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A variational problem involving the distributional determinant

Abstract. We deal with bounded W'~ !-maps defined in n-dimensional domains,
whose graph has finite area and finite boundary mass. We show that the singular
part of the distributional determinant is concentrated on a countable set of points. A
related variational problem is then considered. Finally, we study the analogous
problem involving the distributional minors of fixed order.
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Let u : @ — R” be a vector valued map defined on an n-dimensional bounded
domain Q c R”. If u is essentially bounded and belongs to the Sobolev space
WLr=1(Q, R"), the distributional determinant Det Vu, introduced by J.M. Ball
in [4], is well-defined in the distributional sense by

1 n
0.1 DetVu .= —
0.1) >

(uj (adj Vu){ ),

aaci

where Vu = Du and adj Vu is the matrix of the adjoints of Du.

In [13] S. Miiller and S. Spector studied the distributional determinant in the
setting of a theory for nonlinear elasticity. They showed in particular that if u sa-
tisfies the so called “INV condition”, the pointwise determinant det Du > 0 a.e. in
and the “geometric image” im(u, Q) of % has finite perimeter, then the distributional
determinant is a non-negative Radon measure, with absolute continuous part equal
to the pointwise determinant, compare [11]; also, the singular part (Det Du)® is
concentrated in a countable set {x;} C Q and

(0.2) Det Du = det Du - dae + Z €10y ,
=1
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where ¢; > 0 and J, is the unit Dirac mass at x. Furthermore

Z " V" < C(n) - Per(im(u, Q)) < oo,
=1

where C(n) > 0 is the isoperimetric constant. This representation result describes
the so called cavitations at the points ;.

In order to show that the singular part of the distributional determinant
(Det Du)* does not contain a diffuse part, let us say a “Cantor-type” part, in [13]
it is made use of the following isoperimetric inequality for Caccioppoli sets. If
U :=im(u, Q), and V := imy(u, B,(x)) denotes the topological image of the n-ball
of radius r centered at x, then for a.e. » > 0

(Det Du)’B,(x)) = L'V \U)
LY\ < C)yH" N O UNY)

where 0*U is the reduced boundary of U, see [2].

On the other hand, it was proved in Miiller [12] that the singular part of the
distributional determinant may in general concentrate on a set of Hausdorff mea-
sure ¢, for any prescribed 0 <o <mn. More precisely, e.g. in the case n = 2, there
exists a bounded function u € WP(Q, IR?) for every p <2, where 2 = (0, 1 C RZ,
such that det Du = 0 and |Du!| |Du?| = 0 a.e. in Q, but

DetDu=V'V’,

where V is the Cantor-Vitali function. Therefore, the derivatives of # have no masses,
but the distributional determinant has a Cantor-type part and the role played by V' in
the Cantor set C is played here by Det Duin C x C. The “graph” of u is very similar to
the graph of the Cantor-Vitali function V' and, actually, has infinitely many holes; for
instance, in [8 Vol. I, Sec. 4.2.5]it is shown that the current G, associated to the graph
of  has in fact a boundary of infinite mass, M((0G,,) L Q2 x Rz) = o0.

The main new result of this paper is contained in Sec. 2, where we prove an
isoperimetric inequality related to the singular part of the distributional determi-
nant. According to the previously cited example by Miiller [12], we shall assume that
the graph-current G, has a boundary of finite mass, i.e.,

(0.3) M(0G,) L2 x R") <o,
and we shall obtain that for balls B, cC Q

|(Det V)*|(B,) < ¢, M(OG,,) L B, x R"y/®~1
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We point out that this isoperimetric inequality is false in general under the hy-
potheses as in [9, Prop. 3], see [10] and Remark 3.2 below. However, see Corollary
2.2, it holds true provided that « is a bounded function in W*~1(Q, R") and with
summable pointwise determinant, det Du € L'(Q). Actually, it will be proved for a
wider class of maps, see Proposition 2.1.

Our isoperimetric inequality is obtained without assuming additional hypotheses
as the “INV condition”, or the positivity of the pointwise determinant. In our setting,
condition (0.3) plays the role of the property from [13] that the “geometric image”
im(u, Q) of u has finite perimeter, compare [5].

We shall then make use of some results obtained in [9].

Firstly, in Sec. 3, we shall recover the representation formula (0.2), where this
time the coefficients ¢; are possibly negative real numbers. Notice that the (at most)
countable set of points where the singular part of the distributional determinant
(Det Du)’ concentrates may not be finite. More precisely, setting

So('l/t) = {90[ cQ | C] 75 0 in (0.2) }7

in general we have H°(Sy(x)) < 400, whereas the total variation of (Det Du)*
satisfies

|(Det Du)’|(Q) = || <oo.
=1

Secondly, in Sec. 4, we shall deal with some related variational problems. To
this purpose, we denote by |]l7l> (Du)|2 the sum of the squares of the determinants
of all the minors of Du. We will prove the existence of the minimum of functionals
of the type

Flu) = J &(| M (D)) dzc + J 1Duf" "t da + HO(So(w))
Q Q

where @ is e.g. a non negative convex function satisfying a p-coercivity condition
cltff < o), p>1, ¢>0.
Roughly speaking, the minimum is attained on classes of functions of the type
{u e WHQ R"YNL>® | det Du € LY(Q), ||Ju|,, +M(0G,)L Q x R") <K},

for K > 0 fixed, under suitable Dirichlet-type boundary conditions.

In Sec. 5, using a slicing argument, we shall finally treat the analogous problem
about the distributional minors of fixed order k = 2, ..., min (n, N), for vector va-
lued Sobolev maps in W -1(Q, RM).
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1 - Notation and preliminary results

In this preliminary section we collect some notation and results. We refer to [7, 14]
for general facts about geometric measure theory, and to [8, Vol. I] for further details.

Rectifiable sets.

Let U an open set in R” and H* the k-dimensional Hausdorff measure on R"”. We
say that M C U is countably H*-rectifiable if it is H*-measurable and H*-almost all
of M is contained in the union of the images of countably many Lipschitz functions
from R* to U, compare [7, 3.2.14]. Also, M is said to be k-rectifiable if moreover
HY (M) < cc.

Rectifiable currents.

A current T' € Dy(U) is said to be of the type (M, 0,¢), T = ©(M, 0, &), if T acts on
smooth compactly supported k-forms w as

(1.1) T(w) = J(é(m),w(m))ﬁ(m) dH* @) Ve DU,
M
where M c U is countably H*-rectifiable, the multiplicity 6 : M — 10, +oo] is H*-

measurable and locally (H* _ M)-summable and & : M — A4, R™ is H*-measurable
with |¢| = 1 (H* L M)-a.e.. Moreover we will denote

set(T) := {x € R™ | ¢°(|T||,x) > 0}
and size S of T the number
S(T) = Hi(set(T) = H (M),
so that
Sy(T) =8S(TLV) VYV open, VCU.

We say that T is a rectifiable current, T € R (U), if T has finite mass, M(T') < oo,
and for H*-a.e. x € M the unit k-vector &(x) € A4, R™ provides an orientation to the
approximate tangent space Tan*(M, x). If moreover the size of 7' is bounded, i.e.,
S(T) < oo, we say that T is a size bounded rectifiable current, T € Si(U). If in par-
ticular the density 0 takes integer values, we say that 7' = t(M, 0, &) is an integer
multiplicity (i.m) rectifiable current, T € Ry (U).

We finally denote by N (U) the class of normal currents, i.e., of k-currents with
finite mass and finite boundary mass, N(T) := M(T) + M(0T) < oc.
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Lower semicontinuity of the size.

For our purposes, we recall a lower semicontinuity result for the size of suitable
rectifiable currents with respect to a suitable flat convergence. This result was
proved in [9, Sec. 6], using some ideas from Almgren [1, Prop. 2.10], see also the
closure theorems in [3, Thm. 8.5] and [6]. For T4, Ts € R,,(U) N N (U), define the
“flat” metric

d(T1,T2) .= inf{M@Q) +MQR) | Qe N(U), R e Njp1(U)
Ty — T = Q+ OR}.

Theorem 1.1. Let U C R" a bounded and open set. Let T, {T,} C Ri(U)
NN(U) be such that: () supN(Th)<oo and (i) d(Ty,, T) — 0 as h — oo. Then for

every open set V. .C U we have

Sy(T) < 11}111 inf Sy(T},) .

Notation for multi-indices.

Let n, N > 2 integer. In the sequel, if G is an (N x n)-matrix, f and o will always

denote the multi-indices of row and column of G, respectively. If e.g. o = (a1, ..., ap)
is a multi-index of length |«| = p < n, with o; € {1,...,n}, we say that the positive
integer 7 belongs to o if it is one of the indices oy, ..., ap. If ¢ € & we denote by o — ¢

the multi-index of length p — 1 obtained by removing 7 from o. Also, & is the com-
plement of « in (1,...,%) and o(x, @) is the sign of the permutation which reorders o
and & A similar notation holds for f, with n replaced by N. Then G# denotes the
submatrix obtained by selecting the rows and columns by f and «, respectively. For
example, if |«| + || = n, then Gg is a square matrix and we will denote by Mg (@) its
determinant

MYG) = det G,

and we set Mg(G) =1.

Currents carried by graphs.

Let Q ¢ R" be an n-dimensional bounded domain. We shall denote by AI(Q, RY )
the class of vector-valued maps u : @ — RY that are a.e. approximately differenti-
able and such that all the minors of the Jacobian matrix Vu are summable. We also
let M (Vu) denote the n-vector that spans the graph of the linear maps associated to
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Vu at a given point. More precisely,

N N
M(Vu) = (el,zvluj ej> A A (en,zvnuj ej> ,
=1 J=1

J

(e1,...,en), (e1,...,en) being the standard basis in R” and RN, respectively, so that

M= Y ol,d)MiVu)e, Aey.

|or|+-18=n

Remark 1.2. In the case n =N, if u € W 1(Q,R") and det Du € L(Q),
then u belongs to the class A'(2, R"), and the distributional derivative Du agrees
with the approximate gradient Vau.

If ue AI(Q, RY ), the im. rectifiable current G, € R, (Q x RY ) of the type
(Gu,1, G,) is well defined [8, Vol. I, Sec. 3.2.1]. It is given by the integration of -
forms over the rectifiable graph

gu = {(x,lu(x)) IS £u mAD(’I/L) N Q} )

where L, is the set of Lebesgue points, 4,(x) is the Lebesgue value at x and Ap(u) is
the set of approximate differentiability points of «. Moreover the tangent unit n-
M(Vu)

-

M (V)

Also, denoting (Id < u)(x) := (x, u(x)), in approximate sense we have

. —
vectoris G, :=

G, = Td<u)y[2Q].

Moreover, since |]W> (Vu)| agrees with the n-dimensional Jacobian of Id < u, the area
formula yields that the mass of G, is equal to the area of the graph of u, i.e.,

MGy) = H"(Gy) = J (V)| dar < oo

Q
Splitting of currents.
For k=1,...,n, every differential k-form o € D*(Q x RY) splits as a sum
min (k,N) . i
w= 3 o where the ®”’s are the k-forms that contain exactly j differentials
j=0
in the vertical y-variables. Every current T € Dj(Q x RY) then splits as
min (k,N)

T= Z T(]’), where T(7)(w) = T(w(7))
j=0
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Boundary.

Graphs of smooth maps » : 2 — RY satisfy the null-boundary condition
(1.2) 0G,) L@ xRY =0.
In fact, for every (n — 1)-form w € DR x RY ), by Stokes theorem we have
0G, () := Gu(dw) = J do = J w=0,
Gu Gy,

as  is compactly supported in 2 x RY. On the other hand, if » € AY(Q, RY), in
general the interior boundary of G, is non zero, i.e.,

BGHLQ xRN #£0.
However, if u € W2(Q, RY) for some positive integer p € N*, then
(1.3) OG)HLRQxRY =0 VjeN, j<p-1.
This follows from a standard density argument based on the dominated convergence

theorem and on condition (1.2), that holds true for smooth maps.

Example 1.1. If e.g. Q := B", the unit ball, » = N, and u(x) := x/|x|, then
w € WH(B™ R™) for any p<n whereas det Du = 0 a.e., so that u € A'(B", R"). In
particular, (1.3) holds true forj =0,...,n — 2. However, (1.3) is false forj =n — 1,
and we have

(0G,)LB" x R" = —dy x [[S”_lﬂv

where S""! is the unit sphere in the target space, compare [8, Vol. I, Sec. 3.2.2].

Cartesian maps with fractures.

In order to discuss some variational problems, we now recall some facts from
[9, Sec. 5], see also [8, Vol. I].
For every p > 1 consider the class

AP(Q, RNy .= {u € LP(Q, RM) | wis £"-a.e. appr. diff.,
Mi(Vu) € LP(Q) Vo, f with |o| + |B| = n} .
In AP we introduce the “norm”

_
HMHAP = ||u||Lp(Q,jRN) + || | M (V)| ”LP(Q)
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and we say that a sequence {u,} in AP(Q,RY) weakly converges in AP to
u € AP(Q, RY), say uj, — wweakly in AP, if and only if ), — u strongly in L”(€2) and
for every o and ff with |o| + |f| = n

ME(Vuy) — ME(Vu)  weakly in LP(Q).
Notice that since 2 is a bounded set, for every p > 1 we have
M(Gy) < c(p, Q) - (|Qf + [[u]| ) <o0.
Definition 1.3. For every exponent p > 1 denote
CEP(Q, RY) := {u € AP(@Q,RM)NL® | M(0G,) L Q x RY) <0}

the class of p-Cartesian maps with fractures. For u € CfP(Q, RY) we also define the
CtP-norm

lllgen == ull g + el e +MOG) L2 x RY).
Finally, for every K > 0 denote
CE2(Q, RY) := {u € CfP(Q, RY) | |jull . + M((3G,)L 2 x RN) <K} .

By the closure theorem for graphs, see [8, Vol. I, Sec. 3.3.2], we readily obtain
that the class Cf %(Q, RY ) is closed under the weak convergence in the product.

Proposition 1.4. (Closure). Let p>1, K >0, and {u,} be a sequence in
Cfr(2, RY). Let u € LY(Q2, RY) be an a.e. approximately differentiable map and let
vg € LXQ), where o. and f are multi-indices with |o| + |B| = n. Suppose that u, — w
strongly in LP(Q) and Mg(Vuh) — vg weakly in LP(Q) for every o and f with

loo| + |B| = n. Then u € Cfﬁ'{(.Q, RY) and vg(ac) = Mg(Vu(x)) a.e. in Q.

The sequential weak compactness of bounded sets in L, p > 1, together with
the previous result, readily yields the following

Proposition 1.5. (Compactness). Let {u,} C CfP(Q, RY) such that

(1.4) s%p |2l cgp < 00

for some p > 1. There exist a subsequence {uy, } of {uy} and a map u € CfP(€Q, RY)
such that w,, — w weakly in AP, with Guhj — Gy, weakly in D,(Q2 x RM).

Taking into account the lower semicontinuity of the mass with respect to the weak
convergence in the sense of currents, we readily obtain the following.
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Proposition 1.6. (Lower semicontinuity). Let {u;} a sequence in CfP(Q, RY)
such that (1.4) holds for some p > 1. Let u € LN, RY) an a.e. approximately
differentiable map such that w, — w in LY(Q, RY ). Then

[[ullcer < liminf (o [|cp -
h—o0
Move precisely, |[u] p < Hminf [uy| g [|l], <liminf |us],, and
—00 —00
MG, 2 xRY) < lim inf M (G, L Q x RY),
—00

M(@G,)LQxRY) < lim inf M((9G,) L Q RY).

Finally, if Q is a bounded open set in R” such that @ cc @, and ¢ : Q@ — RV isa
given smooth function in Cf 1}’((!2, RY), we shall denote

Cth (2, RY) = {u € CtR(Q,RY) | (G, - G,)L (2\ @) x RY =0} .

The distributional determinant.

Assume now % = N > 2, and denote by R” the target space. If u € A'(Q, R") is
bounded, the distributional determinant is again well-defined by (0.1), where this
time adj Vu is the matrix of the adjoints of the approximate Jacobian Vu, so that

1 j—1 j+1 )
out, ... w1 wt, .. u")
6(9(,'17... 7x’l'717xi+17' . ;xn)

(adj V)] := (— 1)"7det
More precisely, we set for any ¢ € C;°(Q)

1< ; ;
(Det Vu, gy = —— Z JDW(%) w! () (adj Vu(x))] dec .
"iF
Notice that if u : @ — R” is a smooth map, we have

(1.5) Det Du = detDu - dx .
Since in fact Z % (adj Du){ = 0, by the Laplace formulas we have
im1 Y

n a . . . n au_} . .
Z %(W (adj Du)!) Z 5 (adj Du)!

i=1 i1 Ot

o 0 . i
+ 21: T (adj Du)! = det Du
1=

for every j. Therefore, by the W'"-density of smooth maps, (1.5) holds true for maps
u € W@, R") N L>.
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Example 1.2. If @=B" and u(x):=x/|x|, one easily verifies that
det Vu = 0 while Det Vu = |B"|dy, where Jy is the unit Dirac mass centered at
the origin. Notice that the boundary of G, is non zero, see Example 1.1. Similarly
for the map
1/n i

u(@) = (ja|" + |al") ]

, a>0,

we have det Vu = 1 a.e. and Det Vu = 1 - da + |B"(0, a)| .

2 - An isoperimetric inequality

In this section we prove an isoperimetric inequality that is the main new result of
the paper. We shall assume n = N > 2, and we will focus on maps satisfying

2.1) M((0G,) L Q x R")<oo.

Denote by w, the smooth (# — 1)-form in R”
1 L
(22) Wy 1= EZ( - 1)'7_1?/‘7(1?/'7 ’
=

where dyJ := dy' A --- Ady'~' Ady A - A dy”. Moreover, in the sequel we will
letz: R” x RY — R"and7 : R” x RY — RY denote the orthogonal projection onto
the « and y coordinates, respectively.

Proposition 2.1. (Isoperimetric inequality). Letu € AY(Q, HA%") N L be such
that (2.1) holds and
(2.3) (0G) -z 2 x R"=0.
Then for every xy € Q and for a.e. r > 0 such that B,(xg) CC Q we have
24)  |[(OG)LB, x R@E*w,)| < ¢y M((DG,)-1) By x RV
where B, = B,.(xy) and ¢, > 0 is an absolute constant.

As a consequence of Remark 1.2 and property (1.3), where p = n — 1, we readily
obtain the following

Corollary 2.2. (Isoperimetric inequality). Letu € W'1(Q, R")NL* be such
that det Du € LY(Q) and (2.1) holds. Then (2.4) holds for every xy € Q and for a.e.
r > 0 such that B,(xy) CC Q.
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Proof of Proposition 2.1. Let S, € D,(Q x R™) be the n-current
Sy = hx(0G, x [[0, 1]),

where 1 : Q x R x [0,1] — @ x R" is the affine homotopy map h(x, ¥, t) := (x, ty).
Similarly to (2.2), to every vector field g € C*(R", R") we associate the (n — 1)-
form

o) =Y (- lgapdyl.  g=(@"....g"),
=1

so that dw, = divgdy, where dy := dy* A --- A dy". We shall make use of the fol-
lowing

Lemma2.3. Foreverync D' (Q)andg CCOC(HSJZ TIA{") we have S, (1 A\ wy) = 0.

Remark 2.4. Lemma 2.3 is false if (2.3) is not satisfied, as the function » from
Remark 3.2 below shows.
Proof of Lemma 2.3. We write
8,1 A wy) = (0G, x [0,1])(n A hF w,),
where %(y, t) := ty. Moreover, we can decompose the pull-back of o, as

W o, = &(y,t) Adt +P(y,t),

where the forms &(-,t) € D"2(R™) and Y(.,t) e DL(R™) for every t € (0,1). By
definition of cartesian product of currents we get

0G, x [0,1)(p APy, 1) =0,
as n A ¥(y,t) does not contain the differential dt. Moreover, we have
DG, x [0,1])(n A Dy, t) A dt) = OG,,(n(x) A D(y))

for some “vertical” (n — 2)-form c~b(y) € D”‘Q(Jﬁ\”). Property (2.3) yields the as-
sertion. 0

Setting I1(x, y) := (x,0), we have
08, = (—1"'9G, + (~ 1"I14(0G,) on D"} QxR").
Forany g € C*(Q)and g € Cgo(fﬁin, I@"), since IT4(0G,)(p A wy) = 0, we thus obtain
3Sulp A wy) = (— 1" 9G.(p A ) .
By Lemma 2.3 we then obtain
(2.5) (= D" G (9 A wy) = Sulp A day) .
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Let u, be the signed measure on R”
(rrg) = (= D" UOG,) LB, x RG*w,),  geCPR",RY.
Since ||yl = ||9|l«, by (2.1) we infer that x, has bounded total variation
14| (R™) < M((G)u-1y LBy x R") <00

Moreover, taking a sequence {¢;} C C;°(€2) converging in L' to the characteristic
funection 13, of the closed ball B,, by (2.5) we deduce that

(1, 9) = (SuL B, x RM@* divgdy).

By the boundary rectifiability theorem, the current 0G, is i.m. rectifiable.
Therefore, it turns out that S, € R,(2 x R"). By using the degree theory from
[8, Vol. I, Sec. 4.3.2], for every xy € 2 and for a.e. » > 0 small we have

(.9) = (Su LB, x RN divgdy) = j A () div g(a) dy
o
for some integer valued L'-function A,, namely
4:(y) = deg (S, LB, x R",7,y) € L\(R", 7).
As a consequence, 4, is a function of bounded variation in ]IAR", with
IDA(R™) = 1, |(R") < M(@G,)—1y - Br x R <0

By Sobolev embedding theorem, and by density of smooth maps in BV(T@”), we
have

~ < ¢, |DA4|(R"
L”/m*l)(Rn) = Cp ‘DA'V‘|(R )

|14,
whereas, taking into account that 4,(y) € 7,

j ) dy < j D dy = (2,

~ P Ln/(n—l)(Rn).
R" R
We thus have
w9 < J |4,(y) div g(y)| dy
:/[g\ﬂ
< Jaivgl. | Bwldy
f{\’ﬂ, B R
< [|div gl cn (IDAT|(R”))"/("H) 7
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and hence
((0G,) LB, x RM@E* wy)| < ¢ ||div gl|o. MG )1 L By x RV

Finally, taking g(y) = y/n on the compact set {y € R" : |y| < |lu]l..} we ob-
tain (2.4). O

3 - A representation result

In this section, making use of the isoperimetric inequality, we prove that the
singular part of the distributional determinant is concentrated on a countable set of
points. We assume n = N > 2.

Proposition3.1. Letu:Q — R" satisfy the hypotheses of Proposition 2.1 or
Corollary 2.2. Then for every g € C°(2) we have

(3.1) (Det Vu, g) — (det Vu - dzx, g) = — £ (0G)n—1) L 7% w,)(g)
and Det Vu is a signed Radon measure with finite total variation. The density of
its absolute continuous part is equal to the pointwise determinant of Vu

(3.2) Det Vu = det Vu - dz + (Det Vu)®, DetVu)’ L L".

Moreover the singular part is supported on an at most countable set and

(3.3) (Det Vu)® = Z ¢ 04 , Z ler] < o0,
=1

=1
where ¢; € R and o,, 1s the unit Dirac mass centered at the point x; € Q. Finally, for
every open set U C Q the total variation of (Det Vu)® is given by

(et V)’ |(U) = ) |al = 720G )01 - ZF0)||[U).

x[EU

Remark 3.2. On account of (3.1), that holds true even if (2.3) is not satisfied,
the isoperimetric inequality (2.4) reads as

(3:4) |(Det Vu)§|(gr) < ¢y M((0G W) -1) LB, x ﬁn)n/(n—l) .

We now see that (3.4) is false, if (2.3) is not satisfied. In dimension n = 2, this
happens if e.g. u € BV(Q,R?) is not a W'l-function. Taking for example
Q=(-1,1)x(—-1,1) and wu(xry,x2) = (x1,22) if x1<0, whereas u(xy,xs)
= (11 + 1,29) if 21 > 0, we have

(aGu)\—QXRZZyl#I_yQ#I) I:=[-11],
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where y;(4) :=1(0,4,0,1) and y,(4):=(0,4,1,4), for —1<i<1. Moreover, we
have

(Det Vu)* :%Hl Ldu,  Ju={0} x(-1,1).
As a consequence, (3.3) fails to hold, too, if (2.3) is not satisfied.

Formula (3.2) goes back to [11]. We recall that in general the singular part of
Det Vu is not a sum of Dirac masses, see [12]. However, since Det Vu is a Borel
measure, thanks to a classical result by L. Schwartz, to prove (3.3) it suffices to show
that (Det Vu)® is concentrated on a countable set.

In view of this let us first prove

Lemma 3.3. Let A and u be respectively a non-negative and a signed Radon
measure on Q, with finite total variation, such that for every xy € Q and for a.e.
r > 0 for which B,(xy) CC 2 we have

1By (x0)| < ¢ A(By(9))*

for some fixed constants ¢ > 0 and o > 1. Then u is purely atomic.

Proof. Let
A :={a € Q| limsup A(B,(a)) > 0}
r—0+

denote the set of atoms of A. Since A is finite on compact sets of 2, then A is at most
countable. For every xy € Q2 and a.e. » > 0 small we have
#(B;)

" < ciB)
ABy)

where B, = B,(x)), and hence, since o > 1, letting » — 0 we infer that the density of
1 with respect to / is zero at all points a4y which are not in A. This yields that ux is
concentrated on A, as required. |

We also recall from [8, Vol. 1, Sec. 3.2.3] the integration by parts formula

(85) G ydy)=(-11Y J Vi@, u(e)] (adj V@) da

i=1 0

wherej = 1,...,n, that holds true for every function ¢ € C*(R" x R") with bounded
derivatives.
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Proof of Proposition 3.1. Taking ¢(x,y) := (— 1)j*1 g(x)y’ in (3.5), since

Vilg@w/(@)](adj Vu@)! = D;g(x)w(x) (adj Vu(@))]
+ @) V(@) (adj V()]

by summing over ¢ = 1,...,% and by the Laplace formulas we have
7a(0G,) LT*(— I yidyi)g) = (— DI 0G, (gyidy)
n .
= Z JDiguj (adj V), di + Jgdet Vu dx
=1y Q

hence, by taking the sum over j and dividing by %, we obtain (3.1).

By (2.1), and by the boundary rectifiability theorem, it turns out that the current
n2((0G,) L Q x R") is i.m. rectifiable in R,,_1(Q) and hence it is supported on an
(n — 1)-rectifiable set of Q2. As a consequence (3.2) holds and Det Vu is a signed
Radon measure in Q2. Moreover, for every point xy € 2 and a.e. small radius 7, so that
B.(xy) cC 2, by (3.1) we have

—DetVu)’'B,) = nx((0G,) 7% w,)B,)
(0G,) _7*w,, B, x R")
= (G)LB, x R@*w,),

where B, = B,(x), thus by the isoperimetric inequality (2.4) we obtain (3.4).
We then apply Lemma 3.3 with

u(B) := Det Vu)*(B), MB) := M((3G )1y LB x B,

taking « :=n/(n — 1), to conclude that (Det Vu)® is a purely atomic measure with
finite total variation. If u, = ((Det Vu)*)* are the positive and negative part of
(Det Vu)*, the Radon differentiability theorem yields that for each a; € A the limit

% = lim . (Blai, )

exists and hence (3.3) holds as

(Det V) = >~ (4] — ;) d,

a; €A

Finally, the last assertion trivially holds. O

Remark 3.4. Proposition 3.1 yields that the 0-current
(36) ﬂ#((aG%)(%,l) I—/ﬁ#wn)
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is rectifiable in Ry(22). However, in general (3.6) is not size bounded. In fact, in [9,
Sec. 7] we showed the existence of Sobolev functions « satisfying the hypotheses
of Proposition 2.1, actually of Corollary 2.2, such that (3.3) holds for some
countable family {x;} of pairwise distinct points in Q.

4 - A variational problem

In this section we discuss a variational problems that is naturally related to the
results of the previous sections. Assume again n = N > 2.

Definition 4.1. Letu:Q — R" satisfy the hypotheses of Proposition 2.1 or
Corollary 2.2. The 0-dimensional singular set of u is defined by the set of points of
concentration of (Det Vu)®, i.e.,

Sow) :={x; € 2]¢; #0 in (3.3)}.

Remark 4.2. Sy(u) is the countable set of points of positive multiplicity of the
rectifiable current (3.6), and it detects the so-called points of cavitation. We thus
infer that H%(S,,) agrees with the size of the current (3.6), i.e.,

HO(SM) = S(n#((aGu)(n—l) L ﬁ#wn)) .

Lower semicontinuity of the size.

Wefixp>1,K>0,and ¢ € Cff,’{(f), I[A%") smooth.

Theorem 4.3. Let {u;} C Cf}{ﬁw(é, R™ N WY1 be such that

(4.1) sup M@G,,)<oo,  sup M((0G,,) Q2 x R") <00
h h

and G, — G, weakly in D, (Q x IA{”), where u € Cf}c(ﬂ(fz, IF%”) N W1 Then we
have

H(Sow)) < lim inf HO (So(wa)) -
Proof. We wish to apply Theorem 1.1 with U = fz, m =n, k =0, and
T:= n#((aGu)(n—l) Lﬁ#wn) ) Ty = n#((aGuh)(n—l) Lﬁ#wn) .

By Proposition 3.1 we have T, {T},} C Ry(Q) N No(Q). Moreover, condition (i) in
Theorem 1.1 follows from (4.1), so that it remains to check condition (ii). To this
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purpose, notice that 9G,,, G, € R,,_1(Q2 x R™), that sup, (Jun | + llull.) < oo, and
that for every open set W, with Q cc W cc Q,

8(0G,, LW x R" — 0G,, LW x R") =0.

Therefore, as in [14, 31.2], the weak convergence of 0G,, to 0G, and (4.1) yield the
existence of a sequence {2} C R,(Q x R") of integral currents, with support
spt(2},) C Q x K for some compact set K ¢ R”, such that

0Gr, — OGh, = D), .

Set now @ :=nx(X, L7*dy) and Ry :=(—1)" 742, _7%w,). Since {Z,}
C N, (Q x R") satisfies

sup M(OZ)<oo,  lim M(Z;) =0, spt(Z) C QxK,
h —00

we infer that @, € N'o(Q), R), € N1(Q) and lim [M(Q1) + M(R;)] = 0. Therefore,

condition (ii) in Theorem 1.1 holds true if we show that
(4.2) T,—T=Q,+OR).
To this aim, we notice that for every ¢ DO(Q X IAR")
(- 1" 5,@ 0, A dg) = Z(d@Fw, A @) — Zpdi*w, A ),
whereas dz”* w, = 77 dw, = 77 dy. We thus obtain

(= D" o, L7%w,) = =2, La%dy + (02,) L7*w,
= -2, L7%dy + (0G,,) 7" w, — (0G,) T w, ,

which clearly yields (4.2). As a consequence, by Definition 4.1 and Theorem 1.1 we
have

H(So(w)) = S(T) < li}bn inf S(T},) = li}rln inf H°(So(up)) ,

as required. O

Existence results.

We conclude this section by proving an existence result. Let cq,ce,c3 > 0, and
consider the energy functional

43) Fu)i=o J@(M(Du)p du + ¢ J Dul" " das + ¢ HOSo(w) .
Q Q
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Theorem 4.4. (Existence result I). Let @ : R"™ — R be a non negative and
convex function satisfying a p-coercivity condition

cltf’ < o), c>0, p>1.

Then for every K > 0 and ¢ € Cf¥, (.Q R™) smooth, there exists a solution to the
problem

inf{F(u) | u € Cfy (@, R") N W1},

Proof. Let {u,} C Cfﬁ’w(f), R™ N W1 be a minimizing sequence. Since
(1.4) holds true, then by the closure, compactness and lower semicontinuity prop-
erties of Propositions 1.4, 1.5 and 1.6, and possibly passing to a subsequence, we find
the existence of u € Cf ﬁ’{ (@, R") N W1 such that u; — u weakly in A" and in
W1l with G, — G, Weakly in D,(Q x R"). Moreover, by Theorem 4.3, by the
lower semicontinulty ofu— [ |Dul"" ! dx, and by the standard lower semicontinuity

Q
of convex functionals with p-coercivity, we obtain
Fu) < li}m inf F(uy)
1—00

and hence the assertion. O

In a similar way one may consider functionals with more general bulk energies
given by the integral of a polyconvex function of the gradient Du, satisfying a sui-
table growth condition. Moreover, since the zero boundary condition (2.3) is pre-
served by the weak convergence as currents, one may consider similar variational
problems involving the wider class of functions in Cf}{’(ﬂ(f), l@”) satisfying (2.3), this
time taking c; = 0 in (4.3), and Vu instead of Du.

5 - The distributional minors.

In this section we extend the previous results to the case of distributional minors
of the Jacobian matrix Vu of fixed order k. In the sequel « is a bounded function in
AI(Q, RN), where n, N > 2.

Let us fix the order 2 < k < min (n, N). Also, let « and f be any multi-indices with
length |o| + || = n, where || =

Definition 5.1. The distributional minor of indices @ and f of Vu is
defined by

Divju i= ZZ (w/(@) (adj Va)l)])
jep ien
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i.e., for every g € CX(Q)

EZ (@) ((adj V)], Dig) .

<D1V u,g)
|ﬂ| jep ien

Remark 5.2. Inthecasek =1,if f =7 and a = 7, we have (ad]j Vu)g =1and
Divgu = D;u/. Therefore, we have assumed k > 2, the case k = 1 being reduced to
well-known facts from the theory of BV-functions, compare [2]. Moreover, if u is
smooth we infer that

(5.1) Diviu = ME(Vu) - de,

where Mg(Vu) is the pointwise determinant of the corresponding minor of Vu. In
fact, by the Laplace formulas, for every j € f we have

O i B N
iezaa”i (v’ (adjDw))]) = 3 3 ((adJDu))

+ ow Z— (adj Du))!

1€0

= Mi(Vu),

where we used that > i ((adj Du)g)f = 0. Therefore, by the Wl*’“—density of
i€y i

smooth maps, (5.1) holds true for maps u € W*(Q, RN) n L*>.

In Proposition 5.3, we will show that if the boundary of G, has finite mass, see
(2.1), and u satisfies the additional zero boundary condition

(5.2) (0G) - 2 x RN =0,

then Divgu is a signed Radon measure with density of the absolute continuous part
given by the pointwise determinant Mg(Vu) and singular part concentrated on a
countably H" *-rectifiable set of 2, so that Divgu has no Cantor-type part. We recall
that (5.2) is satisfied if u € W"1(Q, RY), see (1.3).
To this aim, we associate to every g € C:°(Q2) the (n — k)-form a)g c D" F(Q)
given by
@) == (= D)oo, m) gw)da”

Also, we will denote by

1 . N ;
wp = >0, B—Pyldy’
2
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the (k — 1)-form in D" 1(RY) associated to f, so that dwg = dy”. Finally we will set
ol o= (= 1Yk Doh),
so that, o and y/dy”~/ being of degree n — k and k — 1, respectively, then
ydy' A wy = ), ) A ydy! .
Proposition 5.3. Let 2 <k <min(n,N). Let u € Al@, RM N L>® be such
that

(5.3) MG, L2 x RNy <.

Assume in addition that uw € WH1(Q, RYM) or, more generally, that (5.2) holds true.
Let o and f be multi-indices with length |«| + |f| = n and |p| = k. Then for every
g € CX(2) we have

(5.4) (Divlu, g) — (ML(Vu) - dv,g) = — o}t ip((OGa)e—) L 7 ¥ 0op)(05?)

and Divgu 1s a stgned Radon measure with finite total variation. The density of its
absolute continuous part is equal to the pointwise determinant Mg(Vu)

(5.5) Divlu = MU(Vu) - doe + Divlw)*,  (Diviw)* L £".

Also, the singular part is supported on a countably H" *-rectifiable set. Finally, for
every open set U C Q the total variation of (Divgu)S 18 given by

(5.6) |(Div§u)s|(U) = [|(m£((0G )1 L 7" wp)) L da™||(U) .
As a consequence, we also have
Corollary 5.4. Let k, u and f be as in Proposition 5.3. Then the (n — k)-
current
(6.7) T = n4((0G)g-1) 7" wp)
1s rectifiable in R,,_;(Q).

Remark 5.5. In general the rectifiable (n — k)-current (5.7) is not size
bounded, if ¥ > 2, see [9, Sec. 7].

Proof of Proposition 5.3. The integration by parts formula
6G1¢(¢(907 ?/)dm“ A dyﬂij)
(5.8) = (= D6, 3)0(j, f— ) Z J Vilg(e, u(x))] (adj (Vu(ac))/;)f dx

1€ 0
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holds for every j € f and every function ¢ € C1(R"” x RY) with bounded deri-
vatives, compare [8, Vol. I, Sec. 3.23]. We apply (6.8) with ¢x,y)
= (— Do, 3) 0(j, f — j) glw)y’ and j € p. Since
o(j, f— DNl Ay dy’ = ¢, yda A dy’
and
Vilg@ni@)] (adj (Vu@))! = D;g)w(x) (adj (Vau(x)L)]
+ 9@ Vad (@) (adj (Vu@))]

by summing over ¢ € @ and by the Laplace formulas we have
o np(0G) L 7% a(j, B — )y dy’ ) e?)
= 0G.,(0(j. f — ) o}, A yidy )
=> JDi g (adj (V) de + J gML(Vu) dee.
= °

Therefore, taking the sum overj € f and dividing by || we obtain (5.4). Arguing as in
Proposition 3.1, by (5.3) and by the boundary rectifiability theorem we then deduce
(5.5) and that Divgu is a signed Radon measure in Q. It remains to show that (Divgu)s
is concentrated on an countably H" *-rectifiable set.

If k = n, setting w# := (w1, ..., uPr) we have

720G )41y L 77 0p) = 1 ((0G )1y L " @) .
Since w# € W 1(Q, R") or, more generally, by (5.2),
(8Gﬂ/r)(n,2) LQx ﬁn = 0,

whereas u/ satisfies (2.1), the assertion follows from Proposition 3.1 applied to
W Q- R

If 2 < k <m — 1, we recall from slicing theory, see [14], that if ' € N,,_,(Q) is a
normal current and 7, : R — R"* denotes the orthogonal projection onto the o-
components of x, i.e., n,(x) = x,, then

(5.9) TLdx = J (T, 7y, ) dacy ,
R

where (T, 7, x,) is for a.e. x, the 0-current obtained by slicing 7' with respect to =,.
We may and will apply (5.9) to the current 7 in (5.7), since 0T = Onx((G,) ) L a*yP)
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and hence T € N,_;(£2). Moreover, without loss of generality, we assume
Ty = (X1,...,%,_1r), S0 that x = (x,, xz), and we let

Qu, = {5 € R¥ | (,15) € Q}

denote the k-dimensional section of Q with the k-plane 7, (x,). Let u?, : @, — R
given by
Xz — uﬁ,(ma) = (uﬁl» e a“ﬁk)(x“’ ).

For a.e. choice of , € R"* such that €, is non-empty, we have:
L (m4(0G.) L ¥ wp), 7y, ) (@) = 720G, ) L T p)(g (e, ));

. uﬁ belongs to A'(Q,,, Rfyn L,
. property M ((8Gu/5 )L Q, X I[A{k)<oo holds;

[ B VB \V]

ug belongs to lek‘l(me,ﬁk) or, more generally, (5.2) yields that
(G )2y D, RF = 0.

Applying Proposition 3.1 with k¥ and ug for of n and u, we infer that
(n*((0Gw)g—1) L T* wp), 7y, ;) 18 concentrated on a countable set of points.
Therefore, by (5.9) we conclude that (Div/;u)‘“’ is concentrated on a countably H" *-
rectifiable set. Finally, (5.6) trivially follows. O

Proof of Corollary 5.4. Proposition 5.3 yields that the (n — k)-current
(5.7) is of the type (M, 0,&,), see (1.1). Let & be the unit (n — 1)-vector that
provides an orientation to the i.m. rectifiable current (0G,)L Q x RY. Define
5:: (¢17”.’¢k—1) RN LRI py

$@,y) = > o, p— Ny,
JeB

and let ¢ := ¢' A--- A ¢"1. By Prop. 3 from [8, Vol. I, Sec. 5.2.2], we infer that for
H" ae. (x, y) € 9G,, the (n — k)-vector (£ L ¢)(x, y) is simple and tangent to ker 5‘ =
where 2'is the approximate tangent (n — 1)-space to 9G, at (x, ). As a consequence,
the (n — k)-vector nx& L ¢, modulo a renormalization, provides an orientation to M,
as required. O

Singular set.

Similarly to Definition 4.1, we now give the following:
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Definition 5.6. Let2 <k <min(n,N). Letu : Q — RY satisfy the hypotheses
of Proposition 5.3. The (n — k)-dimensional singular set of u 1s defined by

Sui) == | My,
|Bl=k

where Mpg(u) is the set of points of positive multiplicity of the rectifiable current
(5.7), 1.e.,

Mﬁ(%) = set(n#(((?Gu)(k,l) L/TE#CO/;)) .

Lower semicontinuity of the size.

Fixp>1,K>0,and¢p € Cf%(f), R™) smooth.
Theorem 5.7. Let 2 <k <min(n,N). Let {u,} C Cf}f,w(év RNy N Wk-1 pe
such that
sup M(G,,) <o, supM((aGuh)szx RN)<oo
h h

and G,, — G, weakly in D,(Q x RY), where u € Cf}w(f), RY)Y N W1, Then we
have

H"(S4w) < Hminf R (S, 4(w,)

Proof. As in the proof of Theorem 4.3, we apply Theorem 1.1 with » — k in-
stead of k£ and

T := 140G ) k1) - T" wp), Ty = n((0Gy,) g1y 7 )
for every f. Using a covering argument as in the second part of the proof of [9,
Thm. 5.8], we obtain the assertion. O
Existence results.

We conclude this section by stating an existence result. Let 2 < k < min (n, N),
and consider the energy functional

(5.10) Fru) := ¢ J &M Dw))) dz + ¢ J \Dul " dae + 3 H" (S, _r(w)),
Q Q

where cq, co,c3 > 0. We have:
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Theorem 5.8. (Existence result IT). Let @ be as in Theorem 4.4, wheve p > 1.
Then for every K > 0 and ¢ € Cf5(Q, RY) smooth, there exists a solution to the
problem

inf{Fp(w) | u € Cfh (@, RYV) N W1}

The proof of Theorem 5.8 is omitted, being similar to the one of Theorem 4.4, on
account of Theorem 5.7. We notice again that one may similarly consider functionals
with more general bulk energies given by the integral of a polyconvex function of the
gradient Du, satisfying a suitable growth condition. Finally, since the zero boundary
condition (5.2) is preserved by the weak convergence as currents, one may also
consider similar variational problems involving the wider class of functions in
Cf}(’q)(f), RY) satisfying (5.2), this time taking the constant c¢; = 0 in (5.10), and Vu
instead of Du.
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