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Lyapunov exponent of a rational map and multipliers

of repelling cycles

Abstract. We establish an approximation property for the Lyapunov exponent of
a rational map with respect to its maximal entropy measure. This result is usefull in
the study of bifurcation currents of holomorphic families of rational maps.
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The aim of this short note is to prove the following

Theorem 0.1. Let f : P! — P be a rational map of degree d > 2 and L the
Lyapunov exponent of f with respect to its maximal entropy measure. Then:

: d_n n\/
L= hqun — Z In|(f™Y (p)]

peR;,

where R, := {p € P'/ p has exact period n and |(f"Y (p)| > 1}.

This property is of special interest for investigating the structure of the bi-
furcation locus of an holomorphic family f; since it supports the current dd°L(f;)
(see [8], [1]). The papers [2], [3] exploit this approach. Although this result has been
proved by Szpiro and Tucker [11] (Corollary 6.1) for rational maps with coefficients
in a number field and in [4] (Corollary 1.6) for holomorphic endomorphisms of Pk, no
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simple proof was available so far in the one dimensional holomorphic setting. The
one we present simplifies that of [4]. It consists in reproving the equidistribution of
repelling cycles - a theorem due to Lyubich [9] - by carefully estimating the mul-
tipliers of the cycles which are exhibited. In dimension one, the approach of Briend
and Duval [6], which we shall follow step by step, offers a clear access to this esti-
mate. Recently, Okuyama [10] has shown how to deduce this result from Lyubich’s
theorem via a potential theoretic argument.

We now start to prove the theorem. For the simplicity of notations we consider
polynomials and therefore work on C with the euclidean metric. We shall denote
D(x,r) the open disc centered at x € C and radius > 0. From now on, f is a degree
d > 2 polynomial whose Julia set is denoted J and whose maximal entropy measure
is denoted u. We denote by Cf the set of critical points of f. As it follows from the
Margulis-Ruelle inequality, the Lyapunov exponent L := [ In|f’| du is strictly po-
sitive. We refer to [5] (Chapitre 8) for basic properties of u.

e The natural extension (J, f , it) and the contraction of inverse branches. The set
J = {&:= @pnez | Tn € J, f(xy) = ®y41} is the space of orbits, f is the shift defined
by (&) := (Xp+1)ner, and i is a f-invariant probability measure on J which is char-
acterized by the identity 7, (it) = uwherer : J — J is the canonical projection given by
(&) = x9. Let us observe that 7 o f = f o 7 and that the system J, f , i) is invertible.
Setting 7 := f ~1 one has 7 o (&) = x_y. It is important to stress that the measure
inherits from x the property of being mixing (see [7] Chapter 10 for this construction).

Let X := {t e J/ 2yt Cr; Yne Z}. As i is f-invariant and i does not give
mass to points, one sees that i(X) = 1. For every & € X and every p € Z, we
denote by f;, the injective map induced by f on some neighbourhood of x,. Its
inverse is defined on some neighbourhood of «, 1 and will be denoted fx;l. We then
define an “iterated inverse branch of f along & and of depth »” by settting

fir= le o---0 ij. The following lemma is crucial, in particular the estimate on
the Lipschitz’s constant Lip f " will allow to control the multipliers of the repel-

ling cycles produced in the last step.

Lemma 0.2. There exists & >0 and, for ¢€]0,8) two functions
7, X — 10,1]and S; : X — 11, + ool which are measurable and such that, for every
n € N and j-almost every & € X, the map f" is defined on D(xo,n,(%)) and
Lip ;" < Sy(&)e "9,

Proof. We need the following quantitative version of the inverse mapping
theorem (see [6] Lemme 2).
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Fact: Let p(x) .= |f'(x)| , r(x) := p(ac)z. There exists ¢ > 0 and, for ¢ € 10, &),
0<Ci(e), Cole) such that for every x € J:

1 - f s one-to-one on D(x, C1(e)p(x)),
2 - D(f(x), Ca(e)r(x)) C f(D(x, C1(e)p(x))),
3 - Lipf, ! < épl@) ! on D(f(x), Cale)r(x)).

We may assume that 0 <gy < % Let us first build a function o, : X — 10,1[ sa-
tisfying o ((%)) > e (&) and such that fach is defined on D(x_y, o,(7"(&))) for it
a.e. & € X and every k € Z.

Let us set f.(&) := Min (1, Ca(e)r(—1)). According to the two first assertions of
the Fact, f = f is defined on D(xy, 8,(Z)) and, similarly, f; 1 = f1 ) is defined
on D(x_y, ﬁg(rk(x))) It clearly suffices to shape a function o, such that 0<a,<p, and
o (T()) > e o, ().

As 1 admits continuous local potentials, the function In B, is f-integrable. Then,
by Birkhoff ergodic theorem, [Inf, i= lim — Z In f,(z*(%)) and, in parti-

X

n|—+o0c0 |N |

1 .
cular, | ‘lim W In f,(z"(&)) = 0 for ji-almost every & € X. In other words, for ji-a.e.
Nn|——+ oo

& € X there exists no(z,2) € N such that |n| > no(e, &) = p,(7"(@&)) > e~ ", Setting
then V,:= inf (B,(t"()el"*) we obtain a measurable function V, : X — 10,1]

1| <ng(e,&)
such that: B,(t*(%)) > e "#V,(#) for i — a.e. & € X and every n € Z. As one may
easily check, we may choose «,(&) := Inf {B.(T"(&))el"}.

Since f . o the third assertion of the Fact ylelds In Lip f;"

"Ln L 1’

<n § - Z Inp(x_j). Thus, by Birkhoff ergodic theorem, lim sup ln Lip f; ™"

<-L+ § for j-almost every & € X. Then, arguing as for V., one finds a mea-
surable function S, : X — [1,+oo[ such that: Lip i7" < Sy(@e "t for i — a.e.
g—j. Taking into account the
previous estimates, one checks by iEduction on n € N that f." is defined on
D(xp, n,(X)) for i — almost every & € X and every n € N (this uses the fact that

&€ X and every n € N. To end the proof we set 5, :=

O<eg< g and o, (z(X)) > e *o.(2)). O

e Radon-Nikodym derivatives. We aim here to reduce the problem to an esti-
mate on some Radon-Nikodym derivatives. Let 0 <¢g be given by Lemma 0.2.
For 0<e < g and n, N € N we set:
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v I A 1 - ~e ~ & ~e
Xy = {m eX /n@& > ~ and S,(%) < N}; Wy = lX;,u, vy = Ty
For 0<e < L and n,N € N we set:

R :={peC/f"(p)=pand |(f")(p) > e} oy i=d "y 5,
Ry

Ry,=R.={peC/f'®=pand |[(fYP)| >1}; u,:=uk=d"> 0,
R,

Lemma 0.3. If, for & € 10,&), any weak limit o of (1), satisfies % >1
, W
for some & >0 and every N €N then ), — u for every &€ 10,L] and

. da™" /
L =1lim S In|(f") (p))-
n n R}

Proof. Assume first that 0<e < ¢. By assumption ¢ > 1§, for every N € N,

letting N — +o0o0 one gets ¢ > u. This actually implies that ¢ = u since
n

a(J) <limsup i (J) < lim % =1= u(J). As this occurs for any weak limit of
o )

n
(1), we have shown that 4 — . Similarly, as 1, > u& for & < ¢, one sees that
u, — pfor gg < & < L as well.

Setting now ¢,,(p) ::% ln|(f”)’(p)| one has for M > 0

p DL - <d™ Y 9, <d™> 9,

R;7 Rn

— |01f1n, < | Maw il 1. -2,
J J

as we just saw that ¢, — pand p, = p — u, making n — + oo leads to

(L~ ) <lminfd™ Y ¢, (p) < limsupd ™" Y ¢, ()
R;,, Rn
< JMax(ln|f’|, ~M)u
J
to obtain limd ™" " ¢, (p) = L it suffices to make first M — + oo and then ¢ — 0.
Rﬂ

Since there are less than 2nd? periodic points whose period strictly divides 7,
one may replace R, by R} := {p e P!/ p has exact period # and |(f")(p)| >1}. O
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e The heart of the proof. We assume here that 0<e< 82—0. Let a EX;V and
a = n(a). For every » > 0 we denote by D, the closed disc centered at a of radius .
According to the Lemma 0.3, it suffices to show that any weak limit o of (1)
satisfies

n
(0.1) o(Dy) > vi,(Dy), YN € N, Y0<r' < %

1 ~
Let us pick v <r< N We set D, := 7n71(D,) and:

Co:={ € D, N XY [ f:" DN Dy £ 0.

Let also consider the collection S), of sets of the form f"(D,) where & runs in E‘n
As f" is an inverse branch on D, of the ramified cover f", one sees that the sets of
the collection S,, are mutually disjoint.

Let us see how (0.1) may be deduced from two further estimates. Using Brouwer
fixed point theorem and the estimate on Lip f" (Lemma 0.2) we will get

(0.2) d"(Card S,) < 124(D,) for n big enough
on the other hand, the constant Jacobian property f"*u = d"u will lead to
(0.3) d™"(Card 8,) u(D,) > ji(f (D, N X3) N D).
Combining (0.2) and (0.3) yields:
i(f DN XE) N D) < wDZ D)

which, by the mixing property of /i, implies

V(D)D) = ilDy N XiDIUDy) < u(Dy)o(D,)
since w(D,.) > 0, one gets (0.1) by making » — #’.

Let us now prove the estimate (0.2). We have to show that D, contains at least
(Card S,,) elements of R% when 7 is big enough. For every & € C, C X5, one has

(&) Z]l\f and S,(x) <N and thus the map f;" is defined on D, <r< l) and

N
Diam f, "(D,) < 2r Lip ;" < 2rS,(&)e "L < 2pNe ML),
As moreover f;"(D,) meets D,., there exists 7, which depends only on ¢,  and
7/, such that f-"(D,) C D, for every & € én and n > ng. Thus, by Brouwer theorem,
/5" has a fixed point p,, € f;"(D,) for every & € én and n > ng. Since the elements
of S, are mutually disjoint sets, we have produced (Card Sn) fixed points of /™ in D,
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for n > ny. It remains to check that these fixed points belong to R%. This follows
immediately from the estimates on Lip f;”. Indeed: |( ™ (w)] = I( fi—")’ (pn)|’1
> (Lip ]”50‘")_1 > N-lenl=9) > ¢nL=29 for y big enough.

Finally we prove the estimate (0.3). Let us first observe that

(0.4) n(f"D,nXy)NDy) ¢ | fDn)

#eC,

this can be easily seen : if % € f *”(Z),, ﬂ)?j‘v) ﬂf)w then uy = n(w) € Dy N f(D,)
where & := f"(it) € D, N X%,

By the constant Jacobian property we have ,u( f{”(DW.)) =d "u(D,) and, since
the sets f."(D,) of the collection S, are mutually disjoint, we obtain

(0.5) ﬂ( U fﬁ(D») = (Card S,,) d~"u(D,).

2eC,
Combining (0.4) with (0.5) yields (0.3):
(Card S,) d~"u(D,) > u[z(F"(D, N X) N Dy)]

= i[r Y or(f "D, NXY) NDy)] > i(f D, NX%) N Dy).
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