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1 - Introduction

Many authors dealed with the asymptotic behavior of the solutions of Dirichlet
problems in perturbed domains (see [14] for an initial exhaustive bibliography. See
also [2] for further developments in the subelliptic case).

More recently M. Biroli and S. Marchi [3] treated the case of equations related to
Riemannian Dirichlet forms. The authors proved the weak convergence of the so-
lutions of “relaxed” Dirichlet problems, with a potential, described by a suitable
nonnegative measure. More generally the result was proved starting from a se-
quence of relaxed Dirichlet problems.

The aim of this paper is to give a variational motivation to the above result proving
by the methods of the I"-convergence of functionals of the Calculus of Variations (the
same method applied in [14]), the convergence of the minima of the functionals as-
sociated to the related relaxed Dirichlet equations.
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2 - Assumptions and preliminary results

We consider a locally compact separable Hausdorff space X with a metrizable
topology and a positive Radon measure m on X such that supp[m]= X. Let
&: LP(X,m) — [0,+ 0], p > 1, be als.c. strictly convex functional with domain D,
ie. D ={v: &)< + oo}, such that &(0) = 0. We assume that D is a dense linear
subspace of LP(X,m), which can be endowed with a norm ||.|| , with respect to which
it is a Banach space and the following estimate holds

alol?, < Br(o) = Bw) + j [oPmide) < callo|’,
X

for every v € D, where ¢y, cg are positive constants. D N Cy(X) is dense in Cy(X) for
the uniform convergence on X and D, will denote its closure.

A Choquet capacity can be defined, moreover every function in D, is quasi-con-
tinuous and is defined quasi-everywhere [7] and [3]. We assume that @ is a strongly
local Dirichlet functional with a homogeneity degree p > 1 [7]. This means in par-
ticular that @ has the following representation on Dy: &(u) = f o(u)(dx)where o is a

non-negative bounded Radon measure depending on % € Dg,Xsaid the energy mea-
sure of @, which does not charge sets of zero capacity. The energy o(u) is convex with
respect to« in Dy in the space of measures and it is homogeneous of degree p > 1,i.e.
atu) = |t[Po(u), Vi € Dy, Vt € R and it is of Markov type.
Assume that for every u,v € Dy we have
o + tv) — oau)

Iim—MM =
tlf(} t ulu,v)

in the weak* topology of M (where M is the space of Radon measures on X) uni-
formly for u, v in a compact set of Dy, where u(u,v) is defined on Dy x Dy. We assume
that u is a Riemannian Dirichlet form. In particular x is homogeneous of degree p — 1
in % and linear in v; it satisfies the chain rule, the truncation property, the Leibniz
rule and Young’s inequality.

Assume that a distance d could be defined on X, such that a(d) < m in the sense of
the measures and

(i) The metric topology induced by d is equivalent to the original topology of X.
(ii) Denoting by B(x, r) the ball of center « and radius » (for the distance d), for
every fixed compact set K there exist positive constants ¢y and 7y such that

(2.1) m(B(x,r)) < com(B(x,s)) (g) ! Vee K and 0<s<r<mr.

We assume without loss of generality p <v.
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From the properties of d the existence of cut-off functions can be proved. A scaled
Poincaré inequality is assumed and Sobolev’s inequality is proved. We refer the
reader to [7] for any detail.

3 - The space of measures *l)?g (2)

Let 2 be an open subset of X and let D,(Q) be the closure of D N C°(L2) in D.
We denote by 2t (£2) the set of all non-negative Borel measures { such that

() {(B) = 0 for every Borel set B ¢ Q with p — cap(B, 2) = 0;
(1) {(B) = inf{{(U), Uquasi-open, B C U}.

Property (i7) is a weak regularity property of the measure {. Since any quasi-open
set differs from a Borel set by a set of p-capacity zero, then {(U) is well defined when
U is quasi-open and { satisfies (7), so condition (i) makes sense.

Let L7(2), 1 <7 < +oo be the usual Lebesgue space with respect to the
measure (.

If e ?)ﬁg (Q), then the space Dy(22) N L’g () is well defined because the functions
in Dy(Q) are defined {-almost everywhere in Q. Moreover the space Dy(2) N L{f (Q)is
a Banach space for the norm

p

— P P
||u||DO(Q)ﬁL§(Q> - ”u”D(,(Q) + ||u||L§(Q)'

A non-negative Borel measure which is finite on compact sets of 2 is a non-ne-
gative Radon measure on Q2 (continuous linear functional on Cy(£2)). We say that a
Radon measure ¢ belongs to D~1(Q) if there exists f € D~1(Q) such that

(3.1) (frp) = jw(dx)

Q

for every p € C3°(Q2), where (-, -) denotes the pairing between D1(Q) and Dy(Q). We
identify ¢ and f. We observe that for every non-negative f € D~1(Q) there exists a
non-negative Radon measure ¢ such that (3.1) holds. Moreover every non-negative
Radon measure in D~1(Q) belongs to imfg ().

4 - Relaxed Dirichlet problems and convergence of the minima

Let Q be a bounded, open subset of X. For any {, € D) (Q), n =1,2,... and
(e }Wg (Q) and for any f € D~1(Q), let us denote by u,, u, the solutions of the relaxed



310 FLORANGELA DAL FABBRO and SILVANA MARCHI [4]

Dirichlet problems

(4.1) Jﬂ(%n;v)(dx) + J ‘un|p72unvén(d9€) =(f,v)
Q Q

w, € Do(@) N LE (@), Wv € Do(@ N LE (),

(42) J,u(uo, v)(dar) + J o P 22,0(d2) = { f )

Q Q

u, € Do(Q) N LE(Q), Yo € Dy(Q2) N LE(Q).

Assuming suitable monotonicity' properties for the form x4, and that, for any
u,v € Dy(RQ), u(u, v) has a L' local density (in particular this holds for a(u)), then the
following convergence result holds true [3].

For every f € D~1(Q) and for every sequence ({,) C %ﬁ () there exists a sub-
sequence denoted again by ({,,) and a measure { € 932{;(!2) such that the sequence of
the related solutions (u,,) of (4.1) converges to the solution u, of (4.2) weakly in Dy(£2).
Moreover for any open subset U of @ this holds true also in U.

In this paper we want to give the variational motivation of the former result by
proving in Theorem 6.1 that the sequence of the minima (m,,) given by

-Q Q

converges to the minimum value m, given by

(4.4) mﬁmn%wm+MMM—m4.

D,(©Q)

- Q Q

Moreover we prove in Theorem 6.1 that this result is equivalent to the compactness
of the set ¢} (Q) with respect to the y-convergence according to the following defi-
nitions.

Definition 4.1. LetY be an arbitrary metric space. Let G,, n = 1,2, ..., G be
fumctions from Y to R. We say that G,, I'-converges to G in Y, and we write

G=TI- lim G,

n—0o0
m Y, if the following conditions are satisfied:
(a) forevery u € Y and for every sequence (u,) converging to u in Y

G(u) < lim +inf Gn(uy);
NnN——+00
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(b) forevery uw € Y there exists a sequence (u,,) converging to w in Y such that
Gw) = lim Gy,(uy).
Nn—-+00
Let us observe that the I'-convergence is preserved under addition to G,, G of a

continuous function from Y to R. In our context we refer in particular to
Y = LP(Q,m) and G given by the following definition.

Definition 4.2. Let { € ME(Q). Then
Joc(u)(dx) + J |uPl(dx)  if u € Dy(Q)

Gg(u) = O O

+ 00 elsewhere in LP(Q, m).

Definition 4.3. We say that {, € ¢5(Q) y-converges to { € NV (Q) if the se-
quence (G,) I'-converges to G according to the Definitions 4.1 and 4.2.

We will prove in Theorem 6.1 the compactness of E)ﬁg (Q) under y-convergence and
in Lemma 6.5 that this is equivalent to the convergence of the minima (4.3) to the
minimum (4.4).

Remark 4.4. Let { € MH(Q) and let f € D~1(Q). Let us define

Ja(u)(dm) + J wPldz) — (fou) if ue Dy@)
Q

Q
+ 00 elsewhere in LP(Q, m).

G{(u,f) =

It is obvious that m,, and m, in (4.3), (4.4) realize the minima of the functionals
G, (-.f) and G¢(-,f). Moreover G, I'-converges to G if and only if G¢, (-,f) I'-con-
verges to G¢(-,f).

5 - Preliminary general results

The results of this section refer to a stronger definition with respect to the I"-
convergence. They are due to [11], [13], [14] and they can be applied in our context
with only few changes. We will not prove them but we limit ourselves to indicate the
few modifications which we need to adapt them to our setting.

Definition 5.1. Let Y be an arbitrary metric space. Let (F',,) be a sequence of

functions from Y to R. Let u be an element of Y and a~(u) € R. We set
a (u)y=IN",Y") lim F,(@)

n—0o0
V—U
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if and only if
() for every sequence (u,) converging tou in Y

a”(u) < lim +inf F(uy,);

(ii) there exists a sequence (u,) converging to u in Y such that

a () = "l_lgloo Fp(uy).

Ifa*t(u) € R we set
at(w)=TN",Y") lim F,(v)

NnN—00
V—U
if the previous conditions (i) and (ii) are satisfied with lim sup instead of liminf.
Moreover if a(u) € IR we set
a(u)=IY") lim F,(v)

NnN—00
V—U

if and only if a(u) = a~(u) = at(u).

Let us observe that a sequence of functions (G,,), from the metric space Y to R
I'-converges to the function G in Y (according to Definition 4.1) if and only if for
every u € Y

Gw)=TN",Y") lim G,().

Nn—00
V—U

It is evident from the above Definitions that

Guw)=r") lim G,®w)

for every u € Y, is a stronger condition with respect to

G=TI- lim G,

n—00

in Y, according to Definition 4.1.
We shall denote by A the class of open subsets of 2 and by B the class of Borel
subsets of Q.

Definition 5.2. Let = be a function from B into [0, + oo[. We shall denote
by F, the class of functionals F : LP(Q,m) x B — [0, 4+ oco] with the following
properties:
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(@) for each u € LP(Q2,m) the function B — F(u,B) is increasing on B and
F(u,0) =0;

(b) if u,veLP(Qm), Ac A ul, =v|, a.e on A, then F(u,B) =F(v,B) for
every B € Bwith B C A;

(¢) foreach B € B and each A € A, with B C A, the function u — F(u,B) is
convex and lower semicontinuous on D(A);

(d) foreveryAe A

: P < .
uellr)lof(m ||u||D(Q) +Fu,A)| <n(A);
(e) there exists a functional F: LP(Q,m) x B — [0, +00] such that for every
u € LE(Q,m) the function B — F(u,B) is countably additive on B, and for every
u € LP(Q,m), A € Awe have F(u,A) = F(u,A);
) forevery A € A and every u,v,w € DA), with w > 0 a.e. on A

Flurnv)+wA)+Fuvv,A) <Flu+wA) +F@A).

EXAMPLE 5.3. Let {, v be positive Radon measures, with { € D71(Q) and let
g: 2xR —[0,400] be a Borel function, with g¢(z,¢) convex and lower
semicontinuous in ¢ for each = € Q. For every u € LP(Q, m) and for every B € B
we set

Fu,B) — Jg(ac, @) () + v(B)
B

where % is the quasi-continuous representative of u. If there exists u € D(Q) such
that F(u,A)< + oo for any A € A, then F' belongs to the class F, for a suitable
function 7 : A — [0, + oo[ [11, Remark 2.5].

Definition 5.4. A subset B of B is said to be rich in B if, for every family
(By), t € R, of elements of B, with By CC By for s<t, the set {te R:B; ¢B} is at
most countable.

Theorem 5.5 (Compactness of F,). For every sequence (F,) of functionals of
the class F there exists a subsequence (Fy,), a functional F of the class F, and a
subset B of B, rich in B, such that

(5.1) Joc(u)(dx) + Fu,B)=T'L"A,m)") klim {Ja(v)(dm) +F, (v,B)
A

A V—=U

forevery A € A, u € D(A) and for every B € Bwith B CC A or with B = A.
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The proof of Theorem 5.5 is a slight modification of the proof of Theorem 2.10 of [11].

Theorem 5.6 (Integral representation). For each functional F of the class F,
there exist
(i) two positive Radon measures ¢ and v, with { € D™Y(Q);
(ii) @ Borel function g: Q2 x R — [0,+o0], with t — g(x,t) convex and lower
semicontinuous on R for each x € &
(iii) @ subset B of B, rich in B and containing A such that for every A € A, u € D(A)
we have
(52) Fu.B) = [ g6, 2w) {do) + B
B
for every B € Bwith B CC A or with B = A.

Theorem 5.6 can be obtained as in [11, Theorem 3.1], that is from Lemmas 4.5, 4.6
of [13] and from Theorem 3.3 of [11].

Theorem 5.7 (Convergence of the minima). Let (F,,) be a sequence of func-
tionals of the class F, and let F be a functional of the class F, such that

Joc(u) (dx) + F(u,B)
A

=I'(’(Q,m)") lim [ Joc(v)(dx) + Fy(v, B)
A

V—=UuU

forall A e A ue D), B e B, with BCC A orwith B=A.
Let the integral representation of F' described in Theorem 5.6 be in force. Let
feD Q.
Let (vy,) be a sequence itn D(Q) converging in LP(Q,m) to an element v, € D(Q).
Suppose that there exists a compact subset K of Q such that
lim sup l J a(vy) (dx) + Fr(vy, 2\ K) | < + 0.
nN—0o0

o\K

For every n € N, let u,, be the minimum point of the functional

Jmmm+mwm—uw

Q

on the set {u € D(Q) : u— v, € Dy(Q)}.
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Then u,, converges in LP(Q, m) (and weakly in D(Q)) to the minimum point u, of
the functional

J 2u)(da) + Fu, @) — (fu)

Q

on the set {u € D(Q) : u — v, € Do(2)}. Moreover if in addition

n—00

lim sup [ J (v (di) + Fy(vy, 2\ K)
Q\K

< J a(v,) (dx) + F(v,, 2\ K)

O\K

then

Ja(uo)(dx) + P, @) — (f 1)

Q

= lim [J oy )(dx) + Fp (g, Q) — <f7 un>] .

n—oo
Q

Theorem 5.7is proved in [11, Corollary 4.4]. For sake of completeness we stated it
in the above general form. But we are interested to apply it in the particular case of
v, = v, = 0 and functionals

Fu,E) = J|v|”cn<dx>
FE

which belong to the class F, as we observed in the Example 5.3.

6 - The results

Let us return to the I'-convergence described in Definition 4.1. Our aim in this
Section is to prove the following result about the compactness of the set of measures
NeH(Q) with respect to the y-convergence, Definition 4.3. As a byproduct we will
obtain the convergence of the sequence of minima (4.3) to the minimum (4.4).

Theorem 6.1 (Compactness of I (€2) and convergence of the minima). For
every sequence ({,,) in EW(; (Q) there exists a subsequence still denoted by ((,,) and a



316 FLORANGELA DAL FABBRO and SILVANA MARCHI [10]

measure { € VL (Q) such that

(6.1) (o v — converges  to { in ML(Q).

This is equivalent to

(6.2) the sequence of minima (4.3) converges to the minimum (4.4).

Moreover the minimum point u, in D,(Q) of the functional on the right hand side of
(4.3) converges i LP(Q,m), weakly in D,(Q), to the minimum point u, in Dy(Q2) of
the functional on the right hand side of (4.4).

The proof is similar to that of [14, Theorem 4.14] but we describe it for con-
venience of the reader.

Lemma6.2. LetY be an arbitrary metric space. Let (Gy,), n € N be a sequence
of functions from Y to R which I'-converges in Y to a function G and let H from Y to
R be a continuous function. Suppose that for every t € R there exists a compact set

K; C Y such that
{?) €Y : Gn(”)"‘H(v) < t} C Kt

foreveryn =1,2 ... Then G + H attains its minimum m Y and

lim inf[G,(v) + HW)] = myin[G(v) +H®)).

n—+oo Y

Suppose in addition that each function G, + H attains a minimum point u, in Y
and G + H attains a unique minimum point uin Y. Then (u,) converges tou in Y.

Lemma 6.2 is proved in [15, Corollary 2.4] (see also [14, Proposition 4.2]). The
following Lemma is proved in [1, Corollary 3.13] (see also [14, Proposition 4.3]).

Lemma 6.3. Let Y, Z be Banach spaces, with Z CY and Z dense in Y.
Suppose that Z is reflexive and separable, and that the imbedding of Z into Y is
compact. For every n € N let G,, be a function from Y to R which is convex and such
that G,(w) > ||ul|l for every w € Z and G, (u) = + oo for every u¢ Z. Suppose that
there exists a lower semicontinuous convex function G from Y to R such that

lim inf[G,() + H®)] = min[G(w) + H©®)]
n—+oo Y Y
for every continuous linear function H from Y to R. Then G,, I'-convergesto GinY.

Remark 6.4. In Lemma 6.3 the condition G, (u) =+ oo for every u¢ Z reduces
infy[G, () + HW)] toinf ;|G\, (v) + H®)] and miny [G(v) + H(®)] to mingz[G(v) + H(®)).
Moreover H could be a continuous linear function from Z to R.
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The same considerations hold about Lemma 6.2 if the condition G,(u) = + oo
Sfor every u ¢ Z is required in addition.

Lemma 6.5. A sequence ({,) in D (Q) y-converges to L € ME(Q) if and only if
for every f € D7X(Q) the sequence of minima (4.3) converges to the minimum (4.4).

Proof. It is enough to apply Lemma 6.2, Lemma 6.3 and Remark 6.4 with
Y =LP(Q,m) and Z = D,(£2). Moreover G = G¢, G, = G¢, of Definition 4.2 and
Hw) = —(f,v).

Proof of Theorem 6.1. Given an arbitrary sequence ({,,) in EIR’S(Q), let (F,,) be
the sequence of functions from L”(Q,m) to R of the class F, associated to ({,) de-
fined by

Fou) = J P, (do).

Q

In virtue of Theorem 5.5 there exists a subsequence of (), still denoted by ({,)) and a
function F of the class F, such that (5.1) is satisfied.

In virtue of Theorem 5.6 there exists a positive Radon measure ¢ € D1(Q), a
Borel function g : Q x R — [0, +00], with £ — g(x, %) convex and lower semicontin-
uous on R for each x € Q, such that (5.2) is satisfied.

Invirtue of Theorem 5.7, where v,, = v, = 0, for every f € D~1(Q) the sequence of
minima (4.3) converges to the minimum value in D, () of the functional

63) Jam)m(dx) + Jg(m, wld) — (f,v)

Q Q

and the minimum point u,, in D,(Q) of the functional on the right hand side of (4.3)
converges in LP(Q,m), weakly in D,(Q), to the minimum point u, in D,(2) of the
functional (6.3).

The proof is concluded if we prove that g(ac,u)Z(dx) = |u|P{(dx) for a suitable
measure ( € NE(Q).

Applying Lemma 6.3, Remark 6.4 with Y = LP(Q,m) and Z = D,(Q), it follows
that the sequence of functionals

Joc(u)(dx) + J \uPC,(de)  if u € Dy(Q)
G, (w) =< 5 Q

+ o0 elsewhere in LP(Q,m)
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I'-converges to the functional (N}Zf defined by

Joc(u)(dx) + J gGe,w)l(de) if u € D,(Q)
Q Q
+ oo elsewhere in LP(Q,m).

Gyu) =

Let us observe that the functionals G;, are homogeneous of degree p, and this
property is preserved by I"-convergence.

Therefore the functional GE is homogeneous of degree p. It follows that the
functional

" Jg(ac, Wide)

Q

is homogeneous of degree p on D,(L2). Therefore, using an approximation argument
and Eulero’s Theorem, it results of the form

j o, w)C(do) = ja(x)mv“z(dx)

Q Q

for a suitable Borel function a : 2 — [0, +o0].
Now it is enough to define { = al. Tt is obvious that ¢ € Emf; Q).
The equivalence between (6.1) and (6.2) follows from Lemma 6.5.
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