Riv. Mat. Univ. Parma, Vol. 1 (2010), 347-406

LUCIANA ANGIULI, GIORGIO METAFUNE and CHIARA SPINA

Feller semigroups and invariant measures

Abstract. This paper is devoted to present both classical and recent results on
Markov semigroups associated with elliptic second order operators with (possibly
unbounded) coefficients, using analytic methods. We consider second order elliptic
N N
operators like A = > ayDyu+ > b;D;u + cu defined in RY; we study the in-
ij=1 i=1
variant measures associated with the semigroup {7'(t)} generated by A in Cy(RM)
and the regularity properties of {7'(t)} in LP-spaces related to this measure. A
concrete example of an elliptic operator with unbounded coefficients in RY is given
by the Ornstein-Uhlenbeck operator whose main properties are also presented.
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1 - Introduction

This survey is an extended version of a 10 hours course of the second author
during the Workshop on Harmonie Analysis and Evolution Equations held in Parma,
4-8 February, 2008.

All the topics here contained have been treated during the lectures, except for
some details of the proofs.

We present some aspects of the theory of semigroups generated by second order
elliptic operators with unbounded coefficients and the associated resolvent equa-
tions, starting from a probabilistic motivation. This is done in Section 2 where we use
Kolmogorov’s approach and introduce invariant measures, i.e. stationary distribu-
tions of the underlying Markov process.

The prototype of elliptic operators with unbounded coefficients is the Ornstein-
Uhlenbeck operator studied in Section 3 and defined by

N N
L= Z C]“Dw =+ Z bl:,-achi = tI'(QDZ) + <BQ€, V), S RN,
ij=1 ij=1

.....

.....

group T'(t) admits an explicit representation formula (due to Kolmogorov) which



[3] FELLER SEMIGROUPS AND INVARIANT MEASURES 349

allows the study of its main properties. We then focus on the spectral properties of
the Ornstein Uhlenbeck operators in LP(RN) with respect to the Lebesgue measure,
by stating a characterization theorem for its spectrum.

In Section 4, assuming that the spectrum of B is contained in the left halfplane, we
show that the semigroup 7'(t) admits a unique invariant measure x given by a
Gaussian density. Moreover the semigroup extends to a strongly continuous semi-
group of positive contractions in LP(RY, du), 1 < p<oo, where further nice prop-
erties hold. One can prove for example that the semigroup is analytic and compact in
LP(RYN  dy) for 1 <p<oo. A characterization of the eigenfunctions and a description
of the spectrum of L in LP(RY, du) are also given. We do not deal with hypercon-
tractivity properties of the semigroup and log-Sobolev inequalities for its generator.
For all these questions we refer the reader to the original paper by Gross or to [3].

The next section is devoted to the study of more general elliptic operators A with
unbounded coefficients in spaces of continuous and bounded functions on RY and the
associated Markov semigroup. Our main interest is in the existence of bounded (in
space) solutions of the parabolic problem

{ut(t,x) =Au(t,x) x¢€ RN, t>0,
w,0) = f(x) ve RN

with initial datum f € C,(RY). Since the coefficients can be unbounded, the classical
theory does not apply and existence and uniqueness for the solution of the problem
above are not standard. However, when the coefficients are sufficiently smooth,
existence is not a problem. Indeed we show how to construct in a direct way a
semigroup 7'(t) generated by the operator as limit of solutions of parabolic problems
in the cylinders 10, oo[ x B,. On the other hand, uniqueness is not generally true (see
Example 5.1) but it is consequence of the existence of a Lyapunov function for the
operator A.

We also deduce for T'(t) an integral representation formula and we discuss some
qualitative properties such as continuity at ¢ = 0, irreducibility and strong Feller
property. Even though the semigroup is not strongly continuous, a weak notion of
generator can be also defined by considering the Laplace transform of the semi-
group. In addition, in this section we prove Has’'minskii’s Theorem that provides a
condition under which an invariant measure does exist.

Compacteness and preservation of Co(RY) properties are also analyzed.

In Section 6 we describe some regularity properties enjoyed by the invariant
measure of the semigroup when the drift of the operator A belongs to LP(RY, du) for
a suitable p. Furthermore, by assuming growth conditions on the drift term, we also
provide some pointwise estimates for the density of the invariant measure.
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In the last section we characterize the domain D;Q‘(A) of the operator
A=4-V¢-V in LP(RN ,dp) for 1<p<oo. Under suitable conditions on ¢, we
show that Djj(4) = W2P(RY).

2 - A short probabilistic motivation

Let 2 C RY be an open set, (X, P) a probability space. We consider a stochastic
process (&) in 21i.e. &y(-) : [0,00) x X — Q such that &(-) is measurable in £ for
every t > 0.

Given I C Q measurable, we consider the transition probabilities defined by

pQt,x, I') = P& € I'|& = )
which satisfy the following time-independence property
1) pt,x, 1) = P&y € I'|Es = ).
The equality (1) expresses the lack of memory typical of Markov processes for which

PG e IN&es) =P € TS,  0<s<t,

holds. This means that the future depends on the past only through the present.
Markov processes satisfy the Chapman-Kolmogorov equation

2) pt+s,x,1) = Jp(m/, Dp(s, x, dy).
Q

If we denote the initial distribution by u(I") = P(&, € I'), then

P el = J p(t,, ) dp = (D).
Q

From now on we assume that the probability measure p(t,x,-) is absolutely con-
tinuous with respect to the Lebesgue measure and we write p(t, x, dy) = p(&, x, y)dy.

Given the initial distribution u of ({y)), it is sufficient to determine the family
of measures p(t,x,-) in order to reconstruct completely the process. This fact
leads to an equation satisfied by p(t,x,-). Such an equation actually exists and it
is known as Kolmogorov “backward equation”. Now we briefly describe this
approach. If f € Cy(Q), define

T@)f (o) = Jp(t, wdpf@), TOf =f.

Q
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The Chapman-Kolmogorov equation shows that
Tt +s)=TWHOT(s).

Kolmogorov’s idea is to recover p(t,x,-) from T'(¢)f(x) under the following as-
sumptions.
Foralle > 0 and x € Q,

(H1) pt,x, 2\ B(x)) =o0(), t—0
(Hg) pt,x,Q2) —1=te(x)+ o), t—0

(Hj) J (y; — 2;)pt, x, dy) = tb;(x) + o(t), t—0
B(x,e)

(H) J (i — ey — epptt, . dy) = tay(@) +o(d), ¢ — 0.
B(x.)

Then, if u € C3(Q), x € Q,

T@wu(e) —ulx) 1 Z

N N
aijDiju + Z biDu + cu = Au.
=1 s}

li ==

) tlj% t 2 ;

Remark 2.1. (i) Assumption (H1) is the so called “Dynkin-Kinney” condition
and ensures the “continuity of the paths” that is &(w) is continuous in t for a.e. w;

(ii) c(x) < 0 1s the absorption coefficient at x;
(iii) if ¢ =0, the expectation E(;(t,x) —x;) is equal to thi(x)+ o(t) where
b= (by,...,by) is called the drift term;
(iv) if ¢ <0, E[(&; — 2)(& — x))] = tay;(x) + o(t) where a; = a;; are the diffusion
N

coefficients and satisfy . a;&;E > 0.
ij=1

Under the previous assumptions it turns out that the generator of 7'() is a second
order differential operator with (possibly) unbounded coefficients. If f € D(A),
u(t, x) solves the parabolic Cauchy problem

n uy = Au
u(0) =f.

Recalling that T()f(x) = [ p(,x,y)f(y) dy, if p is regular then
Q

t:AﬂC
) {p P

p(0,2,y) = d,(x).
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Moreover, if f € D(A),

%T(t) f =ATQ®)f = TOAS
ie.

Jm,x, WFG) dy = jp(t,x, DAF) dy = JA;p(t,x, DI dy

Q Q Q

hence p solves also the Fokker-Planck problem

(©) pr=Ayp

Here A} is the formal adjoint of A, when this last is considered as a differential
operator acting in the y-variable. Let observe that 7()1 = [ p(t,x,y) dy <1 and

that f > 0 implies T'(t)f > 0. These facts yield that T'(f) is a cgntractive semigroup,
that is [|7)f . < 1]

If Q # RY and there exists ¢ > 0 such that ¢(, x) € 02, we need boundary con-
ditions to determine the process. In fact, both the backward and the Fokker-Planck
equation hold on the interior of Q and say nothing on 9Q.

Let ¥ € 0Q.

Dirichlet boundary conditions. They consist in requiring that when &(t,x) =%
the process “dies”, i.e., p(¢,x,-) = 0 and

u(t, &) = Jp(t, & dy)f () = 0.

Q

Ventcel boundary conditions. In this case, if &(t, %) = &, then &(t, %) = & for t > t,
ie. p(t,x, ) = 0z and

u(t, ) = Jzo(t, &dyf @) dy = @)

Q

. d _ _
ie. %u(t, x) = Au(t,x) = 0.

Let u € D(A). If we impose Dirichlet boundary conditions, then % = 0 in 0Q
whereas under Ventcel boundary conditions we have Au = 0 in 9%2.

Other boundary conditions such as the Neumann or the Robin conditions can be
imposed. The conservation of probabilities (7'(f)1 = 1) holds if ¢ = 0 under Ventcel,
Neumann but not Dirichlet boundary conditions.
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Example 2.1. We consider the Cauchy problem

@ {ut(t,x) = Aut,x) te0,+00), xe RY

u(0,2) = up(x) x e RV,

1) If Au = —cu with ¢ = c(x) > 0 (c is the absorption coefficient), then the solution
of (7) is given by u(t,x) = e “@yg(x) and pt,x,-) = e @s,(-).

2) If Au = b - Vuwith b = b(x), then the solution of (7) is given by w(t, x) = uo(¢{, x))
where ¢(t, x) solves the ODE

®)

¢t = b(¢)
#(0) = x.

Thus p(t, @, ) = dg42( - ). If |$(E, €)| = oo forsomet > 0, x € RY, boundary condition
are needed even when Q@ = RY.

Now, suppose N = 1. If'b is constant, then ¢, x) = x + bt.

When b(x) = b - x (Ornstein- Uhlenbeck operator), ¢(t,x) = et

For b(x) = —a3, ¢, x) = Therefore |§(t,x)| < %t for all x € RY.

X
V1 ¥+ 2t
x 1

Finally, if b@) — o, &(t,a) = Therefore, for t = o2

|¢(t, )| blows up.

2.1 - Invariant measures

Suppose 2 = RY. Recall that the initial distribution is denoted by u(I") =
P&y e I') and

P& <) = [ ple, Ddp) = D).
RN
We say that u is an invariant measure if

wI) =P el =ul), t>0,IcRY.

In this case du(-) = [ p(t, wx, )du(x).
RY
On the other hand

Jf(wdu(y) = J Jf(y)p(t, x, dy)du(x)

RY RN RV

- J d,u(m)[ J p(t, 2, d?/)f(?/)]

RY RY
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By definition, a probability measure u is an invariant measure for {7'(¢)} if and only if
J T(O)fdn = j flg, >0
RN RN

forallf € Cy(RY). A characterization of invariant measures for {7'(t)} can be given in
terms of the generator A of the semigroup, indeed, (see [4, Proposition 8.1.2]) a Borel
probability measure y is an invariant measure for {7(¢)} if and only if

J Afdu =0, f € DA).
RY

Example 2.2. Consider the problem

ug=b-Vu

u(0) = uy.
Then u(t,x) = uo(¢(t,x)) and p(t,x,-) = dg¢m(-). In this case p is an invariant
measure if and only if

() = j Su (D)) = )
RY
i.e. (gt ) UD) = WD) forall t > 0d.e. u(IN) = wet, YIN) forallt >0, I’ C RN If
b(@) = 0 then ¢(t,x) = and du = oz is invariant.

Example 2.3. Suppose N =2, b(x,y) = (—y,x). Then

—sent cost

cost sent
¢(t7 X, y) =
and (0,0) is the unique fixed point. Any measure invariant under rotations is in-
variant.

Remark 2.2. If an invariant measure u exists, then ¢ = 0 a.e. with respect to
w In fact, since ¢ <0 (see Remark 2.1), T(H)1 <1 but also [T®ldu= [ ldu.
Then Tt)1 =1, c = A1 = 0 p-almost everywhere. RY RY

Definition 2.1. A semigroup (T(#))i>o 0 By(RY) is irreducible if for any
nonempty open set U C RY, Ty (@) > 0 for every t > 0 and x € RY.

Definition 2.2. We say that (T(%)):>o satisfies the strong Feller property f
T@f € Cb(RN ) for any bounded Borel function f.
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Theorem 2.1 (Doob). Let u be an invariant measure. If the irreducibility
and the strong Feller property are satisfied, then

(1) all the measures pt,x,), t >0, x € RY are equivalent;
(ii) u 1s equivalent to p(t, x,-);
(iii) u is the unique itnvariant measure.

We recall that two measures u, v are equivalent if they have the same null-sets,
that is if each of them is absolutely continuous with respect to the other. We refer to
[12, Theorem 4.2.1] for a proof of the above result.

Remark 2.3. (T(®)o actsin Cb(]RN ) but in general it does not preserve either
Co(RN) or LP(RN). Consider the operator Au = —a3u'. The solution of the parabolic
problem associated with A with initial datum f is

X
ut, =1 (ﬁ)

Obviously we have
1

TILHOIO u(t, ) Zf(\/—ﬁ)’

which is not always zero.

Proposition 2.1. If an invariant measure exists, then T(t) in contractive in
LA(RY) for 1 < p<oo.

Proof. Indeed, since | p(t,x,dy) =1, we have
RY
1O < [ 1f@Fpte.dy) = TOI@,
RV
whence

| msran < | roisran= [ 1rvdn

RY RY RY

Example 2.4. Consider the symmetric operator A=A4-V¢-V with
¢ c CYRN), e¢ € L\(RYN). The operator A can be written as e?div(e V). Let
du = e~¢dx. If u € C*(RY), then

J Audu = J div(e *Vu)dx = 0

RY RY
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that is u is an invariant measure for A. In order to prove this, we consider the
sesquilinear form a in LZ(RN ) given by

alu,v) = J VuVodu
RY

on the form domain
D(a) = HY(RY) = WH(RY) = {u : u, Vu € LARM)}.

It is possible to prove that a is a bilinear, coercive, symmetric and positive form and
it 1is associated with the operator A so defined

D(A) = {u e H\RY): 3f e LARY) : alu,v) = — J fodu, v e ch(RN)}
RY

and Au = f, u € D(A). (In the definition of D(A) we can consider v € HL(RN ) by
density). Since Vé € L= (RN), by local elliptic L2-regularity

loc

D) = {u e HYRY) N Hy, (RY): du— V- Vue LARY) |

loc,u

and Au = Au, u € D(A). Observe that 1 € D(A), A1 = 0. Then, if u € D(A),

J Audp = (Au, I)Lﬁ(lRN) = (u,Al)Li(RN> =0.
RY

TZ . . .
In particular, if A=A —x -V then du=e~ S dw is the invariant measure. In the
174 . . .
one-dimensional case, if A = D* — x®D, du = e~ Tdux is the invariant measure.

3 - The Ornstein-Uhlenbeck semigroup in L*(RY)

Here we consider the Ornstein-Uhlenbeck operator
N N
9) L= Z qijDij + Z bij%jDi = tI‘(QDZ) + (Bx, V), WS RN,
ij=1 ij=1

where Q = (g;j); j-1,...~ is a real symmetric and positive definite matrix, and
B = (by); j-1,..n is a non-zero real matrix. In this section we consider L acting in
U’(RN ) with respect to the Lebesgue measure. In the next section we deal with the
same operator but in L” with respect to the invariant measure.

An elementary change of variable allows us to assume @ = I. Indeed, setting

u(x) = v(Max), with M a real matrix we get
Vu(x) = M*Vo(Mx)
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and
D*u(w) = M*D*o(Mx) M.
Hence
N
> qi@Dju@) = tr(QD*u()) = tr(QM* D*v(Ma) M)

ij=1
= tr (MQM"* D*v(Mz)).
Choosing M real such that MQM* = I we may restrict to study operators of the form
(10) L=4+Bx-V

(where we still denote by B the matrix MBM ™).

The explicit representation of the semigroup generated by L in the form (10) is
due to Kolmogorov whose heuristic argument we illustrate below. Let consider the
following parabolic initial value problem

Uy = Au + Bx - Vu
(11) { t

u(0, ) = f(x).

Problem (11) can be simplified getting rid of the drift term Bx - Vu using the flow
generated by Bx

12) { &= Be
0)=w
whose solution is given by &(t, #) = e'Bx. Thus, setting u(t, x) = v(t, e'Bu),
wilt, ) = vy(t, eBx) + (BeB, Ve, eBr))
Vu(t,x) = B Vu(t, B )
Au(t, x) = tr(e® D*u(t, ePa)e’®)

and
up — M — B - Vu = v — tr(ePe!® D?v).

Therefore %(t, x) is solution of (11) if and only if v(%, eBx) is solution of the following
non autonomous problem

v = tr(Ct)D?v) = Aty
v(0)=f

where C(t) = eBe!®” and A(t) = tr (C(t)D?). Since the coefficients of A(t) depend only
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on t whereas D? acts in the space variables one easily sees that A(t)A(s) = A(s)A(?).
The solution can be written in the following form

t t
j A(s)ds j tr (C(s)D?)ds ,
o(t,x) = ed flx) = ed fla) = e @DV ()

t
where @, = [e*Be*B ds. Thus v(t, -) coincides with w(1, -) where w solves
0

{vs = tr(Q.D?w)

w(0) =f
and hence
1 Q7w I
W) = o | € Sy, S G
RY

Finally the solution of (11) is given by

1 Qv
8)  TOf6) =) = e J o Py,
]

RN

3.1 - Properties of (T(t))i=0

In this section we collect some classical results for (7(?));>(. Smoothing properties
of (T'(1));>¢ are established in [9], in spaces of continuous functions and in [20], in
LP(RYN). We start recalling that the semigroup (T(@))s>0 1s strongly continuous on
LP(RN), 1 < p<ooand on CO(RN).

One can show that L, with a suitable domain, is the generator of (7(¢));>o. For
1<p < oo we define

Dy(L) = {u € LPRN)n W2P(RY) : Lu e LP(RV)}

loc

and for p = oo

Doo(L) = {u € CoRNYNW2P(RN) Vp > N : Lu € L°(R)}.

loc

From now on, we denote by L, the realization of L in LP(RN ), that is (L, D, (L)). The
following result is contained in [21].

Proposition 3.1. If 1<p < oo, the generator of (T'(t));>o 1 LP coincides
with L, and C*(RY) is a core for L,. For p =1 the generator is the closure of L,
on C(RM).
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Remark 3.1 (Contractivity of T'(t)). If we denote by
1 @y

4 P(det Q)2

(14) 9(y) =

)

then ||g:|l; =1 and
(15) TOf @) = (g * )e®2).

Young’s inequality for convolutions and the identity det(e %) = e~ ® prove that

ttr B

B)
" lgell LA 1], = e 1A 1

Remark 3.2. (i) T(t) is not strongly continuous in BUC(RY) endowed with
the sup norm || - || .. Indeed

(16) IO, < e

Jim IT@®f —fllo =0
if and only if
fe{h:RYN - R: ltin&[h(etBac) — h(x)] = 0 uniformly for x € RN}

(see [9, Lemma 3.2] for details). For N =1 and B =1 a counterexample is thus
provided by f(x) = sinx € BUC(R). In fact, f(e'x) does not converge uniformly to
f@)ast — 0.

(i) T(t) is not analytic in LP(RY) and in Co(RY) (see [20] and [29)).

If f is a smooth function, from (15) we get
(17) VT f @) = e (g VI)ePr) = P Tt)Vf (),
whereas for a generic f
(18) VT f(x) = B (Vg « f)(ePa).

1
Since Vg;(y) = gt(y)( - §Qt_1?/>,

1 "
VIOf@) = j &5 Qry i) f @ — pdy = (g * £)eP)
RY

1
I

1
where ggb(y) = — éetB Q; 1@/ 9:(y). We estimate || gg as follows

1

—XQ ')
An)N2(detQ,)" ze

1 _
I9l < 3¢ [ 1@t
RY

1 2
1l J e~ T1Q, V%e|dz <

0<t <1,
2(4n)N/? -

‘
Vi

RN
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where in the last step we have used the inequality |Q, Y 2z| < it |z| (which easily

follows from @/t — I ast — 0). Young’s inequality again yields

_ trB

c
IVT@fll, <e 7 llg I fll, <=1,  0<t<TL.
Vi
A simple iteration procedure shows that, in general,
” c
(19) ID*T®O N, < e Ifll,  O<t<1.

For instance, if |o| = 2
IVD;TOf ||, = 1D:VTE/2T@/2)f |, = ||DieéB*T(t/2)VT(t/2)f\|p

<

BRY
The previous estimates prove that 7'(f) has good smoothing properties in all L?
spaces. If f € LP(RY) then T(@®)f € W*?(RY) for every k € N with classical esti-
mates. However Bx - VT'(t)f ¢ LP(RM), see the next section.

We study now spectral properties of L in L?(RY). We point out that L is the sum
of the diffusion term tr(QD?) and the drift term (Bx, V). Whereas the spectral
properties of the diffusion term are quite obvious, being an elliptic operator with
constant coefficients, those of the drift term are more interesting and depend both on
p and the matrix B.

IvT@/2f ), <5Ifl,  0<t<1.

3.2 - Spectrum of the drift

Let B = (b;) be areal N x N matrix. We consider the drift operator

N
L= Z bij.%jDi =Bx -V
ij=1
and its realization £, in LP(RMY (1 < p < 00), that is (£, D, (L)) with domain
Dy(L) = {u e LP(RY): Lu e LP(RM)} 1< p<oo,

and
Doo(L) = {u € Co(RY) : Lu € Co(RY)}

where Lu is understood in the sense of distributions.

Lemma 3.1. The operator (L,Dp,(L)) is closed in L”(RN ).
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Proof. Let (u;); € D,(£) and suppose it converges to u and Lu; converges to v
in LP(R™). Let ¢ € C*(RY) and £* be the formal adjoint of £. Then

J uLl pdr = lim J w; L pdx = lim J (Luj)pdx = J vod.
J—00 J—00
RY RY RY RN

Hence w € D,(£) and Lu = v.

Proposition 3.2. The operator (L, D,(L)) is the generator of the Cy- group
S(t) f(x) = f(e'Px)
for f e LP(RY ),t € R. Moreover C(?O(RN ) ts a core of (L, Dy(L)) and

_ttr(B

AL

(20) ISW 11, = e
for every f e LP(R™).

Proof. A simple change of variable, together with the equality dete %

= ¢ ™® proves that (20) holds. If f is continuous with compact support then
S@f — finLP (RN )ast — 0. By density and (20) we deduce the strong continuity of
S@))er in LP (RY). Since the group law is clear, we have only to prove that (£, D,(L))
is the generator of (S(®))er. Let (4,,D,) be its generator in LP(RY) and take
fe CgO(RN ). A straightforward computation shows that
. SOf - f
Iy = =4
in LP(RY) and hence C§°(RN )CDpandA,f =Lfiff € CEC(RN ). Moreover, since
C*(RY)is dense in LP(R") and S(#)-invariant, by [13, Proposition 1.7] we deduce that
itisacore for (4,, D). The closedness of (£, D,(£)) implies that D), C D,(L) and that
Apf =Lfiff € Dy. Let £L* = —L — tr(B) be the formal adjoint of £ and note that
L'=—-Ay —tr(Byon Dy, 1/p+1/p' = 1. If u € D,(L), then the equality

(21) J Lupdx = J ul*ddx
RY RN

holds for all ¢ € Dy, by the density of Cg"(RN ) in D,y with respect to the graph norm
induced by £*.

For /large, take v € D), such that 2v — Ayv = Au — Lu. Thenw = v —u € Dy(£)
satisfies Aw — Lw = 0 and from (21) we deduce that

0= J (Aw — Lw) ¢dx = J w(lg — L*¢) du,

RN RN
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for all ¢ € D). Since (A — L) Dy) = (A+tr(B) +A,)Dy) = LY (for A large), we
deduce that w = 0 and that u € D,,.

The following two theorems characterize completely the spectrum of £,. In the
first we consider the case where tr(B) # 0 and use an argument from [2, Section 3 ].

B i

Theorem 3.1. Iftr(B) # 0 then o(L,) = —

Proof. Suppose for example that tr(B)<0 and let 1 < p<q < oo; then (20)
implies (L) C —tr(B)/p + iR and o(L,) C —tr(B)/q+iR. If ne R, —tr(B)/q
<u< —tr(B)/pandf € C*(RY),f >0, f # 0 we have

RGu )y = | e 1St = 0
0

whereas

R, L,)f = —R(— pt, —L,) = — j ¢S — t)fdt < 0
0

so that for these values of u the resolvent operators are not consistent.
Using [2, Proposition 2.2] we obtain that the resolvent operator does not
coincide for —tr(B)/g<Reu< —tr(B)/p and that o(L,) = —tr(B)/p+iR,
o(Ly) = —tr(B)/q+iR. A similar argument can be applied if tr(B)<O0.

The following theorem, whose proof can be found in [21, Theorems 2.5 and 2.6],
characterizes the spectrum of £, when tr (B) = 0.

Theorem 3.2. If tr(B) =0, then a(L,) is an unbounded subgroup of iR
(independent of p). It coincides with 1R if B is not similar to a diagonal matrix with
purely imaginary eigenvalues.

3.3 - Spectrum of Ornstein-Uhlenbeck operators

Now we come back to the Ornstein-Uhlenbeck operator defined in (9) and the
associated semigroup (7))o given in (13). The main result of this section is stated
in the following theorem.

Theorem 3.3. The spectrum of L, contains the spectrum of the drift L, for
any p €[1,4+ ool
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Proof. Foreveryk € N, let V}, be the isometry of L defined by
Viw(w) = k~NPull ).
Then
1
Vi lLViu = 7z 4@ + (Bx, Du)
and hence V; 1LV,u — Luin LP,ask — oo foreveryu € C:°(RY). Since C2°(RY)is a

core for (£, D,(L)), by using the Trotter-Kato Theorem (see [13, Section 111.4]) we
obtain that

k—o0

RG,V,'LVf '— R, O)f
for every f € LP and for every 1 with Re 1 > —tr(B)/p. Therefore

IR, £)||£(L,,) < lilgn inf |R(4, Vk‘lLVk)HaLp)

(22) o
= lllmlorclf ||V1;1R(;°7L)Vk||£(m) = ||R(/17L)||L(Lﬁ)-

/1—)(1)

Nowletw € (L)), if 2 — wthen ||R(4, £)|| e oo and by (22) we get ||R(4, L)|| — oo
hence w € a(Ly).

As a consequence of the previous theorem we get that o(L,) contains a vertical
line or a subgroup of iR then the semigroup (7'(f))so is not norm continuous (see
[13, Theorem 4.18]) and hence not analytic, nor differentiable. This explains why
the term Bx - VT'(t)f does not always belong to U’(RN ).

The last theorem of this section characterizes the LP-spectrum of Ornstein-
Uhlenbeck operators when either the spectrum of B is contained in C~ or in C" or
finally when B is symmetric. Its proof is contained in [21 Section 4, Section 5].

tr(B)

Theorem 3.4. o(L,) = {7 €C: Rei<—
i) B=B* or

(i) o(B) C O~ or

(iff) #(B) C C*

} if either

4 - The Ornstein-Uhlenbeck semigroup in Lﬁ(RN )
Let us consider the Ornstein-Uhlenbeck semigroup given by Kolmogorov’s formula

(23) (THf)(x) = Je’%@? WF(eBy —y)dy, t>0,xeRY

I
@ detQ; o
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with f € C,(RY). Here 0 +# Bisareal N x N matrix and @Q; is given by
t
Q: = JeSBeSB* ds.
0

The generator of (7'(t));>¢ is the Ornstein-Uhlenbeck operator
L=A4+Bx-V.
In this section we assume that the spectrum of B, o(B) is contained in the open left half

plane C_. This assumption, as proved in [11], is equivalent to the existence of an in-
variant measure u for (7'(f));o, i.e., a probability measure x such that

| roran= | £au

RY RY
for everyt > 0and f € Cb(RN).
We observe that Q; = JEeSB ¢*B" ds converges increasing to Q. = Ofoe“’B ¢*B'ds and
that e’ converges to 0 as% — 00, thus '

t—o0 1

T)f@) =3 J ¢ ML f () dy

V@ det Qe v

pointwise. As regards the invariant measure z, one can check that it is given by a
Gaussian density, g(x), i.e.,

1

\/ ()N det Qo

By a direct computation one can verify that L*g = 0 where L* is the formal adjoint
operator of L. Then, if f € C*(RY),
d

g J T@Of @) du = J LT@®f (@) dp = J T@®)f(w)L"g(x) de = 0,

(24) dux) = o~ H@lwa) g — g(x) dux.

RY RY RY
therefore
J TWF @) dute) = J @) )
RY RY

and g(x)dx is an invariant measure ( C‘L?O(RN ) is a core for the generator, see for
example Section 7).
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As we have seen in the first Section, (7(?));>o extends to a strongly continuous
semigroup of positive contractions in Lﬁ(RN )forevery 1 < p<oo. We denote by Dy, (L)
the domain of its generator. Remark that, since @Q; <@, in the sense of quadratic
forms, the integral in (23) converges for every f € ij(RN ) and € RY, so that the
extension of (7(¢));>o to Lﬁ(RN ) is still given by (23). Observe also that D),(L) C Dj(L)
ifp > qand Lyu = Lyuforu € Dy(L). If 1 < p < oo, we will prove in Section 7, that the
domain DZ(L) is nothing but the weighted Sobolev space WZ‘P (RN ).

Lemma 4.1. Let 1<p < oo, then, for every t > 0, T(t) maps Lﬁ(RN) mto
C*(RM N W}?”(RN ) for every k € N. Moreover, there exists C = C(k,p) > 0 such
that for every f € Lﬁ(RN ) the inequality

. C
1D T(t)fHij(:[aN) = /2 ||fHL§j<iRN)7 te©,1)
holds for every multiindex o with |o| = k.

Proof. Letf e Lﬁ(RN ). Differentiating under the integral sign in (23) we get

(DTON)@ = | e @ tur e - gy

RY

where ¢; is defined in (14) and B* denotes the adjoint matrix of B. By Holder in-
equality and
_ C
| < 55 te@1],

we can estimate

(TN < C1Q | [ 1671 s - plarwdy
]RN
1/p 1/p
<C1Q, " J 1Q; Pyl giy) dy J |f (B — y)[Pg:(y) dy
RY RY

<Gt £ @)

Raising to the power p and integrating the above inequality with respect to u, we
deduce

C C
| vrsrans 3 [ roiran= g4 [ israu

RN RY RY
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which is the thesis for k = 1. Using the equality VT'(¢)f = ¢'Z"T(t)Vf, which holds for
every f € W/}p(]RN ) and a simple iteration procedure one can prove the claim for
k > 1. For example for k =2,4,j=1,...,N and t € (0,1) we have

||DijT(t)f||Lﬁ(RN) = ‘|Di(DjT(t/2)T(t/2)f)||Lﬁ(RN)
= | Di(e™ *T(t/2DT(t/2)f )j ||L§i(1[aN )

C
< CHVT(t/2)f||L§;(RN)||VT(t/2)||L(L£(RN)) < TP HfHL{j(RN)-

Lemma 4.2. Ifl<p<oo, the map u — |x|u is continuous from W};p(RN) to
LE(RY).

Proof. It suffices to show that there is a constant K, such that for every
u e CX(RY)
(25) J lepu@)|” du(e) < K, J (Ju@)|” + [Du@)|”) dul).
RY RY

By alinear change of variables we may assume that @, is diagonal with eigenvalues
Ui, - -,y and hence that

1 N ) }
= o % 4 ) .
o (47Z)N/2(lul .. ',uN)l/z exp { 12:1: a7 /()

As a first case, assume p>2. If ungo(RN ), then one has, for
C=2max{y,...,uy}:

j )P dut) < —C J )P 2 - Dige)
RN RY
=C J (P (@) |wpu@)P 2 Dyute) + (o — Dy [P u@)]”) du)
RY

< j @ P2 @) du(@)

RY
+Cz< J | ul) | d/t(aﬂ)) ’ ( J |Dyu(e)|P dﬂ(m))p
RY RY

<e J | (@) [P dptx) + C, J ([u@)[” + | Dpu(@)[”) dule),

RY RY
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for every ¢ > 0, with a suitable C, (in the last line we have used Young’s inequality
and the estimate |x;,|” 2 < ey |” + Cy). Choosing e< 1 we deduce (25).

Let us deal with the case 1 <p < 2. We proceed as before but we have to estimate
in a different way the term

J el 2@ dpua).
RN

To simplify the notation, take =N and write «' = (xy,...,25y_1), g(x)

—a2, Ay
= g’(ac’)(zww, and dy' = ¢'(@)dx', dy’ = (47z,uN)71/2 exp{—%/uy }day, so that
TN
[ et 2up due = | die) [l et ) duan)
Ny V-1 R

- [ qww) J e P2, ) P di )
RN lv[>1
1

+ | awe) j e P2 e, )P did @)
RN -1

=J; + Js.
Clearly, J; < | |u(x)[” du(x). Let us estimate Jo. For every &' € RN we have, by

RY
the Sobolev embedding W'P( —1,1) — L>*(—1,1),
1 1

B P B
J len |2t )P d(ey) < C( sup Iu(x’,xzv)l) J en |2 dacy
‘GCN‘SI
~1 -1

1
<G J (Jule, 2p)P + Dy, 2x)P) dacy
-1

<G j(|u(ac’, 2 + Dy, o)) il @)
R

whence, integrating on RN,
J2 2 Co | (u@P + Du@ duto)
RY

and this completes the proof.
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It follows, in particular, that the map Lu = (Bx, Du) is bounded from WE’?’ (RM)

into Lﬁ(RN) for 1<p<oo, in fact

(26) [l Vel < c|\u||W‘zlAp, u € Wi*”(RN).

We observe that Cg"(RN ) is dense in W/’f”’(RN ), 1 < p<oo. Indeed, a simple
truncation argument shows that the set of ij*p—functions with compact support is
dense and, given u € Wff*p(RN ) with compact support, the usual approximating
functions ¢, * u converge to u, as ¢ — 0, in WEP(RY) and hence in Wl’jﬁ"(RN ) (here
¢.(x) = &N @(x/e) where ¢ € Cgc‘(RN ) is positive with integral 1).

Corollary 4.1. For 1<p<oo the semigroup T(t) is analytic in Lﬁ(RN).

Proof. If f e S(RY) then T(t)f € S(RY) c D4 From Lemmas 4.1, 4.2 it
follows that

C
lAT®F Ny < S fllzgs O<t <1,

and
c
1Bz TS |1y < clle - VIO 1y < elITOF e < 511z

Hence summing up we get

c
ILTOf Iy < 51Nz
and the thesis follows.

Lemma 4.3. T(t) is compact in LZ(RN), l<p<oo.

The proof of the compactness of 7T'(f) relies on the fact that 7'(t) maps Ll’j(RN ) into
Wj*p(RN ) and on the compactness of embedding of W};p(RN ) in Lﬁ(RN ) as the fol-
lowing lemma asserts.

Lemma 4.4. The embedding Wivp(RN) ‘—>Lﬁ(RN) is compact for 1 <p < oc.

Proof. Asalreadyseenin Lemma4.2,%4 — |x|uis bounded from W;*p to L. We
consider the unit ball B in Wi»(RY)

B ={uecWP®RY): July <1}
By the previous result we get || x| u||Lﬁ <C Vuehbie.

J [P |u|’ du(x) < CP.

RY
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Fix ¢ > 0 and choose R > 0 large enough such that

p D
Ju|P due) < J |]9;—|p|u|p dux) < % <e YueB.

|| =R |v[>R
The compactness of B g, in Lﬁ(BR) = LP(Bg) and above estimate show the existence
of a finite ¢-net for B, which concludes the proof.

The compactness of the semigrouop implies that of the resolvent and gives, as an
important consequence, the discreteness of the spectrum of (L,D,’,‘(L)), in contrast
with the results of the preceeding section where the Lebesgue measure was con-
sidered, instead of the invariant measure. We examine now in detail the spectrum of
(L, Dy(L)).

4.1 - Eigenfunctions

In this section we assume that 1 <p<oo. The following estimate is the main
step to show that the eigenfunctions of (L,DZ’O‘(L)) are polynomials. We define
s(B) =sup{Re 1: 1€ d(B)}<0.

Lemma 4.5. Letk € N and ¢ > 0 be such that s(B) + ¢<0. Then there exists
C = C(k,&) such that for every u € WrP(RY)

(27) > DTy, < Ce*BD N DMy, ¢ > 0.
lo|=k lo|=k

Proof. LetC; = Ci(e) be such that ||e'B"|| < C1e/®)*+? for any ¢ > 0 and recall
that VT (t)u = 'B" T(t)Vu for every u € W/} P(RN). Since T'(t)is contractive in Lﬁ(RN )
we have

IVT @l = Nle® TOVul
<C, et(S(B)+z:) || T(t)VuII 7
< GBI | TtV |y

and the statement is proved for £ = 1. Suppose that the statement is true for k with a
suitable constant C}, and consider u € W}f* Lp(RM), Then, if |o| = k,

IDD*T(tyul|, = |D*V T, = ||D*e™ T#)Vul|,
< Clet(s(B)+s)HDaT(t)Vu”p

< Cl Cket(k+1)(s(B)+s) ”DDau”
- P

and the claim follows.
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Proposition 4.1. The eigenfunctions of L in LZ(RN) are polynomials.

Proof. Let u € Dj(L) be an eigenfunction, i.e. there exists 2 € C such that
Ju = Lu. Since T(t)u = eMu, from Lemma 4.1 we deduce that u € Wﬁ*p(RN )
n COC(]RN ), for every k. Clearly D*T(t)u = e D*u for every multiindex o. Then

: K(s(B)+ .
o Re Dt Z ||D'{%||Lﬁ _ Z ”D“T(t)uHLﬁ < C(k, e)et (s(B)+¢) Z HD!M”LZZ

| =k || =k | =k
and finally
Z ”Docu”Lﬁ < C(k78)et[(k(s(3)+a)—Re/1] Z HDau”Lﬁ'
lol| =k lo|=k
. |Re | .
If ks(B)<Re then ||D°‘u|\Lﬁ =0. Hence D*u =0 if k > 5B and « is a poly-
nomial of degree less than or equal to [Re )L|.
s(B)
4.2 - Spectrum of L in L/’j(RN)
As before, we denote by
Lu = (Bx, Du)

the drift term in (10) and we reduce the computation of the spectrum of L to that of L.

Lemma 4.6. The following statements are equivalent.

() 4 € a((L, Dy L))).
(ii) There exists a homogeneous polynomial u # 0 such that Lu = Au.
(iii) There exists a homogeneous polynomial u # 0 such that

Stulx) = eulx).

Remark 4.1. Consider the equation Ju — Lu = 0 with u polynomaial, A € C.
If B = —1I this is the well-known Euler equation satisfied by all homogenuous
Sfunctions of degree ( — ). If we require that u is a polynomial, we obtain (— 1) € N,
hence all negative integers are eigenvalues of L and, for every n € N, all homo-
geneous polynomials of degree n are eigenfunctions.

The equation with a general B is much more complicated and we shall not
characterize all polynomial solutions but only the values of A for which such a so-
lution exists. Observe that a polynomial u satisfies Au — Lu = 0 if and only if

(28) we®r) =e’u@) t>0, xeRY
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or, equivalently, by analytic continuation
w(eBz) = e u(z) t>0, ze CV,

This suggests that the general case can be treated by decomposing B into Jordan
blocks. Assume, for example, that B = yI + R consists of only one Jordan block
(hence R is nilpotent) and that « is an n-homogeneous polynomial satisfying

e u(z) = u(eBz) = ue”e®z) = e""u(e'Rz).

Since et®

is a polynomial in ¢, R being nilpotent, comparing the growth as ¢t — oo we
deduce 1 = ny and hence the spectrum of L is contained in yNN (the opposite inclusion
is easily proved by considering the functions u(z) = 2%,).

Arguing similarly in the general case, one proves the following result which de-

scribes the spectrum of L in L/’j(RN ) in terms of the spectrum of B, see [22].

Theorem 4.1. Let /4, ..., A be the (distinct) eigenvalues of B . Then

o((L, DI(L)) = {z = mjdj:m; e NU {0}}7 1<p<co.
j=1

J=

Moreover, the linear span of the generalized eigenfunctions of L is dense in Lﬁ(RN ).

4.3 - Angle of analyticity of T(t)

The standard theory of analytic semigroups and the above result imply that the
angle of sectoriality 0, of (T'(t))s>0, satisfies the inequality 0, < n/2 — O where 0is the
spectral angle of (L, Dy, (L)) that coincides with the spectral angle of B. Surprisingly
enough, there are situations where 0 <7/2 — 0. In these cases, the angle of sec-
toriality is not determined by the spectral angle of L or, equivalently, by the spectral
angle of B.

For every 6 € (0, z] we define the open sector Xy by

2y :={z2€C:largz|<0}.

The following result is proved in [8, Theorem 2].

Theorem 4.2. Let (T(t));>o be the Ornstein-Uhlenbeck semigroup on Lﬁ(RN ),
1<p<oo. Let 0, € (0, g} be defined by

\ (0 — 27 + py2

2/p-1

cot 0, =

)
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1 . .
where y :=2|| 51 + QB*||. Then the following assertions are true:
@) (T@®)e>0 extends to an analytic contraction semigroup on the sector X 0,
) If (T@®)>o extends to an analytic semigroup on the sector Xy for some
0 e (O,g}, then 0' < 0,, i.e., the angle 0, is optimal.

In the selfadjoint case we obtain cot 0; = 0 and cot 0, = Lml
p p—

5 - More general operators

In this section we introduce elliptic operators with unbounded coefficients and we
study the Markov semigroups associated with them.

We follow the approach of [24, Section 4]. We consider second order elliptic
partial differential operators

N N
Au@) = ag@Dyu@) + > Fi@)Du), xeRY

ij=1 =1
under the following hypotheses which will be kept in the whole section

(H1) aj; = aj;, F; real-valued locally Holder continuous functions of exponent
O<a<l;
(H2) the ellipticity condition:

N
> ay@)ég > Mw)léf
1,j=1

for every x, ¢ € RY, with infg A(x) > 0 for every compact K C RY.

The operator so defined is locally uniformly elliptic, that is uniformly elliptic on
every compact subset of RY.
We consider A endowed with its maximal domain in Cy(RY)

Diaa(A) = {u € Co(RM) N W2L(RY)  for all p<oo: Au € Cy(RM)}.

loc

Our main interest is in the existence of (spatial) bounded solutions to the parabolic

problem
(29) {ut(t, x) =Au(t,x) x€ RN, t>0,
w(0,2) = f(x) xe RN

with initial datum f € Cb(RN ). The unbounded interval [0, oo[ can be changed to a
finite interval to any bounded [0, T] without affecting the results. Since the coeffi-
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cients can be unbounded, the classical theory does not apply and existence and un-
iqueness for (29) are not clear. Quite surprisingly, existence is never a problem, but
uniqueness is, as the following example shows. More precisely, in what follows we
prove non uniqueness in D,,,,(A) for the corresponding non homogeneous elliptic
equation. This, however, implies non uniqueness for the parabolic problem (see for
example [24, Section 5]).

Example 5.1. Let Au(x) = u"(x) + 4ax®w’. Then I — A is not injective on
D7nax(A)~

We prove that all the solutions of the equation
(30) w=u"+ 4Py

are bounded. Equation (30) can be written as u = e‘”4%(e“4u’ ) or equivalently

d .
ey = e (¢"'w). Let o> 0. Integrating from o > 0 to x we deduce

e () = e/ (o) + Jet4u(t)dt,

then

X
w'(@) = ¢~ u' (@) + Je’"’”“”%(t)dt.
o
Let now s > 0. Integrating from o to s, we obtain
S S X
u(s) = u) + Je“4‘“4u’(o¢)dﬂc + de Je‘”4+t4u(t)dt.

Let f > o and set v(f) = max{|u(s)| : « < s < f}. Then

S

lu(s)| < e1(e) + c2(00) + v(ﬂ)Jd%Je%mdt

o

with c1(a) = |w(@)|, ca(o) = /7 |o (oc)\e“4. Now we observe that there exists a positive
constant ¢ not depending on o such that, for positive x,
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Then, foroa < s < f5,

1

1+x3dw

[u(s)| <ci(a) + caler) + cv(f)

—_—

1

dx
3

<ci(a) + co(@) + cv(p)

52_.8 K

<ex(0) + ea() + ¢ 2.
o
If o is large enough such that %

< %, then it follows that v(B) < 2¢1(a) + 2¢a(a) for all
B> o

Uniqueness is implied by the existence of Lyapunov functions for the operator A.

Definition 5.1. We say that V is a Lyapunov function for A if V € C2(RM),
V >0, V goes to infinity as |x| — oo and AV — AV > 0 for some A > 0.

Proposition 5.1. Suppose that V is a Lyapunov function for the operator A.
Then problem (29) admits at most one bounded solution.

Proof. We prove that, if u solves

uy = Au
1(0) = 0,

then u < 0. Consider the function z(¢, x) = e *u(t, ) where A is as in the definition of
Lyapunov functions. Then z satisfies z; = (A — A)z. For every ¢ > 0, introduce a sec-
ond auxiliary function w(t,x) = 2(t,x) — eV (x). Then w; — (A —ADw =2 — (A — 1)z
+eA -2V =6l - DV <0and

wr—A—-Dw<0
w(0,x) = —eV(x) <O0.

Moreover w(t,x) — — oo as || — oo uniformly with respect to ¢ on the compact
intervals of the form [0, T]. Suppose that w > 0 somewhere. Then there exists
(to,29) maximum point for w with w(ty,ax) > 0. Then £y > 0, w(ty,x9) > 0,
Aw(ty, xy) < 0 (see [25, Appendix 8]) and obviously Aw(ty,xo) > 0. This is a con-
tradiction. We conclude that w(t, x) < 0i.e. z(t,x) < eV (x) for every ¢ > 0. Letting ¢
go to 0, the claim follows.
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Example 5.2. Suppose that the coefficients of the operator A satisfy

N N
> @@ + Y Filwm; < Alaf®
i=1 i=1

2
for x| large and for a suitable A > 0, then V(x) = % s a Lyapunov function for A.
If the coefficients satisfy

- iy | o i 2
E a;(®) —5 + g Fix) —5 < A|"log ||
i.j=1 || i—1 ||

Sfor|x| large and for a suitable A > 0, then V(x) = log |x| is a Lyapunov function for A.

The existence of a Lyapunov function will be always assumed from now on, even
though it not necessary for the existence part.

Remark 5.1. If there exists a Lyapunov function for A, then the constant
Sfunction 1 solves the parabolic problem with initial datum f = 1. By uniqueness
T®)1 =1 and, by the representation formula,

I:Tmlszm%ymy

-RN

5.1 - Existence

We will prove the following theorem.

Theorem 5.1. There exists a positive semigroup (T())>o defined in

Cb(RN ) such that, for any f € Cb(RN ), ut,x) =TE)f(x) belongs to the space
Cllot%’ZH((O’—i—oo) x RN ), is a bounded solution of the following differential

equation

N N
uit, ) = Y a@Dyut, @) + Y Fi(@)Dgu(t, ©)
i=1

i,j=1
and satisfies
limu(t, @) = /(@)

pointwise.
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Let us fix a ball B, = B,(0) in RY and consider the problem

w(@,x) =Ault,x) t>0, xeB,,
(31) { u(t,x) =0 t>0, x<€0B,,

w0, x) = f(x) xeRY.

Since the operator A is uniformly elliptic and the coefficients are bounded in B,,
there exists a unique solution u, of problem (31). The operator A, = (4, D,(A)) with

D,(A) = {u € Co(B,) N W2P(B,) for all p<oo : Au € C(B,)}

generates an analytic semigroup (7,(t));>o in the space C(Ep) and the function de-
fined by T,(®)f (x) = u,(¢, x) solves (31).

Since the domain D,(A) is not dense in C(B,), the semigroup is not strongly
continuous at 0; indeed one can prove that 7,(t)f converges uniformly to f in B, as
t — 01if and only if /' € Co(B,). However the convergence is uniform in compact sets
B, for every o < p and hence pointwise on B,. The operators T',(¢) are also bounded in
LP(B,) forevery 1 < p<oo. Wereferto[18, Chapter 3]and [15, Chapter 3, Section 7]
for a detailed description of the results mentioned above.

Now we let p go to infinity in order to define the semigroup associated with A in
R¥. To this aim we need an easy consequence of the parabolic maximum principle.

Lemma 5.1. Let0<f ¢ Cy(RY) and let p<py<po. Then for every t > 0 and
x € B,we have 0 < T, (O)f (@) < T,,@)f (x).

Proof. First suppose that f =0 on the boundary 0B, . Then, since T, ()f
converges uniformly to f in B, as t— 0 if and only if f € Cy(B,), w(t,x)
=T, ®)f(@) — T, @®f(x) is continuous on [0, c0) x E,,l, vanishes for ¢ = 0, is non-
negative for x € 0B, and solves w;(t,x) =0 for x € B, , t > 0. By the maximum
principle w(t, ) > 0 in [0, c0) X E/)l' In general, if f € Cb(]RN ), we approximate it in
the L*(B,,) norm with continuous functions vanishing on 9B, . Using the first part of
the proof and the boundedness of T',,(f) in L2(B(p;)), i = 1, 2, the claim follows.

Proof. (Part of Theorem 5.1). If f € Cb(RN), x € RY we set
TOf(x) := phl?o T,@®)f (x).

We know that this limit exists if f > 0 by monotonicity, and in the general case by
writing f = f* — f~. T(?) are positive operators and ||T(#)f].. < || f|l, since this is
true for all operators 7,(t). Let us prove that the operators so defined satisfy the
semigroup law. Consider f > 0. Let ¢, s > 0. Then

T(t +9)f @) = lim T,(t +9)f () = lim T,(0T,(5)f @) < TOTG)f @)
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On the other hand, for every p; > 0 we have
Tt +s)f() = phl?o T,(OT)(s)f () = /}Lrgc T, OTy(s)f (@) = T, OT(s)f (x)

and, letting p; — oo, it follows that T'(t + s)f(x) > T@)T(s)f (x). Hence the semi-
group law is proved for positive function. The general case follows by linearity, as
above.

Set u(t,x) = TOf (@), uy,(t,x) =T,O)f(x) for t >0 and x € RY. Fix positive
numbers ¢, 7, 0 with 0 <e< 7. By the interior Schauder estimates ([15, Chapter 3,
Section 2]) there exists a positive constant C such that for p > o

Ftpllgrsseosge ey < Cltplloe < Cl -

So by Ascoli’s Theorem it follows that u, converges to % uniformly in [¢, 7] x B,. Fix
now g1 <o, ¢<ée <11 <t and apply again Schauder estimates. For p, > p; > 0 > g1
we have

1%, — 4y, ||clf%~2*“<[el‘n]x§al> < Cllotp, =y, |13,

Thenu € Cll;%’ZH((O, 00) x RY) and, letting p — oo in the equation satisfied by u,, it

follows that ou = Au.

To complete the proof of Theorem 5.1 we have to show that the initial value f is
taken with continuity. We observe that we need to prove much less than the strong
continuity of T'(t) (which fails even for the Ornstein-Uhlenbeck semigroup), but we
start by proving strong continuity on functions vanishing at infinity.

Proposition 5.2. Forevery f € Co(RY)
%in% T®f =1
uniformly on RY.

Proof. Consider first f € C2(RY) with support contained in B, and let p > o.
Then, for x € B,, since f € D,(A)

¢
T,0f @) — f@) = JT,,(s)Af(ac) ds
0
and, letting p — oo by dominated convergence,

t
TW)f @) — f@) = JT(s)Af(x) ds.
0
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By the arbitrarity of p, the equality above holds for every x € RY and, taking the
supremum over x € RY, we get

IT@Of = fllo < tAS |-

This implies that 7'(f)f converges to f uniformly as ¢ — 0. The claim follows by ap-
proximating a function f € CO(RN ) with functions as above, and using the con-
tractivity of T'(t).

Remark 5.2. By the previous proposition we cannot deduce that (T(t))o
restricted to Co(RY) is strongly continuous since the invariance property of Co(RY)
under the semigroup is not guaranteed (see Section 5.5).

In order to deal with arbitrary continuous and bounded functions we need to
prove an integral representation of 7'(t). Let f € C.(RY), the space of continuous
functions having compact support in RY. By the Riesz representation theorem, for
every t > 0, € RY we can find a Borel measure p(t, ¢, dy) such that

T(@)f @) — J p(t, 2, ) f @) dy.

RY

Since T'(?) is positive and contractive, p(t, x, -) is a positive measure having total mass
less than or equal to 1.

Lemma 5.2. Foreveryt >0,z c RY, p(t,x,dy) is a probability measure.

Proof. By uniqueness1 = T(t)1 = lim u, where u, solves (31) with f = 1. Let

p—00

¢, € Co(RY) be such that 0 < ¢, < 1 and ¢, = 1 on B,,. Then u, solves also (31) with
f = ¢,. It follows that
uy(t, ) <T(M)g, <1

in B, hence
u) < [ plta,dyg, @) <1

RY
Letting p — oo the thesis follows by dominated convergence.
We can now prove the representation formula for arbitrary f € Cyp(RM).

Theorem 5.2. The following representation formula for T(t) holds

TWf@) J p(t, . dy)f @)
RN

forf € Cy(RM).
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Proof. Wemayassumethat0 < f <1.Let0 <f, < fbesuchthatf, CC(RN)
and f;, — f pointwise. Then

T, = j Dt dy)fy)

RY

and T(t)f, < T(t)f. By dominated convergence

J pt, x, dy)f(y) < T@A)f (x).
RY

Changing f with 1 — f and using the fact that the measure p(t,«, -) is a probability
measure, one obtains the opposite inequality.

Remark 5.3. By using the integral representation formula, we can extend
the semigroup to the space of the bounded measurable functions. If f € By(RY),

with T(t)f(x) we mean f p(t,x, y)f(y) dy.
RY

We now show the continuity up to £ = 0 of u(t, x) = T(t)f(x) thus completing the

proof of Theorem 5.1. For any measurable set E ¢ RY, we set

p(t, 2, ) = Jp(t,x,w dy.
FE

Theorem 5.3. Letf € Co(RY). Then T®)f converges to f ast — 0 uniformly
on compact subsets of RY.

Proof. Letp>0andfi, f; € CO(RN) be such that 0 < B, <fi< 1B, <fp <1
By the positivity of T'(t),
T@)fi(x) < pt,x, Bz,) < T({)fa(x)

for all x € RY. By Proposition 5.2, T(t)f; — fi, T(t)f> — f» uniformly on B,ast — 0.
We observe thatf; = f = 1on B,. It follows that p(t, #, Bs,) — 1on B,ast — 0. Then

(32) 0 < p(t, 2, RN \ Bs,) = p(t, x, RY) — p(t,x, Bs,) < 1 — p(t,a, B,) — 0

as t — 0 uniformly on B,.
Let now f € C,(RN) and ne Co(RM) be such that 0 < n<1, n=1 on By,
supp(#) € Bs,. Then

TOf —f =TOf —TOW,) +TOWS) —nf
on B,. By Proposition 5.2, | T®)(nf) — nf||., — 0ast — 0. Concerning the remaining
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terms, by (32) we have
|T@®f (@) — TO@ @) =TEA — nf)x)
= [ Pt - pwrwn dy

RN
<p(t,z, RN \ Byl fllc — 0

uniformly on E,,. We conclude therefore that T(t)f — f uniformly on Ep and by the
arbitrarity of p the claim follows.
Now we prove some properties of the operators 7'(t) in Cy(RY).

Proposition 5.3. Let (g,,) be a bounded sequence in Cb(RN), ge Cb(RN) and
suppose that g,(z) — g(x) for every x € RY. Then, for every 0<e<t and o > 0,
T(t)g,(x) — T(t)g(x) uniformly for (t,z) € [e,7] x B,.

Proof. Usingtheintegral representation of 7'(t)g and the Lebesgue dominated
convergence Theorem, we immediately deduce that T'(t)g,, (x) — T(t)g(x) pointwise
in RY. Let K > 0 be such that ||g,|| . < K for every n € N. Then || T(t)g, ., < K for
every n € N and, by the Schauder estimates, for every 0 <e<t and ¢ > 0 there
exists C' > 0 such that

sup ITC)g0C M o115, < C-

By Ascoli’s Theorem we deduce that the convergence of T(-)g,(-) is uniform in
[e, 7] X B,.

As consequence of the continuity result just proved, we deduce that (7'())¢
satisfies the strong Feller property.

Proposition 5.4. The semigroup (T(t))i>¢ s trreducible (see Definition 2.1)
and has the strong Feller property.

Proof. The irreducibility follows from the integral representation since the
kernel p is strictly positive. We do not prove here this result which depends on
Harnack’s inequality and refer to [25]. We prove that the semigroup has the strong
Feller property. Let f be a bounded Borel function and let (f,) € Co(RY) be a
bounded sequence such that f,,(x) — f(x) for almost every x € RY. By dominated
convergence (using the integral representation), 7(t)f, — T(t)f pointwise in RY.
Using the interior Schauder estimates, as in Proposition 5.3, we deduce that
T@®)f, — T()f uniformly on compact sets and then the limit T'®¢)f € Cy(RM).
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5.2 - The generator of T(t)

Even though (T'(t)):> is not strongly continuous one can define its generator in a
weak sense, as done in [28].

Lemma 5.3. The operator A with domain D,y,q.(A) is closed.

Proof. Let (u,) be a sequence in D,,,.(A), assume that u, converges to
u e C;,(RN ) and Au, to g € Cb(RN ) uniformly in RY. For any pair of bounded sets
Q cc @ c RY the estimate

ot — uk”WZr)(g) < Cl||Auy, _Auk”LP(Q’) + [, — ukHLP(Q/)] <

holds for every 1<p<oo and any n, k € N, with C =C(p,Q,2',A) (see e.g.
[16, Theorem 9.11]). Hence, by the arbitrariness of @, the function u belongs to
leo'f (RM). Finally, by the continuity of A from leof (RY) into Ly C(RN ), we infer that

g = Au.

For 4 > 0 consider the (pointwise) Laplace transform of the semigroup given by

RO)f () = J e T @) f (x)dt, e RN,
0

Proposition 5.5. For every f € C(RY), w= RA)f € Dyur(A) and
Au— Au = f.

n
Proof. Foreveryn € I\, set u,(x) = J’e‘“T(t)f (x)dt. Then u,, € CQ(RN ) and

n

n

Ay (@) = Je*“AT(t) f(x)dt = Je’”%T(t) f(x)dt

1
n

= [e Tt)f (ac)]i; + 2 J e T f (x)dt,

n

hence
1
n

(4 — Ay () = —e " T(n)f (x) + eﬁT( )f ()

and, letting n — oo, (4 — A)u,, — f uniformly on compact sets of RY. On the other
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hand u,, — » in Cb(RN ). As in the proof of Lemma 5.3, we deduce % € D,,q,(A) and
A —Au = f.

Theorem 5.4. The operator i — A is bijective from Dyau(A) to Cy(RY).
Moreover (. — A)™ = R(J) and ||(h — A) Y| < %

Proof. By Proposition 5.5, 1 — A is surjective. Let us prove the injectivity.
Let 0 ug € Dyygr(A) be such that Jug — Aug = 0. It is easy to check that
u(t, x) = e”uy(x) solves the problem

w = Au
u(-,0) = ug.

By uniqueness T(t)uy = e*ug (see Proposition 5.1) and, since the solution must be
bounded in [0, co) x RY , uo = 0. The resolvent estimate immediately follows by the
expression of R(4).

In the next two propositions we characterize D,,,.(4) as for strongly continuous
semigroups. Observe however that the convergence in the sup-norm topology is
replaced by pointwise and dominated convergence. Similarly, all time derivatives
involved should be understood as pointwise derivatives rather than respect to the
norm-topology.

Proposition 5.6. Ifu € D,,..(A), then

Tu —u
t

<C

[o¢]

sup
te(0,1]

for some positive constant C and, for every x € RY,

1}”& T(t)u(xt) — ulx) — Au(o).

Moreover T(t)u € D,yor(A) and

d%T(t)u — AT(u = T()Au.

Proof. Given 2> 0, % € Dys(A), set f=Au —Au. We know that wu(x)
=RW)f(x) = j e *T(s)f (x)ds. Since T(t) is continuous with respect to the domi-
0

nated convergence (in the sense of Proposition 5.3), T'(f)u can be computed moving
T(t) inside the integral defining « and so
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Ttule) — ux) = | e T + s)f(x)ds — J e ST(s)f (ac)ds

0

e MSDT(s) f(w)ds — | e T(s)f (@)ds

Feeee— R Oy

0

. t

e J e T()f @)ds - je‘“ﬂs)f (e)ds.
t 0

Then
P T@u(x) — ulx)

<
r C

te(0,1]

for some positive constant C, for all x € RY and

m w =] J e’iST(s)f(ac)ds — f(x) = Julx) — f(x) = Aulx).

0

li
t—0 t

Moreover, by Proposition 5.5,

T(tyu(x) = T(t) J e P T(s)f (v)ds = J e PTOT()f (x)ds
0 0
= R(/'L)T(t)f(x) € Dypan(4)

and

D iy — AT — tim LOTOU = TOw _ g gy, T —
dt I h—0 h

im W =Tt Au

pointwise in RY , since t"1(T(h)u — u) is bounded and converges pointwise to Au
pointwise.
Conversely, we have

Proposition 5.7. Letu € Cb(RN) be such that

Sup w S C
(0,11 t o0
for some positive constant C and
lim TOulx) — u(z) _ @)

t—0 t

for every x € RN and some fe Cy(R™). Then u € D,pup(A) and Au = I
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Proof. Let u ¢ Cb(RN ). For s > 0, consider us = T(s)u. Then, since T'(t) is
continuous with respect to the dominated convergence,

T+ s)u — T(s)u
im
t—0 t

Aus = gT(s)u =
ds

— T(s) lim T®u —u
t—0 t

= T(S)f —>f

for s — 0 boundedly and locally uniformly in RY. Therefore u; € D,yo(A), us — u,
Aug — f for s — 0 boundedly and locally uniformly. We conclude that u € D,,4,,(A)
and Au = f (see the proof of Lemma 5.3).

As in the case of strongly continuous semigroups the domain D,,,,.(A) has certain
density properties in Cy(RY).

Proposition 5.8. Let f € Cb(RN ), then there exists (u,) C Dyye.(A), a posi-
tive constant C such that ||u,||,, < C for every n € N and u, — f pointwise in R".

t
Proof. Letf ¢ Cb(RN). Set v(x) = jT(s)f(x)ds. Then
0
t+h

t
T(hyv(x) = JT(S + h)f(x)ds = J T(s)f (x)ds
0

and

t+h

Th)v(x) — v(x) = J T(@s)f (x)ds —

h

T(s)f (x)ds

O e

t+ h
J T(s)f(x)ds — J T(s)f (x)ds.
t 0

It follows that, for # — 0,

Th)v(x) — v(x)

W — T@O)f (@) — f(x)

pointwise and boundedly in RY, By Proposition 5.7, this implies that v € D4, (A) and
Av =T(@)f — f. Moreover

v _

SN

t
JT(s)f(x)ds - f@)
0

for t — 0 pointwise and boundedly in RY.
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Remark 5.4. In the previous proposition, we have proved also that, if
f € Cy(RN), then

t
T()f @) —f @) = A J T(s)f (@)ds.
0

5.3 - Existence of an invariant measure

In this subsection we study the existence of an invariant measure for the semi-
group. As stated in Proposition 5.4, the semigroup (7'(¢)):>¢ is irreducible and sa-
tisfies the strong Feller property. Hence, from [12, Theorem 4.2.1], it follows that, if
an invariant measure exists, it is unique and it is also absolutely continuous with
respect to the Lebesgue measure. For these reasons, we investigate only the ex-
istence of an invariant measure.

Let us recall the following compactness result due to Prokhorov (see [5]). A family
of probability measures (;);c; on RY is (relatively) weakly compact, with respect to
the duality induced by C,(RY), if and only if it is tight, i.e. it verifies the following
condition: for every ¢ > 0 there exists p > 0 such that 1;(B,) > 1 — ¢ for everyj € J.

Theorem 5.5 (Has'minskii). Suppose that there exists a function Ve C2(RY)
such that V(x) — oo, Av — —o0 as |x| — oco. Then (T(t))o has an invariant
measure.

Proof. First observe that, in particular, V + C is a Lyapunov function for A
if C is sufficiently large. Therefore, for every A>0, 41— A is injective and

| p,x,ydy = 1.
RN

By the assumption, there exists K > 0 such that AV(x) < K for every & € RY.
For every n € N, we consider v, € C>*(RY) such that w,t) =t for t <n, y, is
constant in [n+1,00), y), >0, y, <0. Let wu,(t x) =TE(y, o V)«). Since
W, oV € Dyyei(A), we have

it ) = TOAG, o V) = j it 2, AW, o V)y) dy
RY

N
v, VDAV @) + v, (V) Y ai@)DVyDiV(y) | dy
i,j=1

= J p(E,x,y)

RY

< J pit, 2, P, (VDAY ()] dy.

RY
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Integrating this inequality we obtain
¢

Uy, ) —y, (V) < st J p(s, &, Yy, (Vy)AV (y)ldy.

0 RY

Set B ={x € RY:0<AV() < K} where K is as above, then

wn(t, ) =y, (V@) < [ds J (s, 2, Py, (Vy)AV ()l dy

RN\E

+ | ds JP(S, @, Py, VAV ()] dy.
E

|
|

Observe now that y/, is an increasing sequence which converges to 1 for n going to co
and, since AV is negative in RV \ E,

J DG, 2, ), (VDAY )l dy — J p(s, 2, AV @) dy
RV\E RM\E

by monotone convergence and

Jp(s, x, Py, Viy)AVpldy — Jp(s, x, NAV (y) dy
E E

by dominated convergence. Therefore, by monotone convergence again, letting
n — oo in (33), we deduce that

J pt,x,y)V(y) dy — V(x)

RY
¢

t
< st J p(s,x, AV (y) dy + st Jp(s, x, YAV (y) dy
0

RM\E 0 &

and then, since f p(t,x, y)V(y) dy is positive,
RY
t
~[as | pswpaverdy < k- | pespverdy+ve
0 RM\E RY
< Kt +V(x).
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Let ¢, p > 0 be such that —AV(y) > %if ly| > p. Then

t t
ﬂds J p(s,x,wdys—st j (s, 2, DAV () dy
0 0

RM\B, RM\B,
t
<-as | poapavay
0 RrRM\E
< Kt+V(x).
We have proved that

t t
1= [ pse Bds =1 [, ®¥ \ By < e<K+Vf“>,
0

0

or equivalently,

Vi(x)

t
%Jp(s,x,Bp)ds >1 _8<K+t>
0

and, fort > 1,

t
Hp(s, @B ds > 1 — o(K + V(@)).
0

This implies that, for every fixed x € RY, the family of probability measures

t
{% | p(s,, -)ds} is tight. Fix & = 0. By the Prokhorov Theorem there exist a
0 t>1
measure x and a sequence (t,) diverging to infinity such that, for every f € Cy(RY),

by
| ferdua = im = [as | ps.0.0rw dy
RN 0 rY
tn
= 1llglolc lj T(s)f(0)ds.

tn
0

Then, for every f € C,(RY),



388 LUCIANA ANGIULIL GIORGIO METAFUNE and CHIARA SPINA [42]

tn i+,

[ T wane = fim | ¢+ nr0ds = jim L | 1670

tn n
0

b t t+ty

= 7}21010 tl J T(s)f (0)ds — JT(S) f(0)ds + J T(s)f(0)ds

0 0 tn

J Faduty)

RY

and u is an invariant measure.

Example 5.3. IfA=4+F -VwithF -x — — oo for|x| — oo, then A has an
mvariant measure. Indeed the function V(x) = |9c|2 satisfies the assumptions in
Theorem 5.5.

5.4 - Preservation of Co(RY)

Proposition 5.9. Suppose that (1)) s the semigroup generated by the
operator (A, D,,...(A)) and suppose that there exists W > 0 such that W — 0 as
|z| — oo and AW < JW. Then R()) (hence T(t)) preserves Co(R™Y).

Proof. Let0<fe C;’O(RN) be such that supp f C B, and let » > p. As in the
parabolic case, given A > 0, the solution of v — Au = f in D, (A) is obtained as
limit, as » — oo, of the solutions u, of

A (x) — Aup(x) = f x € B,
() =0 ) =

1
(see [24, Theorem 3.4]). In B, \ B, and for ¢ > 0 such that 7 Ifllc —cW < 0o0noB,,
we have

A-A)u —W)=f—-c(A-—AW =—-c(l—-AW <0 inB,\B,
U —CcW=—-cW <0 on 0B,
1
ur—chszHw—cWSO on 0B,,.
By the maximum principle, %, < ¢cW in B, \ B, and, letting » go to infinity, u < cW

outside B, and so u:(i—A)’If:R(i)feCo(RN). The case of a general
f € Co(RY) follows by approximation.
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Example 5.4. Suppose that A = A+ F -V with |F(x) - x| <c(1+ |9c|2)for a
suitable positive constant c, them the semigroup (T'())>¢ is generated by
(A, Dyyq:(A)) and preserves CO(RN ).

It is sufficient to choose V(x) =1+ |ac\2 as Lyapunov function and W(x)
= (log (Jx| + ) Lin Proposition 5.9.

5.5 - Compactness in C,(RY) and non preservation of Co(RY)

In this subsection, following [25, Section 3], we state a sufficient condition, for the
compactness of 7'(t) in Cb(RN ). First we state a necessary and sufficient condition for
the compactness.

Proposition 5.10. (T'(#))>0 s compact in Cy(RM) if and only if for all
t, € > 0 there exists R = R(t,¢) such that p(t,z, Bg) > 1 —¢forall x € RY.

Theorem 5.6. Suppose that there exist V>0, Ve CQ(RN ) such that
V(x) — oo as || — oo and a convex function g : R — R integrable near oo such
that AV < —g(V). Then (T(t))s>o is compact.

Example 5.5. IfA=4+F -V with F(x) -« < — c|9c\2+" for some positive
&, ¢ then (T(t))>o is compact. Indeed V(x) = % and g(t) = ¢1 — cot™ 5, for suitable
positive constants c; and cg satisfy the assumptions in the previous theorem.

Remark 5.5. Let (T())>o be compact in Cb(RN ). By Proposition 5.10, it
follows that for all t, ¢ > 0 there exists R = R(t, ) such that

p(t,x,Br) = TM)yp,(®) > 1 —¢

forallx € RN, In particular T()y g, (x) does not tend to zero as le| — oo and CO(RN )
is not preserved. Similarly for LP(RM).

Example 5.6. We use polar coordinates r, 0 in the plane, identifying the
point x with the complex number ve’l. For o« >0, let S be the angle
S:={r>0,0<0<a}, let moreover ¢ be any smooth function such that
0<¢<1, 40 =0for0 & 10,o and $(0) > 0for 0 € 10, ol and consider the operator

Au = Au — ¢(9)7’2%9 -1 - gﬁ(@))rzur.

Then the semigroup generated by A is compact and Co(R?) is not preserved (see [25,
Example 7.9]).
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6 - Regularity of the invariant measure

In this section we study regularity properties and pointwise bounds of invariant
measures associated with second order elliptic partial differential operators in RY.

We consider the operator A endowed with its maximal domain D,,,,,.(A) in Cb(]RN )
and the semigroup (7'(t));>¢ generated by A. If x is a Borel probability measure on
RY, then

(34) | rordn= | ra vrecm)
RY RY
if and only if
(35) J Af dﬂ =0 Vf € Dypar(4).
RY

In particular [ Afdu =0 for every f € Cgo(RN ), i.e. A*;u =0 in the sense of dis-

RN
tributions where A* is the formal adjoint operator of A.

We restrict our study to the simplest case of operators of the form
A=4+F V.

However more general operators are allowed: one can consider for example opera-
tors in divergence form

N N
Z Di(ayD;) + ZF D;
i=1 =1

under suitable assumptions on the coefficients (see [23] for details). In order to
describe regularity properties for the invariant measure we assume that the drift
Fe Lﬁ(RN ) for a suitable p. This assumption, though obscure at a first sight, is easily
verified using the Lemma below (see also the Example), assuming suitable bounds
on F'.

In the following lemma we prove the integrability of certain unbounded functions
with respect to u via Lyapunov functions (see Definition 5.1) techniques. These re-
sults will be used to establish pointwise upper and lower bounds for the density p of
the invariant measure s.

Lemma 6.1. Assume that there exists a C3-function V : RY — R such that
V(x) — oo as |x| — oo and AV(x) — —oo as || — oo. Then AV belongs to L}I(RN).
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Proof. Foreveryn,we considery, € C*°(R)suchthaty, (t) =tfort < m,y,is
constant in [n + 1, ool, ¥, > 0, !, < 0. Now, since y,, o V' € D,4,(A4), (35) holds for

w, o V. Let B be a ball such that AV(x) < 0if x ¢ B. Then

N
Ay, o V) =), o VAV + (w0 V) > ayD;VD;V <0

1,j=1

outside B. Then, for large n

| 14w o vidu=— | Aw,ovidu= [avau<c
RM\B RNM\B B

and the statement follows letting » — oo and using Fatou’s lemma.
A simple consequence is that if |[F'|” < ¢|AV| then F € Lﬁ(RN ).

Example 6.1. Assume that
x

(36) lim sup(|x|1ﬁF(x)~ m

|| =00

)<—c<0

forsomec > 0, f > 0. Then V(x) = exp{o|x|’} for |x| > 11is a Lyapunov function for
5<p te. Moreover, exp{6|x|ﬁ } is integrable with respect to p, for o< 'c.

The integrability of certain exponential functions will be important to derive
upper bounds for the density of the invariant measure with respect to the Lebesgue
measure.

x _c
el B

is given by du = e~/P*"dx and " is Lyapunov function for 6<p'e.

Remark 6.1. IfF(x) = —clz|/™ Vx|, then the invariant measure

We prove that under very weak conditions du = pda with p € LP(RY) for
p<N/(N —1).

Proposition 6.1. If FeLLRY), then du=pdr with pe LPRY),
1<p<N/(N-1).

Proof. The invariance of x yields that for every ¢ € C(?C(RN ),

J(A¢+F«V¢)du:0,

RY
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hence
| @-a9du= | @+F Doan
RY RY

Since F' € LL(RY),

(37) < CA A+ F)Il 00 = cllgll -

J (¢ — Ap)du

RY

Fix1<p<N/(N —1)andlet p’ = p/(p — 1) be the conjugate exponent of p. Clearly
p > N. Given y € Cgo(RN ) we consider w, the solution of w — 4w = w. Then
w e SRY), w, Dw € Co(R™) and [wll,, < Ci|lw|,, with C independent of y.
Moreover, by Sobolev embedding [[wl|; ., < Calw|ly -

In order to show that we can insert w in (37) we use a cut-off function. Let
n, = nx/n) where n € C;’O(RN) satisfies n(x) = 1 for || < 1 and 5(x) = 0 for |x| > 2.
Thus wy, = n,w € CgO(RN ), W, — win CE(RN ) and w,, — 4w,, — w — Aw uniformly as
n — oo.

Then, passing to the limit and using (37) we have

= lim
nN—00

J ydu

RY

J (wy, — dwy)dpu

RY

< ¢ lim iy = vl < Il
for every y € CCOC(RN). Then y = pdx with p € LP(RY).

Now, assuming F' € L/’j(]RN ) for some k > N, we prove global boundedness and
Sobolev regularity for the density p.

Theorem 6.1. If FeLERY) for some k>N then peL*RY) and
p € WEHHRN),

Proof. Asalready seen du = pdx with p € LP for every 1 < p<N/(N —1). As
in the proof of Proposition 6.1,

J (¢ — 4¢) pda = J (¢+F - Do) pdux
RY RrY

forallp € CSO(RN). Nowlet1<p; <N/(N — 1) be such that?ﬁi = % + i <1, (r;<py),
then p, |F'|p € L™ (supp¢), hence ! &

[ 6 appds < clgl g

RY
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for all ¢ € C>(RY). Applying this estimate to the difference quotients
c

= dx+h) — $x)
g
we get
| a6 - oo < el e
RY
or, equivalently,
(38) j (¢ — APtip de| < Cl|]| o,

RY

As before, given i € CgO(RN ) we can consider w € S(RY) the solution of w — Mw = W
and insert it in (38), hence

(39)

J yyp du
RY

< Clgl o, < Cliwll -

Thus ||z,p||,» < Candp € W1(RY).Ifr; > N, then by Sobolev embedding we have
pE LOO(RN ) and the proof is complete. Otherwise, if 7 <N, then p € LPZ(]RN ) with

1 1 1 .
i:l—l and pg > p;. As before we consider —=—+ - and notice that
p2 11 N 2 p2 k

p,|F|p € L"(suppg). Proceeding as before we get p € W™ with rp > 1. If 15 > N we
conclude, otherwise in the same way as before we can construct a sequence of p,, and
1, with

o111 11
Puri Tn N Yn  Dn k

After a finite number of steps r, > N and p € L*(RM).
Then p, |F|p € L*(RY), hence (38) implies

'J (¢ — )t pd| < C||¢||Wzy

and as before p € WI(RM).

Remark 6.2. Suppose that F = — D® and ® € C*(RY) satisfies e~ € L'(R™).
Then p = e~® and the assumption F € Lﬁ(RN ) is equivalent to e~ ®/k € WIE(RM).
The boundedness of p then follows by Sobolev embedding.
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6.1 - Pointwise bounds

Here we prove (pointwise) upper and lower bounds on the density p. For the
upper bound, we assume that V(x) = exp{(5|x|ﬂ } is integrable with respect to u for
some d, § > 0, recalling that explicit estimates of J, § follow from Example 6.1 under
assumptions (36). We need the extra assumption that #' does not grow more than
some exponential, at infinity, in order to integrate |F' |k with respect to u for every k.
Under these assumptions we show that p decays exponentially. For the lower bound
we need more regularity on ' and we confine ourselves to the case when F' and its
derivatives up to the second order have a polynomial growth.

6.2 - Upper bounds

Theorem 6.2. Assume that

(40) lim sup (|9c|lﬁF(x) . %) < —¢<0

forsomec > 0, f > 0. Assume moreover that |F(x)| < Cexp{c|x|'} for some C,c > 0
and y<pf. Then there exist c1,co > 0 such that px) < ¢ exp{—cz|x|ﬁ 1.

|| =00

Proof. We know that V(x) = ekl is a Lyapunov and a u-integrable function
for 6 <c/p. Moreover, since |F(x)| < Cexp{|x|"} for some C > 0 and y<f, then by
Theorem 6.1, F' € Lﬁ(RN) for every k<oo and du = pdx with p € L>*(RY). The in-
variance of u yields

J (A)pdz = J (F - Vpda
RN RY

for every ¢ € CgC(RN). Taking ¢ = wy with v € CSQ(RN) and w(x) = exp{cz|x\ﬂ} for
|¢| > 1, we obtain

(41) J (yp)pwdx = — J (wthw + 2VyNw + wkF - Vy + wF - Vw)p de.

7

RY R

Let us fix ¢ > p > N and choose ¢z <d/q. It is easy to see that w, Vw, 4w belong to
LZ(RN). Moreover, since 1/p = 1/q+ 1/k for some k > land F' € Lﬁ(RN), it follows
that wF, |Vw||F| € Lﬁ(RN ). Since p € L=(RY) we deduce that all the functions
pVw, paw, pwF belong to LP(RM). Then (41) yields

< K|yl vy

J (Ay)pwdx

RY
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for a suitable K independent of y. Since also pw € LP(RY) from Lemma 8.1 we get
that pw belongs to W (RY), hence to L>*(RY) since p > N and the proof'is complete.

Remark 6.3. The constant cz can be made precise with more careful argu-
ments. Actually for every e > 0 one can find c, > 0 such that
pla) < e~ /Pt

Simple examples show that such an estimate does not hold, in general, with ¢ = 0.
See [14].

6.3 - Lower bounds

In order to get lower bounds on the density p we assume more regularity on ¥ to
simplify the exposition. However these extra-regularity assumptions have been
removed in [7] by a careful analysis of the dependence of the constants in Moser’s
Harnack inequality.

In the next theorem we state a lower bound estimate on p when F' and its deri-
vatives up to the second order have a polynomial growth.

Theorem 6.3. Assume that F € C2(RN) satisfies

|F@)| + |VF@)| + |D*F(x)| < C1(1 + |21
for some f§ > 1. Then
ple) = exp{—K(1 + [a}")},

where K depends only on C.

Vp o _ 4 |V

Proof. (Idea). Let v =logp, then Vv = 7, Av = Pz The invariance

of u yields A*u = 0 in the sense of distribution, thus
(42) dp =diviFp)=F -Vp+ pdivF

and
M+ |Vof* — F - Vo = divF.

Applying [23, Theorem 5.2] we obtain
Vo)) < O + |z

for v = log p. Therefore |v(x)| < K(1 + |ac|ﬁ ) and the statement follows.
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The estimate of the logarithmic derivative of p in terms of ' leads immediately to
a quantitative Harnack inequality.

Proposition 6.2. Assume that F € C2(RY) satisfies
|F@)| + |VF(@)| + |D*F(x)| < C;(1 + |21
for some > 1. Then

Py) _ p1 o py -t
(43) DS < exp (Kl —yl (L+ 1™ + )}

where K depends only on Cy. Indeed, from Theorem 6.3
Vo) < O+ |/ ).

This yields |v(y) — v(x)| < Ci|x —y| (1 4+ |y|ﬁ71).

Remark 6.4. Note that, if p decays exponentially and |Vo(x)| < c(1 + |x\ﬁ_1),
then Vp/p € Lﬁ(RN)for every 1 < p<oo. Indeed

[

R

p
pdx = J |VolPpd

RN

<c J a+ |x\ﬁ’1)pe*"2|x‘ﬁ dx < oo.

RY

The case p = 2 is special and is the basis for more general considerations.

Proposition 6.8. If F € L2(RY), then

2
(44) J @ de < J F2pda.
RY RY
Proof. (Idea). Since p is the density of the invariant measure i we have
Ap = div(Fp).

Multiplying by log p and integrating by parts (of course everything here is only
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formal and all integrations by parts need arguments)

2
J%dac: JFp@dx
p p

JRN ]RN

Vp
J F\/p—dx
RY v

1/2 9 1/2
( J sz) ( [ ot dx> |

R R

IN

This estimate means that /p € H LR,

Remark 6.5. Estimate (44) holds also for more general operators like
Z Di(ayD;) + F - V with a;; possibly unbounded provided that Z a;&i& > v|E | for

some constant v > 0. In the case of unbounded coefficients the premous arguments
do not work and one needs more refined tools such as for instance Moser’s or De
Giorgi’s techniques.

7 - Domain characterization

Suppose that (7'(t))i>o is the semigroup generated by (4, D y..,(A)) in the space
Cb(RN ) and has an invariant measure u.

Proposition 7.1. The semigroup (T'(t));>o ts strongly continuous in LP(RN )
and D, (A) is a core for its generator (A, D;j(A))

Proof. Let f € Cb(]RN). Then T(t)f —f as t— 0 pointwise in RY and
ITAf]l o < |1flls- By dominated convergence we deduce that T(t)f — fast — 0in
LZ(RN ). Since Cb(RN ) is dense in ij(RN ) as it can be shown by standard approx-
imation methods, (7'(¢));>¢ is strongly continuous in Lﬁ(RN ) and the first statement
follows.

Let now Dj(A) be the domain of the generator of the semigroup in Lﬁ(RN ).

If f € Dyax(A), by Proposition 5.6 T@of -f

H T®)f —f
t

— Af pointwise as ¢t — 0 and

T®)f —f
t

< C for some positive constant C. Hence — Af in

oo

L/’j(RN ). This implies that D,,.(4) C D;}(A). By Proposition 5.8, D,,q.(A) is
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pointwise and boundedly dense in Cb(RN ), hence it is dense in Lﬁ(RN ). Since
D,,0:(A) is invariant under 7'(t) (see Proposition 5.6), by the core theorem (see
[13]) we deduce the claim.

We are now interested in characterizing the domain Dj(A) for the symmetric
operator

A=A-V¢-V

on Lﬁ(RN ) for 1<p<oo, where u(dx) =e %dr and under the assumptions
¢ € C2(RN), e# € LY(RY). We fix the following notation for the weighted Sobolev
spaces

WEPRY) = {u € WP (RY) : D*u € LERY) if |o] < k}

loc

endowed with the usual norm.
Let us first consider the simplest case p = 2.

7.1 - Characterization of the domain in Li(RN )

Here we follow the methods of [10]. We consider the sesquilinear form a in
L2(RY) given by
a(u,v) = J VuNve ?dx
RY
on the form domain

D(@) = H\(RY) = WHRY) = {u: u, Vu € LARM)}.

By using the quadratic forms method it is possible to construct a selfadjoint semi-
group (T'(®))s>o in L/ZI(RN ). Moreover, by the Berling-Deny conditions, it follows that
(T®)s>0 is also positive and contractive (see [27]).

A natural question is whether Dy(A4) = H/%(RN )= W/%Z(RN ). We state the fol-
lowing lemma whose proof is standard.

Lemma 7.1.  The space C*(RY) is dense in HL(R"), H3(RY).
Lemma 7.2. Suppose that Ap < n|Vé|* + C, for some n<1. Then the map

w—|Vélu is bounded from HL(RY) to L2(RY) and the map w—|V$||Vu| is bounded
from HA(RY) to L2(RY).
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Proof. By density, it is sufficient to prove the boundedness for functions
u € C*(RY). We have

J IV |ufPe? dw = J V- Volu|fe ? de = — J Volu[*V(e ?) da

RY RY RY
= J AplulPe=? + 2 J Véu-Vue ?dx
RY RY
and hence

J V| |ulPe¢ da < J ABlul’e? da

RN RN
1

2

(ST

+2 J Ve du J Ve do
R’\/ RN
_ 1 _
< J AB|ul’e ¢dm+g J |Vul*e~? da
RY RN
+e J Vo[ |ulPe? d.

The first statement follows by estimating A¢ as in the assumption and by choosing ¢
small enough. The second statement follows by the first one by considering
Vu e H}l(RN) instead of .

Remark 7.1. In particular, by the previous lemma, it follows that A is well
defined on HA(RV).

Theorem 7.1. Suppose that ¢ is convex and Ap < 77|V¢|2 + C, for some n<1.
Then Dj(A) = HA(RM).

Proof. By definition
Djy(A) = {u e H(RN): 3f e LARY)

J V- Ve ?die = — vae%loc}

RY RrY

for allv € Cé’o(RN ) (or for allv € H}l(RN ) by density).
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An inclusion is easy. Indeed, if u € Hﬁ(RN ), f=Au € Ll%(RN ) by Lemma 7.2,
integration by parts is allowed and one sees that u € Dé‘ (A). Therefore HIZI(RN )
C D5(A). Now we show that the graph norm and the Hi(RN ) norm are equivalent on
C§°(RN). By Lemma 7.2, we have

loalls + 1Al < Cllulg,

and we have to prove the converse. Let u € Cé”‘(RN ), >0, set f=Au— Au
+V¢-Vu. Then D;f = iDju — ADju + V¢ - V(Dju) + V(D;¢)Vu. Multiplying by
Dju, integrating in du and summing over j we obtain

- JAufd,u = J |Vl + J \D*u|*dp + J > " DygDiuDju.
RY RY RY gy

By the convexity assumption the last term in the right hand side is positive. It follows
that
1DPuly < Aul s £l = [Aul s |iu — Aull,,

and so ||D%u| I < C||ul| Dia) and the equivalence of the two norms, as stated.
Since C"O(R ) is dense in HZ(R ), to conclude the proof it suffices to prove that
H2(RY) is a core for (4, D*‘(A)) Let u € D4(A). Then u € HL(RY) n H2 (RY), by

loc

local elliptic regularity, and Awu € Li(RN ). Let n be a cut-off function and set
Uy () = ulx)y (ﬁ) € HZ(RN ) (u, is locally in H2(RY) and has compact support).
Clearly u,, — u in L2(R ). Concerning Au,,, we have
Auy, = izm(ﬁ)u + gVu : Vr/(ﬁ) + n(ﬁ)du
n2 '\n n n n
x 1 x
=) Ve vu—Luvn(7) - V8
x 1 x 2 X 1 X
= (i) A+ g an()ur v va(Q) = v () - ve
Observe now that, for n — oo,

()

—0
Li

0, H%w-vn(g)

2
L

and, by Lemma 7.2,
1 X
H%W"(z) '

as n — oo. Therefore ||Aw, — Aul|;: — 0.
:

C C’
< 1wVl < —llully — 0
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Remark 7.2. The semigroup (T(}))>o coincides on Cb(RN ) with the one
constructed in Section 5.1.

Proof. Let 0<f¢€ COC(RN) - LZ(RN) Then wu(t,x) = hm up(t x) where
» > 0 satisfies

wt, ) =Ault,x) t>0, xe€ B,
ut,x) =0 t>0, x € 0B,

w0, %) = f(x) xe RV
We have

&=

J ul(t, we " Vdy = J %ui(tv 2)e 4D dy
B,

B,

=2 | u,(t, 2)(du,(t, x) — V(@) - Vu,(t, x)e ?du

ST

=2 | u,(t, ) div (Vu,t, x)e #)de = 2 J |V, (t, ) e #Pda < 0.

B, B,

This implies that j uA(t, x)e*Oda < f F2(@)e?@dx and, letting p to infinity,

[ u?t, x)e #Ddw < f F2(x)e ¥ d and s0 the semigroup constructed by approx-
RY RY
imation in Section 5.1 extends to a strongly continuous semigroup in L? (RN ) whose

generator coincides with A on C2*(RY). Since C*(RY) is a core for (A Dj(A)) the
semigroups coincide.

7.2 - The general case: 1<p<oo

Theorem 7.2. Assume that for all ¢ >0 there exists C, >0 such that
43 < &V’ + C,. Then Dy(A) = W2P(RY) for all 1< p<oc.

Proof. (Idea). Asinthe casep = 2,itis possible to prove that the map u — |V¢|u
is bounded from W;*”(RN) to L’lij(RN) and the maps u — | V||V, u — |[Vo[*|u| are
bounded from WE*’(RN ) to Llfj(]RN ). Therefore

[llppay < Cliuallyyer-

For p # 2, we cannot integrate by parts to prove the converse. We make a change of
variable in order to work with an operator on LP(RN ) instead of Lﬁ(RN ). Namely we
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define the isometry ,
J : LA(RYN) — LP(RY),  Ju = e u.

A straightforward computation shows that
Au=J'BJu for u € CX(RY)

where

Bv = Mv+ (%—I)ng-vq)—%Kl—%)WgﬁF—Aqﬁ]v.

2 1 1
Setting F = (5 - 1) Ve, V = 5 Kl - 5) |Vé|? — Aﬂ , B can be written as the
complete second order operator Bv = Av + F' - Vv — Vo with drift F and potential V.
In [23, Theorem 3.4], it is proved that, under the assumptions
) [VV] < yV2 + C, for y small enough;
@) |F] < kV?} for some positive k;
(iii) 0divF +V >0 for some 6 > %;

(B,D(B)) generates an analytic semigroup in L”(RN ), 1<p<oo, where D(B)
= W2»p (RN ) N D(V). One can prove that our assumptions on ¢ imply (i), (i) and (iii)
so that A = J~'BJ with domain D(A) := {u € Lﬁ(RN) . Ju € W2P(RY) ND\V)}
generates an analytic semigroup on Lﬁ(RN ). It is not hard to prove that Dj,(A)
= Wfﬂ’(RN ) (see [23, Theorem 7.4]).

8 - Appendix

In order to make as self-contained as possible these notes we prove some LP-
estimates for second order elliptic operators often used in Section 6.1. We refer to[1]
for further details.

Lemma 8.1. Let 1<p<oo and let w € LP(RY) be such that

(45) J w(p — Ag) d

.RN

for every ¢ € C*(RY). Then u € WH(RY).

< C||¢||W1m’(][{"")

Proof. By approximation one can extend (45) to all functions ¢ € W2# (RY).
For h € RY, set tyu = |h| *(u( - +h) — u( - )). Thus, applying (45) to _,¢ we deduce

<C ||¢||W2m’(na"')’

J (tpyu)(¢ — Ap) de

RY
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Here C; is independent of ¢ and k. Given f € L”(RY) let ¢ be the solution of
¢ — A =f € LV (RY). Then [#llyy20 gy < Cllf |, with C independent of /. Then we
obtain

J (tpu) f de

RrRY

< Cl”fHLp’(J[aN)

hence,
J lul? de < C
RY
with Cy independent of /. The boundedness of the LP-norm of the difference quo-

tients 7j,u implies that € WLP(RN).

Lemma 8.2. Letl1<p<ooandletu € LP(RN) be such that

(46) J W — Ag) d

RY

< CH¢||LP’(RN)

forevery ¢ € C(?C(RN). Then u € W2P(RM).

Proof. By Lemma8.1,u € WL (RM). Applying (45) to t_;,¢ we get

J () — A) da

RY

< C||¢||W1.p’(1RN)

hence again by Lemma 8.1, ||yt < ¢, ie. |7, Vul|,, < ¢, thus D?u € LP(RYN).

List of symbols

RY euclidean N-dimensional space.

Cc” the space {1 € C : Re 1<0}.

ct the space {4 € C : Re . > 0}.

fHfr fvo,fAO0.

supp f support of a given function f.

1 function identically equal to 1 (everywere).

Bb(RN ) the space of Borel and bounded functions f : RY = R.
Cp(RM) the space of continuous and bounded functions.

BUC(RY)  the space of uniformly continuous and bounded functions.
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C*(RM)
s (RY)

(o ( RN )

C(RY)
LP(RY)
Co(RY)
Co(B,)
Cl+§,2+x(RN )

S(RY)
WhI(RY)

LE(RY)
WEP(RY)
I

detB
trB

B*

o(B)

(1)
B)(x)

[1] S.

[2] w.

[3] D.

[4] M.

[5] P.

[6] V.
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space of o Holder continuous functions.

space of o Holder continuous functions in 2 for all bounded open set.
Qc RV,

space of functions such that the derivatives of order k are o-Holder
continuous.

space of test functions.

usual Lebesgue space.

space of continuous functions tending to 0 as |x| tends to + co.

space of continuous functions in B, vanishing on the boundary.

space of functions such that dyu and Dj;u are « Holder continuous with
respect to the parabolic distance.

Schwartz space.

space of functions u € L¥(RY) having weak space derivatives up to the
order j in L¥(RY).

LP(RY, dy).

the space {f € LE(RY) : D*f € LA(RY), |u| <k}, k € Ny, 1 < p<oo.
the identity matrix.

the determinant of the matrix B.

the trace of the matrix B.

the adjoint matrix of B.

the spectrum of B.

scalar product or, in general, duality.

open ball for the euclidean distance with centre & and radius p.
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