16) M) = (NG NLD, (MED) = <Nﬁw N fl>c'

It should be stressed that the mass matrices do not have to be square as the
number of nodes for displacement can be different from that for tractions.
Moreover, the coupled meshes from both subdomains along /. can be independent
of each other.

The variational formulations of the BIE systems obtained from both functionals
E (2) and IT (9) are in fact the same as can be seen by a comparison of (8) and (11). The
system of algebraic equations is then also the same and it reads:

am Ax=Db
where
x = (t uf ¢ ut 8 Pt uf)
" b = (g0 i, gt it g P ol )
and
—ud, T U ™ 0 0 0 0
T —sh i -si 0 0 0 0
-y T —u4 ~IMA4T4 0 0 0 MAE
o A T sy —imATyTd -s? 0 0 0 0
oA 0 0 0 0 s, T —-U%, T
0 0 0 0 B 88 T8 -sf
0 0 0 0 -k T8 v IME4TE

ABT -Bx B BT -B* B
0 0 M, 0 T -S,; M '4T. -S
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5 - Numerical examples

5.1 - Problem configurations and discretizations

Two different kinds of problems are solved and discussed. In the first kind of test
problems, transfer of the solution through an interface for matching and non-
matching meshes is compared. Simple problems resulting in a vanishing, constant
and linear distributions of interface tractions are considered. In particular, uniaxial
tension of a bar and pure bending of a beam are considered as the test problems, see
Figure 2 with dimensions given in millimeters, considering the state of plane strain.
The types of problems are similar to those typically used for patch tests with finite
elements [4, 8].

Two meshes are considered: a coarse uniform mesh with element length 100 mm
denoted by the key ‘M1’ and a fine uniform mesh with element length 25 mm, the key
‘M2’. For both meshes, matching (conforming) and non-matching (non-conforming)
disretizations (‘C’ and ‘N’ option, respectively) of the interface I'. are compared. A
non-matching mesh is generated by partitioning each interface boundary element
pertaining to Qp into four elements, forming a ‘1:4’ mesh pattern along I',.

a i [2)
- (9] B [
(i—l-) _:r. "'_: QA [9) T
1000
£La
el T
-..__ Q B :
1 S| 7 -
(b) S o 0 g3
1000
To
(7 a
o] Q B [
(C) ?r = - 9) =
1000

Fig. 2. The test problems configurations: (a) Bar, (b) Beam_V, (¢) Beam_L.
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(a) (b) (c)

Fig. 3. The interface I'. and its discretizations in the cases Bar and Beam_V: (a) A straight
line (L), (b) An arc (A), (¢) Two distinct arcs (D) with a subdomain overlapping.

With the objective to study the sensitivity of the numerical results on slight in-
terface perturbations the following cases are also considered. The vertical interface
I'; in the cases Bar and Beam V defined in Figure 2 is slightly perturbed from its
original straight form to the shape of a circular arc with radius £=2000 mm, or two
distinet ares with radii R=2000 mm and R'=2010 mm on the Q* and QF sides, re-
spectively, for the mesh M1, and R=2000 mm and R'=2002.5 mm on the Q* and Q
sides, respectively, for the mesh M2, see Figure 3. In what follows, these three
modifications are marked as ‘L’ (straight line), ‘A’ (arc) and ‘D’ (distinet arcs), re-
spectively. The cases ‘L.’ and ‘A’ represent geometrically conforming cases, and the
case ‘D’ represents a geometrically non-conforming case with some overlapping of
the subdomains @4 and Q°.

The magnitudes of applied load are ¢ =1 MPa for the tension problem and
g = 8MPa as maximum tensile stress for the bending problem. The elastic material
properties of both subdomains 24 and QF are the same and corresponding to steel,
E =2x10° MPaand v = 0.3.

The second kind of test problems includes a bi-material interface. It is a problem of
an infinite fibre with a circular cross section embedded in an unbounded matrix sub-
jected to atransverse load at infinity, see Figure 4(a). A plain strain state is considered.
However, the particular code used in testing is not suitable for solving the problems
with unbounded domains. Therefore, an outer contour of the matrix had to be chosen
with a given load corresponding to the tractions of the original solution, which is shown
in Figure 4(b).

The analysis of numerical results is again focused on the comparison of the in-
terface results for matching and non-matching discretizations. The boundary ele-
ment meshes are uniform, starting with 12 elements along the inclusion boundary,
the mesh M1, with three additional refinements (M2, M3, M4), each with the double
number of the elements. The non-matching interface meshes are obtained by dis-
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YYD

—

—
L.

—

st [T

Hs
T

(a) (b)

Fig. 4. The inclusion problem: (a) original definition, (b) actually solved configuration.

cretizing I', by 28 elements in the mesh M1 on the side of the matrix domain Q™?,
forming in this way a ‘3:7 mesh pattern.

The applied load is a combination of tension in the x; direction and compression in
the x direction, their magnitudes being ¢;=2 MPa and g2=1 MPa. The material
properties of the subdomains Q4=0Q™ and Q®=Q™ are chosen to correspond to
the typical glass-fiber epoxy-matrix composite materials: E™*=2.79x10> MPa,
v™2=0.33 and E"=7.08x10* MPa, v"=0.22. Another choice of the material prop-
erties considered in the present work is a limit case, which includes an almost rigid
fiber (in comparison to the matrix) and an almost incompressible matrix. Their va-
lues have been chosen as follows: E=10%x E™2=1x10°® MPa, v™2=0.499, v*=0.0.

The solution for stresses can be deduced from the Airy stress function, see [20, 21],
which is expressed in polar coordinates by radial functions and periodic functions
containing cos 2¢ only, due to symmetry conditions. The interface tractions can be
computed from the homogeneous stress state in the inclusion given by

11+a[2+o¢—ﬁ

on (01 + 02) — 202} ,

T214 81102
(20) 11 ’ 2 [f
+o|ato—
0'22—§1+ﬁ[1+a_2ﬁ(01+0'2)—201} g2 =0,

where o and ff are Dundurs bi-material dimensionless parameters which can be ex-
pressed as
LB 0™ - BT - 07))
En(L — ()% 4 Bma(l — (vin)?)’
B = v ) — B — v+ )
P et Ema —onp)

(21)
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Assuming natural symmetry conditions in this problem (x; and a2 being symmetry
axes), the Airy stress function also gives a unique displacement solution.

5.2 - Error evaluation

Present analysis is concerned with the behaviour of the numerical solutions ob-
tained along the interface. Let the numerical solution of a problem be denoted in
generic way as z,, and the analytical one as z,.

The relative error, which is simply the difference z,(x) — z,(x), « € I, divided
by the max-norm of z, obtained on the contour I" pertinent to the originally solved
problem, is presented together with the interface difference z/(x) —zZ(x),
x € I';, divided by the same value. Both are naturally approximated linearly be-
tween the nodes in view of the used discretization, Section 4. Note that the in-
terface difference appears due to the non-conformity of meshes on both sides of
the interface I'..

The following two discretized error norms have been chosen to characterize the
convergence behaviour of the method along I", for the inclusion-matrix problem, the
integral Lg-norm and the maximum norm. The former is expected to present a
regular convergence behaviour, whereas the latter is of major interest for engineers,
who are typically interested in maximum values of displacements or stresses, re-
spectively, applied in the so-called ‘stiffness’ and ‘strength’ criteria.

Integral Ly norm of error defined as:

2
(22) llzn — za||L2 = J Z(an(x) - Zal(x))zdsm

I =1

is approximated using the Simpson rule along the discretized .
Maximum norm of error is defined as the maximum of absolute error achieved
over all nodes for a particular mesh:

(23) 20 — Zallyax = Max max |z, () — 2 ()|,
x;—node (=12

Convergence rate for an 7 refinement is defined as the number f for which
exists a constant ¢ such that the relation

(24) Iz —zall = ¢ - N7Plzall,

holds for a selected error norm, N giving the characteristic number of elements of a
mesh and z¥ giving the numerical solution for this particular mesh. The parameters
S and q are obtained by least square fitting in log-log scale, for which the correlation
coefficient 7 is also calculated.
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5.3 - Tests of equilibrium and compatibility (Patch tests)

First, transfer of a constant traction solution and a linear displacement so-
lution across an interface in the simple tension problem of a bar, see Figure 2(a),
is studied.

The left plot in Figure 5 shows that the unit constant traction, ¢, is trans-
ferred through a straight interface correctly even when the meshes do not
match. If the interface is curved, but geometrically both sides of the interface
are conforming, the errors do not vanish due to approximation of the curved
interface geometry by linear boundary elements. The magnitude and also the
difference of the errors are with no surprise larger for geometrically not con-
forming interface approximated by different curves from both sides, the case D.
The obtained errors for this case are plotted divided by 10 in order to facilitate
an easy visual comparison with the other error distributions.

*(x10) (x10)
1.0e-3 T T T T T T 1.0e-4 T T T T T T T
- . L,A-e A A-+ DA -a
" 8 | LB-o- A B-e DB -2 |
. 5.0e-4 g Py I ot
: | % ot IS 0 o ,“?: . s1x 7, ! PR P &
S1E 0.0e+0 :—_-g—i;-jj_-:-jﬁ-,-g-jo-‘g{1f:g"-‘¢-ggl,s& 94 WP PN S o — 4
e “oo” "’T' e | L ot 1
= | | | | A I S S ) m—
5.0e-4 L,A-e- AA-¢« DA -a i LR SO R 1 o
L,B-«- AB-+ D B -a 0.0e+0 el | b
-1.0e-3 L 1 I i1 ) 1 Ue+ B A A, A, S AR S

-200 -150 -100 -50 0 50 100 150 200 -200 -150 -100 -50 0 50 100 150 200

Ly

T2

Fig. 5. Bar, simple tension problem. Relative errors of interface tractions ¢; and displa-
cements ug, mesh M1, non-matching meshes.

The difference of the obtained results for the tractions ¢; on both sides of the
interface is shown in Figure 6. With reference to coarser meshes M1, see the left
column of Figure 6, a difference between the matching and non-matching me-
shes can be observed. The solution is transferred correctly through the straight
line, the case L, not depending whether the interface meshes match or not.
However, for the curved discretized interface, case A, a difference appears. The
traction solution is almost constant along the interface, thus approximation with
more linear elements, although only along one side of the interface, may provide
a more accurate solution for the non-matching mesh. The slightly different radii
of curvature of both sides of the discretized interface, case D, make the interface
solution difference more significant.



[15] ON VARIATIONAL FORMULATIONS FOR ELASTIC DOMAIN DECOMPOSITION, ETC. 15

(x47%)
1.0e-4 T T 1.0e-4 T T T
MIC -e- M2C --e--
1N -+ 12N -
5.0e-5 B 5.0e-5 i at
£ Ed
o= -‘.Iu =
FHZ 0.0e+0 B R ‘Ilj" 0.0e+0
e p4 7]
-5.0e-5 - | - -5.0e-5 —
-1.0e-4 - -1.0e-4 -
=200 -150 -100 -50 0 50 100 150 200 =200 -150 -100 =50 0 50 100 150 200
T2 T2
(a)
(x47%)
1.0e-4 T T 1.0e-4 T T T
| MI1C --o- M2C --e--
1IN - ; N -
5.0e-5 P MIN e 5.0e-5 e
% , L o |2
~ = 3 b A ~| = 2 3 ® @ 3
ke 0.0e+0 - A s LR S 1% 0.0e+0 s
= L L e S EEEES SECTE 5 v = L I i '
-5.0e-5 - -5.0e-5 H—*2 :
-1.0e4 1.0e-4 L—il i
=200 -150-100 -50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200
xa T2
(b)
4.0e-3 T 4.0e-3 T T T
MIC --e-- M2C --e--
MIN - M2N -
2.0e-3 |- : M 2.0e3 °-| -
v | ale oo 0SS | 229000000, |
s Lk -y & > @ 1 '.I LI o B. II al -]
R B BRF AR I R e v Eo iR vy
-2.0e-3 ¥ . -2.0e-3 e o R B
I t] 4
-3 &
-4.0e-3 -4.0e-3 -
=200 -150-100 -50 0 50 100 150 200 =200 -150-100 -50 0 50 100 150 200
Ty &Tg

(c)

Fig. 6. Bar, simple tension problem. Traction ¢; difference along the interface, matching
and non-matching meshes, (a) L, (b) A, (¢) D.

All these observations keep valid for the refined meshes M2, see the right
column of Figure 6. It can be observed that the data in the cases L. and A have
nicely converged quadratically as there is four times more elements in the
finer mesh. On the contrary, though overlapping of the domains is four times
less for the mesh M2, due to the different value of radius R’, the magnitude of
the error remains approximately the same. The oscillating character of the
error distribution, caused by the different number of elements and/or their
mutual position along the interface, is similar for both the coarse and the finer
meshes.

Analogous observations are also valid for displacements, the right plots of
Figures 5 and 7. The displacement component ug considered is distributed linearly
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Fig. 7. Bar, simple tension problem. Displacement uy difference along the interface,
matching and non-matching meshes, (a) L, (b) A, (¢) D.

along the interface. Therefore, the error distribution and also the interface differ-
ences may exhibit some linear trend in addition to an oscillatory character of the
distribution for the curved interface. In presence of geometrically non-conforming
interface, the errors are significantly larger, see Figure 7(c). In particular, it could be
expected that for the same number of elements on both sides (conforming mesh) of a
geometrically non-conforming interface large errors may appear, the right plot of
Figure 7 (c).

In the second example, transfer of a linear traction solution and a quadratic
displacement solution across an interface in the pure bending problem of a beam, see
Figure 2(b), is studied. The obtained data are compared with the data in the previous
example.
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Fig. 8 Beam V, pure bending problem. Relative errors of interface tractions ¢; and
displacements ug, mesh M1, non-matching meshes.

With reference to the traction component, ¢;, it is interesting to notice that the
relative errors for non-matching meshes shown in the left plot of Figure 8 are very
similar for all three interface configurations. The linear distribution of the solution
has a clear influence on the distribution of the errors.

The non-constant distribution of the traction also affects the distribution of the
differences between the tractions ¢; evaluated on both sides of the interface, see
Figure 9. In this case, no significant differences appear if the interface is changed
from its original straight form to the curved one, compare the cases L and A. Even
the form of the error distribution and the magnitudes of the errors obtained in the
case D by using the mesh M1 are similar.

Relevant differences apear between the geometrically conforming and non-
conforming interfaces, if the mesh is refined, see the plots in the right column of
Figure 9. The solution is linear along the straight interface or almost linear if it
is curved, thus the approximation with more linear elements, even only along
one side of the interface, may provide a more accurate solution for the non-
conforming mesh.

The data in the cases L and A have nicely converged quadratically as there is
four times more elements in the mesh M2 than in the mesh M1. Though over-
lapping of the domains in the case D is four times less for the mesh M2 than for
the mesh M1, in view of the different value of the radius R’ used, the magnitudes
of the error remains approximately the same for both meshes. The oscillating
character of the error distribution copies the mesh pattern similarly to the case of
the bar in tension. However, when the interface is discretized with the same
number of elements, the influence of the subdomains overlapping is suppressed.
Therefore, a non-conforming geometry of the interface together with non-
matching meshes may lead to strong oscillations in the traction solution differ-
ence between both interface sides.
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Fig. 9. Beam_V, pure bending problem. Traction ¢; difference along the interface,
matching and non-matching meshes, (a) L, (b) A, (¢) D.

With reference to the displacement component, uz, the quadratic distribution of
the solution has a clear influence on the error distribution shown in the right plot of
Figure 8. It is also interesting to notice that the displacement errors for a curved
interface are in some places smaller than those for the straight interface. The dis-
placement uo differences between both interface sides, shown in Figure 10, exhibit
some oscillations depending on the mesh pattern of the non-matching meshes. The
convergence is quadratic in both conforming geometries, cases L and A. If the in-
terface sides curvatures are different, the error due to this geometrical non-con-
formity is more significant and the errors have not decreased quadratically, though
they are smaller for the mesh M2, unlike the previously discussed situations, com-
pare Figure 10(c) with Figures 9(c) and 7(c).
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Fig. 10. Beam_V, pure bending problem. Displacement uy difference along the interface,
matching and non-matching meshes, (a) L, (b) A, (¢) D.

In the third example, the pure bending problem with the interface placed along
the stress neutral axis, see Figure 2(c), is studied. Both traction components and the
tangential displacement u; vanish on the interface, whereas the normal displace-
ment %z has a quadratic distribution. Thus, the results for the traction ¢; and the
displacement ug are presented again.

The relative errors of the traction ¢; for mesh M1, shown in the left plot of
Figure 11, are smaller for the non-matching mesh than for the matching mesh, the
relation observed in the previous examples sometimes. The errors are very close to
zero except the interface parts close to the subdomain corners as could be expected.
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Fig. 11. Beam_L, pure bending problem. Relative errors of interface tractions ¢; and
displacements w2, mesh M1, matching and non-matching meshes.

The differences of tractions ¢; plotted in Figure 12(a) follow the behaviour of errors
and have nicely converged for both matching and non-matching finer meshes.

The relative errors of displacement ug, shown in the right plot of Figure 11,
clearly follow the quadratic distribution of the displacement solution. The differ-
ences of displacements uy plotted in Figure 12(b) have nicely converged both for
matching and non-matching finer meshes, and are very small for matching meshes.
In addition, the pattern oscillation, similar to that observed in the previous
Beam V case, confirms the fact, see [17], that the displacements pertinent to the
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Fig. 12. Beam_L, pure bending problem. Traction ¢; and displacement uz difference along
the interface, matching and non-matching meshes, (a) tractions, (b) displacements.
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domain QF are calculated first in the numerical solution so that they obey the
quadratic solution. Transferring them to the coarser mesh by using a linear in-
terpolation between its nodes may produce exactly the type of oscillatory beha-
viour shown in Figure 12(b).

5.4 - Tests with dissimilar materials

The analysis of the numerical results obtained in the inclusion-matrix problem is
focused on the interface again. Note that, taking into account the analysis introduced
in [17], the inclusion and matrix correspond to the subdomains Q4 and QF, respec-
tively, and the fine mesh is always defined on the matrix side. The analytical solution
is smooth, and also there are no end points of the interface to perturb the solution.
Thus, the errors are basically influenced by the type of meshing, see Figure 13, the
angle ¢ being defined in Figure 4. The only data which have non-smooth distribution
of the error belong to the finer mesh of the non-matching mesh distribution.
However, this is not caused by the dissimilar materials considered, as the same
character of the error distribution are observed also when both materials of the
subdomains are the same, see [17]. Notice that the displacement results for the non-
matching meshes have been plotted in a different scale in order to see not only the
difference between the matching and non-matching meshes, but also the actual error
distribution in the case of matching meshes.
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Fig. 13. Inclusion-matrix problem, glass-epoxy. Relative errors of interface tractions ¢;
and displacements 1, mesh M2, matching and non-matching meshes.

The solution difference between both sides of the interface, shown in Figure 14,
does not provide any additional information on the behaviour of the numerical re-
sults, the oscillations observed for the non-matching mesh being given by the os-
cillations of the errors on the finer mesh.
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Fig. 14. Inclusion-matrix problem, glass-epoxy. Traction #; and displacement u; differ-
ence along the interface, mesh M2, matching and non-matching meshes.

Itis expected that the norm of the relative error obeys the quadratic convergence
rule. The norms defined in Section 5.2 are used to check this error convergence
behaviour. The dependences of the relative error norms on the characteristic
number of the elements at the interface N = min (N4, NB) (N4 and N® are the
numbers of the elements on the two sides of the interface defined by @* and @5,
respectively) are plotted for tractions and displacements in Figure 15.

The satisfactory result is that in both norms the convergence rate obtained is

quadratic as expected. Numerical values of the estimated fitting parameters
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Fig. 15. Inclusion-matrix problem, glass-epoxy. Interface traction and displacement error
convergence, matching and non-matching meshes, (a) Lg norm, (b) MAX norm.
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from the regression analysis are summarized in Table 1. The power dependence
is actually significant already for these initial refinements of the mesh due to the
high correlation coefficient . The parameter f is close to the expected value of 2
with an exception of the bottom right corner of the table. However, the curve
corresponding to this exception is approaching the other curves, see Figure 15,
so this exception seems to be associated to the initial refinements with relatively
coarse meshes only.

Table 1. Inclusion-matrixz problem, glass-epoxy. Evror convergence rates, matching
and non-matching meshes.

Lo MAX
N=gN—*
I-II=q . " ; "
- p 2.0087 1.9569 1.9913 1.9531
5 q 2.1196 2.7207 3.3817 4.0032
r2 0.9997 0.9999 1.0000 0.9998
= B 2.0065 1.9809 1.9857 1.9824
Eﬁ q 2.1013 3.0593 3.3113 4.5753
© r2 0.9999 1.0000 0.9999 0.9999
- p 1.9975 1.9610 1.9186 1.9183
.ZFL q 1.9596 2.6712 2.4149 3.3755
r2 1.0000 0.9998 0.9997 0.9996
< B 1.9982 2.0378 1.9235 2.3832
E“ q 1.8179 5.0620 2.7644 28.1159
~ r2 1.0000 0.9994 0.9998 0.9987
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Fig. 16. Inclusion-matrix problem, limit parameters. Relative errors of interface tractions
t; and displacements u;, mesh M2, matching and non-matching meshes.
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All the previous observations remain valid also for the limit case of material
properties. The plots in the following figures can be compared in this sense: Figure
13 with 16, Figure 14 with 17 and Figure 15 with 18. All distributions seem to be very
similar, except for the interface tractions for the matching mesh and a more im-
portant error for displacements obtained in the non-matching case (the used factor
here is 40 instead of 2). The value of the Poisson ratio of the matrix is the source of
these differences. Its value 0.499 is rather close to one half — the limit for an in-
compressible material.
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Fig. 18. Inclusion-matrix problem, limit parameters. Interface traction and displacement
error convergence, matching and non-matching meshes, (a) Lz norm, (b) MAX norm.
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Table 2. Inclusion-matrix problem, limit parameters. Error convergence rates, match-
g and non-matching meshes.

Ly MAX
= -

|- I=aN . - . -
- p 2.1131 1.9867 2.0069 1.9733
5 q 3.2496 2.9899 3.8489 4.4814

r2 0.9990 0.9999 1.0000 0.9999
= p 2.5370 2.0303 2.3353 2.0124
Eﬁ q 26.4942 3.6784 21.0845 5.3600

72 0.9995 0.9998 0.9999 1.0000
- p 1.9887 1.9109 1.9114 1.9016
N q 2.2046 2.4268 2.7591 3.4864
“ r? 1.0000 0.9997 0.9995 0.9995
« p 2.0135 3.0317 1.9791 2.9265
% q 2.2891 2030.2609 4.0696 3090.2166
& 72 1.0000 0.9999 0.9999 1.0000

Numerical values of the estimated fitting parameters from the regression analysis
of the error convergence behaviour are summarized in Table 2. The power dependence
is not perturbed when looking at the values of the correlation coefficient r. Also the
parameter £ is more or less close to its expected value of 2, the exceptions correspond
to the above described differences between the two bi-material cases. Nevertheless,
the refinements of the mesh not only improve the errors but also make the results
similar to the example with more realistic material parameters (glass-epoxy).

6 - Conclusions

Two variational formulations of the SGBEM for DDBVPs were introduced, both
of them leading to the same discretized system. Though the origin of both for-
mulations is different, one of them is domain based, and the other is completely
boundary based, the relation between the corresponding functionals can be deduced.
This relation was presented in [19].

The present SGBEM approach applied to a Domain Decomposition BVP has
been numerically tested to characterize its behaviour for particular kinds of
problems which may involve some features making the numerical solution more
difficult. First, the fulfillment of the compatibility and equilibrium of the interface
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displacements and tractions, respectively, are analyzed. Simple test examples,
including simple tension and pure bending problems, similar to those used in fi-
nite element patch tests have been chosen: the unknown interface tractions are
either constant or linear with linear or quadratic distribution of interface dis-
placements. As follows from the numerical results obtained, while the character of
the unknown solution distribution is the same as the order of boundary element
approximation, the solution transferred across the interface is satisfactorily ac-
curate. This remains also valid if the interface is slightly perturbed but geome-
trically conforming, although the non-matching boundary element meshes may
lead to some small overlapping of the discretized subdomains. However, a care
must be taken when the neighbourhood subdomains are actually geometrically
non-conforming.

Another series of test examples includes a smooth and closed curved interface
between dissimilar materials. When the results are compared with the previously
presented data obtained from an analysis with the same materials [17], no sub-
stantial difference in the numerical behaviour has been observed. Naturally, with the
material parameters pushed to their possible limit values some exceptions may oc-
cur, however, this is not the problem of the present approach only.

The convergence of the method for i-refinements has also been studied here for
the case of bi-material interfaces using the discretized Lz and maximum norms of
error. The quadratic rate of convergence in both norms has been obtained for both
tractions and displacements as could be expected for linear elements and for
smooth closed interfaces, see [17]. According to the authors experience, in pre-
sence of the end-points at the interface (corners of the adjacent subdomains) the
obtained results may converge worse in traction error norms, including the
matching mesh case. This phenomenon has not been tested explicitly with dis-
similar materials, but it can be expected according to the data obtained in the first
series of examples.

A modification of the present SGBEM approach for DDBVP in relation to the
definition of interface conditions can include Lagrange multipliers, which might
modify some of the conclusions presented. Such a new approach using additional
interface unknowns has recently been introduced by the present authors in [18].
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