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A BGK-type model for inelastic Boltzmann equations

with internal energy

Abstract. We introduce a model of inelastic collisions for droplets in a spray,
leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of
BGK type, in which the behavior of the first moments of the solution of the
Boltzmann equation (that is, mass, momentum, directional temperatures, variance
of the internal energy) are mimicked. The quality of these caricatures is tested
numerically at the end of the paper.
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1 - Introduction

Sprays are flows in which a dispersed phase (e.g. droplets) is surrounded by a gas.
Such flows can be found in natural phenomena, like for example clouds. They also
appear in many industrial devices, like diesel engines, fluidized beds, ete. We refer to
[20, 1, 16] for an introduction to the study of this kind of flows. When the dispersed
phase occupies a significant part of the total volume, one must take into account the
collision phenomena (like in [1]), that is, droplets can meet, remain in contact for
some time, and then separate again.

Those droplets are characterized by their radius = > 0, their position x € Q
(domain of computation), their velocity v € R?, and their internal energy (by unit of
mass) e > 0 [some other parameters are sometimes taken into account, like the
distortion of the droplets, Cf. [1, 16], etc.]. We restrict ourselves in this paper to so-
called monodisperse sprays, where all droplets have the same radius » > 0.

During a collision, two droplets are in contact and therefore exchange some in-
ternal energy. Moreover, the droplets being macroscopic objects, part of the kinetic
energy (in the center of mass reference frame) is transformed in internal energy
(that is, the collisions are inelastic).

A standard model for inelastic collisions (Cf. [4, 6, 19] for example in the context of
granular gases) consists in writing

v+v° 11—y 1+y
1 /: -7 gy ¥
1) v 5t @)+ v,
v4+v* 1—y 1+y .
2 /*: - 7 o) _ x
2) v 5 1 (v —v") 1 v —v*|a,

where v,v* € R? are precollisional velocities, v/, v € R? are postcollisional velo-
cities, y € [0, 1] is the inelasticity parameter, and ¢ is parametrizing the sphere S2.
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The kinetic energy lost (by unit of mass) in (1), (2) is given by
(3) AE. = 1 — P)v—v* '8 — 1 — y*8|v — v*|g,v — v >,
3
where () is the scalar product in 3D : <,y >:= > x;¥;.
i=1
The exchange of internal energy is then simply modelled by the equations

2—a a 1

/_— ok - i

(4) o =——e+ze +5 B,
a 2—a

o
(5) e —26+ 5

1
e +§ AE.',

where e, e* > 0 are precollisional internal energies, ¢ ,e’* > 0 are postcollisional in-
ternal energies, and a € [0, 1] is the parameter which characterizes the typical time
scale of the exchange.

Note that the kinetic energy lost in (1), (2) is equally distributed between the
energies ¢’ and e’*.

In all generality, both y and a are functions of |v — v*| which sometimes can be
assessed (Cf. [15], [8]).

The corresponding Boltzmann operator @ can be written in weak form according
to the following formula (for all function y for which the integrals make sense)

(6) ” QUf . N, e)w(v, e)dvde

ve

) = ”J ij(v, e)f *, ") [y, e") — w, e)Ir*S(jv — v*|)dvdedv* de*do,
where
(8) Sw) = w

corresponds to the cross section of hard spheres, and » > 0 is the radius of the
droplets.

2
Note that by taking y(v,e) = 1;v;; % + e, we obtain the conservation of mass,

(™ component of the) momentum, and total (kinetic + internal) energy:

1

Q [ [ew.p] =2 Y auae <o
ve @

2+e
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We also briefly indicate here the strong formulation of @ [in the case of hard
spheres], which makes explicit the Jacobian of the transformation (v,v*,e,e*)
— (v,'v*,'e,’e*), but which is not used in the sequel (cf. [19] for more on the Jacobian):

. QU N, e)
_f(v*7e*)f(v,e)> Plv — v*|dodvde

= JJJ f(’v*’ e f(v,e) —f*, e f(v, e)>7'2|v—1) |dodvde.

The Jacobian J is composed of a part ( 7 ||v || ) which is typical of the inelastic

collision kernels ([10, 18]), and of another part (ﬁ) which comes from the ex-

changes of internal energies. In (10) is used the following shorthand (related to
precollisional velocities, Cf. [15], [8])

(11) ’v:v—;v*—14—7(v—v*)+14—4;))|v—v*|a,
(12) ’7)*:vzv*—&—lél—_yy(v—v*)—1z;y|v—v*|a7
(13) ’6:22:2(26 3 a2 e* +2A’E‘c,

(14) O =g 2‘2 2 %A/Ec’

(15) A’Ec:18_V2yz|v—v*|2—182 v —v' <o, v—v" >.

In many instances, the Knudsen number related to the droplets in a spray is small
(Cf. [15], [8]), so that the number of collisions to perform in a computation is quite
high, and the treatment of @ sometimes requires a large part of the time spent in the
computation (up to an increase of more than 100%).

As a consequence, one needs simplified models of collision, which lead to less
expensive computations, but keep some of the main features of the original model
10) — (15).

This problem has already been studied by many authors in the case of the elastic
Boltzmann operator for rarefied gases, and has led to various models, among which
the BGK model (Cf. [5]) and the ESS model (Cf. [12]). These models have been
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adapted to the case of inelastic Boltzmann kernels for granular media (Cf. [2], [14],
[17]), and to the case of Boltzmann kernels taking into account chemical reactions
(C£. [7], [9]1, [11]).

The simplified model that we propose writes
(16)  Ohf + V- (c1f (v — vaw)) + De(caf) + De(cs(e — eawr)f)
+0e(calv = vane[*Def) = —(f = fo),
where vy, is the mean velocity
J f(t,v,evdvde
(17 Vavr =

e_ 6%

Jf(t v, e)dvde

eayvr 18 the mean internal energy

Jf(t, v, e)ededv

(18) Cavr = j
!

Jf(t, v, e)dedv ’

fo is the Maxwellian function of v with the same parameters as f

3/2 [V—Vavr
%LT(t)) e ‘ 2T<t>‘ Jf(t w, e)dw,

w

(19) folt, v, e) = (

and T is the statistical temperature:

J Jf(t, v,e)lv — vm\zdvde

v

(20) T(t) =

Lol =

ij(t, v, e)dvde

v e
It combines:

e adrift towards the mean velocity V,, - ( flw— vaw)), which enables to model the
inelasticity (loss of kinetic energy) coupled with a term which ensures the con-
servation of total energy (9, f),

e a relaxation towards a Maxwellian distribution —v(f — fy),

e a drift towards the mean internal energy 9,((e — e,v)f), which models the ex-
change of internal energies during collisions,
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e a diffusive term 9,(Jv — vavr|489 f) coming from the fact that some diffusion
w.r.t. internal energy appears when part of the kinetic energy is transformed into
internal energy. Note that the term |v — v,|* naturally appears by homogeneity if
we want ¢4 to be the inverse of a time.

The parameters c;, co, c3, c4, v are defined by

381(t
(21) € = 81;)[—1+%+ﬂ(1—a),
(22) o= -0 3474 Pla - are,
(23) c3 = — 3'127@ a2 — a)(l — ),

o S5®) 2
(24) Cs = *@(I*VZ) 1 —-w),
(25) v = 351(0) A+ A — ),

&r
where Sy, Sz, S3 depend on the type of collision kernel:

o In the case of Maxwell molecules that is, when S(jv — v*|) = S is a constant in
(7), we take S1(t) = So(t) = S3(t) = S;
e In the case of hard spheres (that is, when S(jv — v*|) = [v — v*|), we take

Fo AR e F F 7
(26) S, — \/3(T11 + 15, + T55) + 2(T11 T2 + To2T'33 + T11Ts3) JET,

972

4T
(27) Sp = N

32VT

Here, the T; are the eigenvalues of the matrix made out of the T’;, which are the
directional temperatures:

J Jf (i —v;,,)Wj — v, )dvde

(29) Tyt === N
JJ fdvde

Ve

=1,2,3
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and « is the volume fraction of gas in the spray:

(30) 1—alt) = J J ft,v,e) %mﬂ?’dvde.

v e

Those coefficients are chosen in such a way that the main properties of the kernel
@) (conservation of mass, momentum, total energy) are satisfied, and that some ty-
pical quantities (kinetic energy, directional temperatures, variance of the internal
energy) have a behavior which is as close as possible to the original kernel Q.

Their choice can be made in an almost completely rational way when one wishes to
mimic a kernel with a cross section of Maxwell molecules type (that is, when one
chooses S as a constant function instead of (8)). Unfortunately, in the (much more
realistic) case of hard spheres (that is, when S is given by (8)), this choice is made
after some approximations which are not always valid, and other choices of coeffi-
cients are possible (we shall discuss this point in Subsection 2.3).

This paper is built as follows: first, in Section 2, we consider a solution f of the
Boltzmann equation d; f = Q(f, f), and we compute the value of various moments (like
T (29)). This computation is exact (except for the variance of internal energy) when
hard spheres are replaced by Maxwell molecules, but can only be an approximation in
the realistic case of hard spheres. The difficulties related to the treatment of hard
spheres [that is, the link between Sy, Sg, Sg and S] are discussed in Subsection 2.3.

Then, the same computation is repeated in Section 3 for the simplified model (16)
— (19), with arbitrary coefficients ¢y, ..., cq, v. This enables the identification of the
coefficients (formulas (21) to (25)).

Section 4 is devoted to the numerical simulations and comparisons between the
simplified and original model. In Subsection 4.1 is presented the numerical (particle
Monte Carlo) scheme used to solve (16) — (19). Then, comparisons when S is constant
(case of Maxwell molecules) are shown in Subsection 4.2, while the case of hard
spheres is treated in Subsection 4.3. Finally, we provide in Subsection 4.4 some
results when o and y depend on |v — v*|.

2 - Evolution of some moments of the solution of Boltzmann equation

We consider in this section a solution f of the spatially homogeneous Boltzmann
equation

(31) of = Q.1
where @ is the kernel defined in (1) — (7) [or (10) — (15)].
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We want to track the following moments in order to build our simplified model:

e The directional temperatures T’; defined by (29),
e The variance of the internal energy

J Jf (e — €av)’dude

(32) g(t) =22 J devde

Ve

2.1 - Computation of some moments of the collision kernel in the case of Maxwell molecules

In next proposition, we denote by

(33) M, = ”m f dvde

the total mass of the spray (where m is the mass of a droplet).

Proposition 2.1. We consider @ defined in (1) — (7), in the case when
S(lv —v*|) := S is a constant function of the relative velocity (case of Maxwell
molecules). The following identities hold (provided that f is a smooth enough
nonnegative function of v)

o Fori,j=1231#}

381 3
(34) “Q(f,fm(w =03, ) — v, )dode = == [ -2+ 7 (£ -1) | - a)MoTy,
e Fori=1,23,

JJQ(f,f)m(vi v, Pdvde = ? [ - g +£ (Z - 1)} (1 — )MT;;

2
(35) v
38

+ 87(1 + 121 — )M, T,

(36) ”Q(f,f)m(e = endvde =

38
— %a(Z —a)1 —a)Myg
+ 7 % ”J Jﬁ”*m(e +e' —2ep)|v — 0" \zdvdedv*de*

vevie*

+ mr* %Hjjﬁ”mw —v*|*dvdedv* de*.

vevte*
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Eq. (36) can be simplified if f is a tensor product (as a function of v and e) in the

Sollowing way:
37)

3S
— ﬁa(Z —a)1 —a)Myg

(1=

+ nr 13

vevie*

Il

”Q(f,f)m(e — eundvde —

mfv — v*[*dvdedv*de’ .

It can even be further simplified when moreover [ is an (isotropic) Gaussian

Sfunction of v:

(38) |

fw,e) = (

In that case, we end up with

J

v

d
f(w,e) w) (2n

(39) JQ(f,f)m(e = enndude —

3S
— ga(Z —a)1 — )Mog +

Proofof Proposition 2.1. Weuse fo
Remembering that

,U/_erv* 173/

1
Ty P (-

|7) - vavr|2
2T

).

158

2 2
W(l — 22 — )M, T?.

rmula (7) for y = m(v; — v;, )W — v;,,.).

1+

4 _ K —- 7 _ *
(40) 5+ @)+ v,
we see that for ¢ # j,

Vi +v; 1-— R .

W'Zm( . I imJFTy(Ui—Ui)Jr 1 Tlo—v |0'i>

(41)

v + v} 1- o 1+ .

x ( ! 5 J —vjm+Ty(vj—vj)+ 1 y|v—v |o*j).
Using the symmetry relations
(42) Vi # J, J o;do =0, J gigjdo = 0,
oes? oes?
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we end up with

(43) i J w'do =
ses?
() () (5 )

(T )+ () 0 e )
and
(44) i J (l//’—t//)dazm[I—g—?g 12](% Viavr)Wj — Vj,,,)

oes?
bt 2 T~ v — 03,

+ AL(U,U*)(vi - /Uiav;-)(/v‘;( - /Ujavr)
+ Bi(vﬂ)*)(vj - /vjzwr)(vj{ - via\w)?

for some quantities A | ,,+) and B ¢+ that will disappear when the integration over

dvdv* is performed.
Using the weak formulation (7),

45) |[@urpmes — o, )0, - v, dude
= 4nS [; % + g] ”J J JFm; — v, )@; — v, WPdvdedv*de’
= 478 {; % g] (” Sm; — v, Jw; — vy, )dvde ) ( ” frridvtde’ )
TyMo -2
3S 3 y.y
— [? + Z(E - 1)} 1- OC)MOsz-

We obtain therefore formula (34).

We now turn to the case when ¢ = j, and take consequently y = m(v; — v;,, )?.The
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computation runs thus:

1 ’ _ i 2 =7 3y VZ
(46) i | @ o =mio o[- ]
ses?
1 7 1+ 7y 1
T 2| Z R 14 _ *2_
+ m(v; — vj,,) [16+8+16] +m— v — v 3

+ C 1w — 03, )W —v;i,),

where the last term will vanish after integration over dvdv*. Then,

2
(47) “J Jﬁ*m @ 1+6V) v —v*? 43—n1"25'(|1) — v*|) dvdedv* de*

vevte*

ES ,
=5, L+ "ML~ )T

Recalling the computation leading to formula (34), we end up with formula (35).

281

Next computation is related to the moment g defined in (32). We observe that

2

(48) & @ - 2 - 1o
_ |2
:7(1(22 a)(e—e*)er(lfyz)'v 81; | (€ +¢)
1 2 a1 2 2 1 Y
—l—@(l—yz) |v — v +@(1—y2) v — v EJ(<G|D_U > ) do,
so that
(49) J = ”Q(f fymle — ea)’dude
2
- %m“ﬁ*m[—“@; Ve—ep+a-»" et
vevte' g A 4
1 1
+@(1 — 2P — v*|4 +@(1 — P — v*|2(<a |v—v">)
c D
2
—eanr(1 — 1) o =] 2 S(jv — v*|) dvdedv*de*do.

4

E
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Some of the terms appearing in this formula can be computed:
e For A:

(50) ”” J fFmArS(jv — v )dvdedv*de*do = — ?a@ —a)1 — x)Mog.

e We deal with the terms B and E together, since they both lead to the ap-
pearance of a “cross moment”.

(51) “JJ Jﬁ”*m(B + E)VZS(W —v*|) dvdedv*de*do

= nrzs%J” J ffrmie + €' — 2eq)|v — v* P dvdedv*de”.

In the case when the distribution w.r.t. energy is independent of the distribution
w.r.t. velocity (i.e. when f is a tensor product), we see that

(52) J” J J FmB + E23(v — v*|) dvdedv*de*do = 0.

vevtet o

e We now focus on the terms C and D. After integration w.r.t. g, we obtain

(53) Jo 1= ”JJ Jﬁ”"m((] + D)W'ZS’(M) — v*|) dvdedv*de” do
_2)2
_a = Y 28mm ”” v — [ dvdedv*de”.

vevter

Then, if f is an (isotropic) gaussian function of v (that is, (38) holds), one gets

(54) ”J Jﬁ”*h} - \4 dvdv*dede* = 60T? (Jdevde) 2.

vevte* ve

All in all, we end up with (36), (37) and (39). |

2.2 - Evolution of the moments of the Boltzmann equation in the case of Maxwell molecules
We now consider a (smooth) solution of eq. (31).

Using (34) and (35), we get an equation satisfied by the directional temperature
Ty, fori,j =1,2,3,1 # j:

(55) %Tij(t) - ? [%3 + (% - 1)} (1 — 0)Ty(t),

>~ =
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and by the directional temperature T';, fort =1, ...,3:
d, o~ 3571=3 y/(v ) 3S 9
(6) S Ta=""[F+ 1 (1= 1)]a-0Ta®+ 5 A+ -0 Ta).

Note that the evolution of the temperature 7T'(f) can be recovered by adding (56)
for:=1,2,3:
(57) a

88,
5 T =2 6 = DA - ) 7).

It is not possible to obtain a closed equation for g without using some approx-
imation. We shall use formula (89), which in principle only holds for functions which
are tensor products, and which moreover are Gaussian functions of v.

We end up with the following approximate equation:

d o 38 o \q_ 15 o o 2
(58) %g(th 2Ta(2 a)(1 “)g(t”w(l 7P — 0)ST?.

The quality of the approximation leading to (58) will be tested at the numerical level
in Subsection 4.2 (Fig. 6).

2.3 - Evolution of the moments of the Boltzmann equation in the case of hard spheres

Inthe case of hard spheres (that is, when S satisfies (8)), no closed equations can be
written down for the directional temperature T;;. We use therefore approximate
equations.

Our choice is the following: we write

d 38,(t) -3 . o
(59) =Ty(d)~ 201 [§+§(% _ 1)}(1 — Ty,  ij=1,23,i#],

d, . 3850713 77y ) 3510 2
(60) Tl ~ =2 | 242 (5= 1) |1 = 0Tl + ==+ 7 = )T0),

1=1,2,3,

that is, a set of equations identical to those which are written in the case of Maxwell
molecules, except that the constant S is replaced by a function S;(f) of the time ¢,
which approximates |v — v*| at time ¢.

Many different choices are possible for Sy, our proposition is formula (26). This
corresponds to taking for f an anisotropic gaussian function of v, that is, in a
diagonal basis for the matrix of directional temperatures (where v = (1, V2, v3)
and Vayr = (V1,5 V2,05 U3,,)):
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B 2 Ty 7 2 Do 2
]. — @ ﬂjlavr) _ [ _ (303, )

(61) f: <dew> ———¢ Ty g Ty g Ty
b @n)® 2\/ T11To2Tss

in the formula

1/2
Jjﬁ’*\v — v*[*dvdv*dede”

o
JJ

1 [v — v* Pdvdv* dede*

vte*

considered as an approximation of

J” J 1o — v Pdvdv* dede®
(63) veve .
J” J 1o — v* Pdvdv* dede®

vev*

We now discuss the relevance of our approximation: we compare the results
obtained with the original Boltzmann equation (with hard spheres) and dif-
ferent approximate models of the cross section with the simplified BGK type
model. We try three differents approximations of the cross section, the first
one consists in computing |v — v*| as a quadratic mean, that is:

”J Jﬁ”‘ v — v* Pdvdedv* de*
(64) |/U—/U*| ~ vever

”J Jﬁ”*dvdedv*de* 7

veve*

which amounts to replace |v — v*| by v/67'(t). The second choice consists in replacing
the anisotropic gaussian function by an isotropic one. This leads to the formula

1
v —v*| = 35\/6T(t). The last one corresponds to formula (26).

The numerical results are presented in Fiig. 1 and show that formula (64) is much
less efficient than the other ones. The gain obtained by using an anisotropic gaussian
function instead of an isotropic one is slight (and does not necessarily justify the use
of a complex formula like (26)).
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Evolution of Ty (t) and T33(t) with different approximations of cross section

x10”
14 T T T o T11 Our simplified model (SM) $1(t)=+6T
o T33Qur simplified model (SM) S1(t)=/6T
== T11 5M with Sq(t) given by (26)
127 = =T33 SMwith Sy(t) given by (26)
< T115Mmodel with S1(t)=y15/9+/6T
< T335Mmodel with S1(t)=y/15/ 96T
10F i :
= ——— T11 Original Boltzmann equation
E < ——— T33 Original Boltzmann equation
"_,": 8r %o, o 7
og o0,
og vog
&F S0 Pog -
n Bag
al “M“mm“mmu <o |
2 . . ) ; ; : .
0 1 2 3 5 6 7 8
t -8

x10

(a) Evolution of T}, (¢) and T33(¢). The upper curve corresponds to T33(¢). The simulation
is performed on the typical time of equilibrium of directional temperatures (which is
much shorter than the time of decay due to the inelastic behavior). The approximation
with the anisotropic Gaussian (26) fits best with the evolution of the solution of the
Boltzmann equation.

Evolution of T(t) with different approximations of cross section

©  Our simplified model(SM), with 5(t) given by (26)

% — = SM model with 5,(t)=\/67"
75 % % SM model with S1(t)=15/ 96T g
% Criginal Botlzmann equation

Iog1 oﬂ'{th

45 . : : . :
0 02 04 06 08 1 12
' x10~*
(b) Evolution of the temperature T'(¢) in the same conditions, but on a longer time scale.
We see that on this time scale, the isotropic approximation % 67 works as well as

formula (26).

Fig. 1. Initial datum corresponding to T33 = 4 T1;. Hard spheres. The inelasticity para-
meter is y = 0.6, different approximations of the cross section are performed.
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We now propose an approximate equation for the variance g of the internal en-
ergy. We write

d . 3 15 b )
(65) %g(t) ~ *%a(Z —a)1 — 0)Sx(®) g(®) + @(1 =)A= )83 T7,

that is, an equation identical to the one written in the case of Maxwell molecules,
except that the constant S is replaced by functions Sa(t) and S3(?) of the time ¢, which
approximate [v — v*| at time ¢.

Here, we propose the simplest formula for Sg, that is, we consider (27), which
corresponds to taking Sy as the quantity

“J Jﬁ’*\v — v*|dvdv*dede”

(66) |1)—’I)*| %vev*e*

”Jjﬁc*dvdv*dede* 7

vevte*

when f is an (isotropic) Gaussian function of v (that is, formula (38) holds).

We now discuss the quality of this approximation. We compare in Fig. 2 the re-
sults obtained with the original Boltzmann equation and the results with our sim-
plified kinetic model with two different approximations for Sy(t) : the one given by
(27), and the other using |v — v*| ~ V6T (thatis, (64)). We use a numerical simulation
of the elastic case (y = 1) since in that case, the positive term in (65) disappears, so
that only the approximation involving Sa(t) counts.

Fig. 2 shows that the approximation using (27) is much more efficient than the one
using (64).

Evolution of g(t) with different approximations of cross section, y=1,a=0.5

x10'"

% Oursimplified model with S3(t)=44/T /
8 - = SMwithSaltl=J6T
= Original Boltzmann equation

Fig. 2. Evolution of ¢(t) with y = 1, a = 0.5. Hard Spheres. The formula (27) fits best with
the original Boltzmann model.
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1/2
We take for S3 the formula Sg = 3?5_
the value of the following ratio: &

. This corresponds to computing S3(¢) as

”J Jff*|v — v* Pdvdv* dede*
(67)

Sg(t) ~ vevte*

”J Jff*|v — v*|*dvdv* dede* ,

vevie*

32T1/2
when f is given by (38). The formula S5 =

————is a consequence of
byr d

% %15 * * 384T5/2 JJ ?
(68) ”JJ fmlv —v*|°dvdv*dede” = NG m fdvde | ,
vevte* ve
and (54) [with f given by (38)].
This yields for J2 in eq. (53) (replacing S3(t) by its value) the following formula
12
(69) Jo= (- PP — )My T2,
and so,
@) Ly e o - S0 + -2 - PP - T
dt 27 2 T '
w10"" Evolution of g(t} with different approximations of cross section
1.4 T :
1.3 Al

O000000000000000O0

—— Original Boltzmann equation
0o ~ = OurSimplified model with S3=324T / (5J/7)
: O SMwith S3=y6T
0.8 : .
0 0.5 1

Fig. 3. Evolution of g(t) with a = 0, y = 0.6. Hard Spheres. In that case (a = 0), only the
growing part of ¢(t) is represented (65). We tested our simplified model versus the original
Boltzmann one with two different approximations of the cross section. The formula (28) fits
the best with the original Boltzmann model.
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The interest of using formula (28) instead of V6T (thatis, (64)) can be seen on the
numerical simulation yielding Fig. 3. There, we have set the internal energy ex-
change parameter at 0, so that the negative part of (70) vanishes, and only the quality
of the approximation of Ss is tested.

3 - Establishment of the simplified model

3.1 - Evolution of the moments of the simplified model with arbitrary coefficients

We introduce here the simplified model [which hopefully mimics the behavior of
(10) — (11)], with arbitrary coefficients cy, ..., cq,v :

(71) 8tf + vv : (le(’l) - 7)awr)) + ae(CZf + 63(6 - eavr)f + C4|’l) - vavr|4aef)
= —v(f —fo)
where Vuyy, €ayvr, and fy are defined by (17), (18) and (19).

It is possible to compute explicitly the evolution of some moments of the solution
of eq. (71). Those computations are summarized in the following

Proposition 3.1. Weassumethatcy,...,cq,v > 0do not depend on v, e (they
can depend on T and t). Then the (smooth) solutions of eq. (71) satisfy the following
properties:

e Conservation of mass and momentum:
(72) atJJfG))dvdeO,
Ve

e Evolution of the total energy:

2
(73) 8tJJmf ('% + e> dvde = [3¢c1T + c2] M,

v e
e Ewvolution of the directional temperatures:

(74) Vi, j=1,2,3,1#7, 0Ty = 2cy —v) Ty,

(75) Vi=1,2,3, Ty = @ey — )Ty +vT,
o Evolution of the variance of the internal energy:

2¢s

(76) g = 2c39 — M,

J me|v — Vaye|*dude.

v e
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Proof of Proposition 3.1. (72)is directly obtained due to the definition of v,,.
We then compute the evolution of the kinetic energy. The terms in 9, obviously do
not contribute to its evolution. Moreover,

2
Ve
; 2
l‘*ﬂavrz
(78) Je*%m%dv = g m @r)*2 152 + % 1 @rTY e 2,
v
and thus: ,
v 3 1
(79) ” foltw, e)m%dvde = Mo[ST + S an?
2
= ijm%dvde =K.

v e

The evolution of the internal energy can easily be computed since the only term
giving a non-zero contribution is d,(cof). We get

(80) J Jme@e(@f)dedv = —ca M.

v e

Collecting all those terms, we end up with eq. (73).

Next, we examine the evolution of directional temperatures for solutions of (71).
As in the computation of the evolution of the total energy, the terms in 9, obviously
give no contributions at this level.

For the contributions related to ¢; f(v — vay:), We get the following formulas:

Fork #1,

(81) ijv - (e1f W = vaw))mvp — Vi, )0 — vy, )dvde
[0 = 02,00, (1 = o 0 01, ) v
me(’vi — v, ) [0 — vi,,,) + Sii (U — vp,,,) | dude

——
':123v

= -2¢1 JJ fm(u, — vy, ) — v, dvde

~

= —2c1:MoThu@®);
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Fork =1,

(82) ”vv (1 f @ — Vaye)) MUy, — Vg, P dvde = —2c1Mo Tiy(2).

Finally, for the contribution related to —v(f — f;), we get when k # [
(83) J J —v(f —f()) m(vk — ’Ukm)(?)l — Q)law) dvde = —VM()Tkl(t),
and when k = |,

(84) “ —w(f — fo) m(vy — vy, )Pdvde = —vMo Ty () + vMoT(®).

v e

Collecting all the terms, we obtain eq. (74) and eq. (75).

We finally examine the contributions of the various terms on the evolution of g.
Obviously, the terms in V,, do not contribute to the evolution of g, and the same holds
for d,(co f).

Then,

(85)

R

J@(cg(e — oan)f)mle — ean)Pdvde = —2esMog(D),

(86) JJ86(04|1) — Vaur|*Be ) mile — ean)dvde = 2¢4 J J fm|v — vagr|*dvde,

and
(87) —VHfM(e — ea)’dvde = —vMog(t),
(88) v J J fom(e — ea)2dvde = vMog(t).

Finally, the evolution of g is given by eq. (76).
This ends the proof of Prop. 3.1. O

3.2 - Computation of the coefficients; case of Maxwell molecules

We now write down the constraints on the parameters which enable to identify
the behavior of the moments (total energy, g and T';) for the simplified model and for
the original model, in the case of Maxwell molecules (that is, when S(jv — v*|) = S).
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In order to recover the conservation of total energy which held in the original

model, one needs to ensure (according to (73)) that

(89) co = —3c1T.

In order to mimic the behavior of the directional temperatures when f satisfies
the original model, we write the following constraints (corresponding to the cases

1 # 7 and 1 = j respectively):
3 y y
8 Z(__l)}(l_a)’

1+ - ).

(90) 261 — V=

e
(91) V= S—S

Finally, we wish to mimic the behavior of g. This first leads to
(92) c3 = féa(z —a)1 - a)S
5T T 4y xS

It remains to perform the computation of [ [ fin|v — vau |*dvde. This is not possible in

general, and we retain as an approximatevreesult what is obtained when f is assumed
to be an (isotropic) Gaussian w.r.t. v (that is, f is given by formula (38)). In this si-
tuation, one is led to

(93) ” fim|v — vag|*dvde = 15MoT?.

ve

Then, the identification with the (approximate) o.d.e. (58) satisfied by ¢g(¢) when f is
solution of the Boltzmann equation with Maxwell molecules leads to:

1
(94) tr=—g55-(1- PP — w)S.

Collecting all those identities, we get the equations (21) — (25) for the parameters
of the model described in the introduction (with S1(t) = S2(t) = S3(t) = S).

3.3 - Computation of the coefficients; case of hard spheres

In this subsection, we write down the constraints on the parameters which
enable to identify the behavior of the moments (total energy, g and T};) for the
simplified model and for the original model, in the case of hard spheres (that is,
S(jv —v*|) = [v — v*]).
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The conservation of total energy still leads to eq. (89). Then, it is easy to see that
(90) — (92), (94) become

e
(96) v = 38—‘?0 +9P (1 — ),

97) ¢ = f%a@ —a)(1 — 0)Sy,

(98) s = g (1 PP~ S5,

where Sy, Se and S3 are given by (26), (27) and (28). In the last equation, the same
assumptions on | [ fin|v — vavr|4dvde have been performed as in the case of Maxwell

molecules. We ezlcel up again with the equations (21) — (25) for the parameters of the
model described in the introduction.

We have thus obtained our simplified model in the case of Maxwell molecules as
well as in the case of hard spheres.

3.4 - Extension of the model when a,y depend on |v — v*|

We now briefly explain how to extend our analysis when the kernel @ (with hard
spheres cross section) defined in (10) — (15) includes inelasticity and energy ex-
change parameters ¢ and y which depend on |v — v*| instead of being absolute con-
stants, that is, a := a(jv — v*|), y := (Jv — v*|) (Cf. [15] and [8]).

Our proposition consists in introducing the simplified model (16) — (30), where a
and y (appearing in formulas (21) — (25)) are replaced by a(v/6T) and 77(\/@) re-
spectively [that is, |v — v*| is replaced by its mean quadratic value, as in formula (64)].

4 - Numerical simulations
4.1 - Numerical method

In order to solve (16) — (30), we use a particle method ([13]) (with constant weight
w): the density f is discretized as

N
fudt, v, e) ~ Z w 5v1-(nAt).ei(nAt)a
i=1

where Jy,4.41).¢;mat) 1 the Dirac mass at velocity v;(n4t) and internal energy e;(nAt)
and N is the number of particles. The “Vlasov-Fokker-Planck” part of eq.(16) [that is,
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the Lh.s. of the equation] is solved by discretizing (at the first order) the char-
acteristic o.d.e.s for v; and e;. Moreover, a realization of the Brownian motion is used
for the term proportional to 6% f. The exact conservation of the momentum and total
energy is enforced at the end of this procedure. The “BGK” part of eq. (16) [that is,
the r.h.s. of the equation] is treated by modifying the velocities of a randomly chosen
set of particles (Monte-Carlo method). Once again, the conservation of momentum
and kinetic energy (which implies total energy too since the internal energy remains
unchanged in that step) is enforced at the end of the time step.

Note also that the numerical results obtained with this discretization of eq. (16) —
(30) are compared with simulations of the original equation (31) obtained by a DSMC
scheme (the code is a modified version of the code used in [3, 8]).

4.2 - Numerical experiments; Maxwell molecules

This subsection is dedicated to the study of the behavior of solutions of eq. (16) —
(30) in the case of Maxwell molecules. Since the evolution of some moments of the
original eq. (31) is explicitly known for this cross section (in particular the evolution
of T};), it is possible to make comparisons with this explicit formula. When no such

x10° Evolution of T12{t),y=03
35 T T T T
* »  Exactsolution of Ty5(t)
* =+ = Qur simplified model
. o ©  Original Boltzmann equation
X

25

T)5i0

— -

‘e

T, gemact
(=]

Original Boltzmann equation
= - = Qur simplified model

o 05 1 15 2 25 3 35 4
t q

(T, ;modelT, jexact)

Fig. 4. Evolution of Ti5(¢) with y = 0.3. Maxwell molecules. In that case, (55) has an exact
solution which allows to observe the discrepancies between the two models and the exact
solution.
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Evolution of Ty (t) and To5(t), y=0.6
8 T
3 '-.
N 3 Y
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\’m
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g B
3 T,,)0riginal Boltzmann equationiezs) @
B T,,0t) Our Simplified model (SM)
2t T,,1t) Exact solution
x Tuit] BE
TH @ T,Musm
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a
= 0.04
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"= |§ o02f
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=
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tis)

Fig. 5. Evolution of T1,(t), T12(t) with y = 0.6. Maxwell molecules. In that case (56) has an
exact solution. We observe on the top the transient part : first a trend to equilibrium of the
temperature between the different directions, and then a decay of the T;;. At the bottom, the
discrepancies between the two models and the exact solution are computed for 77, and Tbs.

explicit formula exists, we use instead a comparison with solutions of eq. (31) ob-
tained numerically.

We start with the study of the evolution of the directional temperatures 7'; for an
anisotropic initial distribution. We provide Fig. 4 for T';> when y = 0.3. We compare in
this figure the values of T2 obtained by the discretization of the original Boltzmann
eq. (31) and those obtained by the discretization of our simplified eq. (16) — (30). The
same is performed in Fig. 5 for 771, Te when y = 0.6. The trend to equilibrium of
directional temperatures can be observed during a short transient phase.

As expected, the curves are extremely close, since the T; satisfy in both models
the same o.d.e. [the coefficients in eq. (16) have been built for that purpose]. This test
in fact shows that the error of dicretization for eq. (16) as well as eq. (31) is negli-
geable. We have added on the figures the curve corresponding to the exact solution
of the o.d.e. satisfied by T2, T11, Tos.
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Fig. 6. Evolution of g(t) with different values of the two parameters a and y. Maxwell
molecules.

We then turn to the evolution of the parameter g. We provide figures (Cf. Fig. 6)
which show a comparison of the case when f is the (discretized) solution of the
Boltzmann equation (31) with the case when f is the (discretized) solution of the
simplified model (16). The different figures correspond to different choices of
parameters (of inelasticity) y and (of exchange of energy) a.

As can be seen on the figures, the curves for the two models are very close, except
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x10® Evolution of g, (t), a=0.5, y=0.6

== Original Boltzmann equation
9 + = = Qur simplified model

0 0.005 0.0 oms 0.02

J F®le—eanldvde

Fig. 7. Evolution of ¢,(t) = T Fodude

with a = 1, y = 0.6. Maxwell molecules.

in the special (and non-physical) case when a = 0 (that is, when internal energy is not
exchanged at all during the collisions). The fact that g behaves in the same way for
the two models is no surprise since the parameters of the simplified model are built
for that purpose. It was however not completely obvious that this behavior would be
so close (still except when a = 0), since g does not exactly satisfy any o.d.e. (as T}
did): remember that the computations leading to the parameters in the simplified
model were only approximations.

Next curves concern moments which have not been used for specifying the

e . |vs]
parameters of the simplified model (16), namely |e — e,y | (Cf. Fig. 7), and ————
(Cf. Fig. 8). VT(@)+ o1

Evolution of ga(t), v =0.3
0.05 i

Criginal Botzmann equation

0.045 |+ == Qursimplified model

qzit)

0.015

0.005

0.04 0.06 0.08 0.1 012
t

Fig. 8. Evolution of ¢:(t) = [ [ f(t)%dvde with y = 0.3. Maxwell molecules.
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As could be guessed, the curve coming out of eq. (31) and those coming out of the
simplified model (16) do not fit as well as the curves for T; or even g. The gap between
them however remains reasonable.

<07 Evolution clTum. =03

35

== Our simplified model
Original Boltzmann equation

x10

Fig. 9. Evolution of T15(t) with y = 0.3. Hard spheres.

Evolution of Ty;(t) and Ta,(t),y=0.6
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Fig. 10. Evolution of Ti1(t), The(t) with y = 0.6. Hard Spheres. On the top right is shown
the trend to equilibrium of the different directional temperatures. The decays of the T;;(¢) are
also in fair agreement.
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(28]

4.3 - Numerical experiments; hard spheres

We provide in this subsection computations for the same quantities as in the
previous subsection, but in the case when the cross section is that of hard spheres
(which is much more physically relevant). In this situation, even quantities like 7';
are not exactly solutions of an o.d.e., so that it is only possible to compare the nu-

merical experiments for the two models.

As in the previous subsection, we start with the evolution of the directional
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Evolution of ¢(¢) with different values of the parameters a and y. Hard spheres.
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temperatures T;, for an anisotropic initial distribution. The fit between the curves
for models (31) and (16) is of course not as perfect as in the case of Maxwell molecules,
but it still remains quite satisfactory (Cf. Fig. 9).

The same experiment is done for the directional temperature T;; when y = 0.6
(Fig. 10).

The same can be said of the evolution of g (Cf. Fiig. 11), notice that the case when
a = 0 still remains the worst.

We use a logarithmic scale in order to check that the slope of the decay of g (when
the time is large) is respected in the simplified model. This can be seen in Fig. 12 (we
consider the elastic case y = 1 so that an exponential behaviour is expected for g(t), as
can be guessed from (65)).

Evolution of git), a=0.5, y=1

=« = Dur simplified model
DOriginal

logslglth

0 0.2 0.4 0.6 0.8 1
t

(a) a=0.5,v=1.
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=« = Qur simplified model
Original q

logglglt

] 0.2 0.4 0.6 0.8 1
t

(BYya=1,4=1.

Fig. 12. Evolution of ¢(t). Hard spheres. Semilog scale.
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<10° Evolution of qi{t), y=0.6, a=1
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I 0eculdvie
Fig. 13. Evolution of ¢,(t) = W, a =1, y=0.6. Hard spheres.
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Fig. 14. Evolution of ¢3(t) = | f(t)ﬁdvde, y = 0.6. Hard spheres.

[30]

We conclude this subsection by presenting curves for the moments |e — ey, | (Cf.

|v1]

Fig. 13), and ———
& JT® + [v2]

(Cf. Fig. 14).

We observe (as expected) a slight degradation of the results w.r.t. the case of

Maxwell molecules.

4.4 - Numerical experiments; velocity-depending parameters

This subsection is devoted to the presentation of results when both y and a are

functions of |v — v*| in eq. (31), as described in Subsection 3.4.
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Fig. 15. Evolution of T35(¢). y depending on |v — v*|.

More precisely, we consider the following formulas for the parameters y and a
(Cf. [15] and [8]):

(99) - =esp (- 20,

~ 1 !
(100) v —v') =1 exp( r—v*l)’

We compare the results obtained on one hand by using the original Boltzmann
equation (with a := a(jv — v*|) and y := J(|v — v*|) given by (99), (100); and with hard
spheres), and on the other hand by using our simplified model with a := a(v/67),
y:= p(v/6T), as proposed in Subsection 3.4.



302 AUDE CHAMPMARTIN, LAURENT DESVILLETTES and JULIEN MATHIAUD [32]

We first compare the evolution of the directional temperatures T12(t), T11(t), Too(t),
in order to observe the trend to equilibrium of those temperatures (Fig. 15 and 16). We
take two different values for the parameter y; in 7.

On a longer time scale, we also present results in LogLog scale (Fig. 17) for the
evolution of the temperature 7' (that is, we check Haff’s law numerically).

We end up this series of simulation by one example of evolution of the variance of
internal energy g(t) (Fig. 18).

In our simulations, no sensible degradation was observed w.r.t. the case of hard
spheres (with given a, y).
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Fig. 16. Evolution of T}, (t), To2(¢). v depending on |v — v*|.
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Fig. 17. Evolution of T'(¢). y depending on |v — v*|. Log-log scale.

5 - Conclusion

We introduced in this paper a model of BGK type for the description of the effect
of collisions which are inelastic and in which the internal energy of the particles
(droplets) is tracked (and can be exchanged during collisions).

This model can be obtained almost entirely in a rational way when the collisions
occur with a cross section of Maxwell molecules type.

In the more realistic case of hard spheres (and even more when the inelasticity
and internal energy exchange parameters can depend on the relative velocity of
incoming droplets), approximations must be performed.

The quality of these approximations was tested at the numerical level.
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