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Regular form perturbations

Abstract. We present abstract results about the space regularity of solutions to
elliptic and parabolic equations on LP-spaces which are associated to perturbed
sectorial forms a + 0. As applications of our results, we introduce deGiorgi-Nash
forms, which define quite general second order elliptic operators in divergence
form. We give a wide class of examples of perturbations of such forms, such that the
solutions of elliptic and parabolic equations associated to the perturbed operator are
continuous. Furthermore, we prove that given any open subset Q of RY and any
deGiorgi-Nash form a with principal coefficients in W, there exists a potential
V € Ly, such that the operator associated to a + V generates a strongly continuous
semigroup on Cy(Q).
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1 - Preliminaries
1.1 - Introduction and summary

Form methods provide excellent means to define realizations of second order
differential operators on L?-spaces and obtain generator properties of such opera-
tors. Using extrapolation techniques, it is also possible to extend the semigroup
associated to such operators to other LP-spaces, in particular to the space L.
However, often — in particular in connection with stochastic processes — one is in-
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terested in semigroups on spaces of continuous functions, such as C, or Cy. In par-
ticular, it is interesting to perturb such “regular forms”, i.e. forms where one has a
semigroup on a “regularity space” as C;, or Cy, and obtain a “regular form” again.

This problem is related to the Kato class, which was introduced by Aizenman and
Simon in [2] in connection with Schrodinger operators, i.e. perturbations of the
Laplacian by a potential V' € Llloc. There, the (local) Kato class is defined as the set of
all V € L}, satisfying a certain integrability condition (which itself goes back to Kato
[12]). It is then proved that V belongs to the local Kato class if and only if R(4, 4)Vyg is
a continuous function for any bounded and measurable g (see [2 Theorem 1.5]). Thus
the Kato class is related to the continuity of solutions to elliptic problems.

Later, Stollman and Voigt replaced the Laplacian by a general regular, symmetric
Dirichlet form and considered also measures instead of locally integrable functions as
perturbations, see [19, 21]. Consequences for the semigroups generated by such
perturbed operators were investigated in [17, 7] using a probabilistic approach. We
also mention the connection of the Kato class with Miyadera perturbation [20, 15].

In this paper, we will replace the space of continuous functions by some abstract
regularity space X. This allows for greater flexibility in the regularity looked for, e.g.
when working on some domain 2 C R, one can require regularity also on the
boundary by choosing X = C(Q). Also, we consider general sub-Markovian forms a,
dropping the requirement that a be symmetric. We then define the abstract Kato
class (associated with X and 1) as the set of all ¢ € D(a)’ such that R(J, A)g € X.
Here, A : D(a) — D(a) is the operator associated to the form a, see Section 1.2.

We note that we do not seek to describe the elements of the Kato class by some
integrability condition. We rather assume that already sufficiently many elements of
the abstract Kato class are known.

In Section 2.1, we introduce local versions of the spaces D(a) and D(a)’ and the
operator A. This is essential to define a local version of the Kato class in Section 2.2.
There, we will also prove several properties of the Kato class and the local Kato class
and in particular address the independence of the Kato class from the parameter A.
This does not always hold, see Section 3.1. Afterwards, we introduce Kato pertur-
bations, which are the appropriate generalization of potentials and measures be-
longing to the classical Kato class. However, even in the classical situation, there are
Kato perturbations which are not associated to a measure.

In Section 2.3, we consider the space X, of regular functions vanishing at infinity. As
belonging to X is in general not a local property, there is no local Kato class for X;. To
obtain semigroups on X, we present a theorem in the spirit of Lyapunov functions,
cf. [6 Theorem 4.3.2]. In order to prove the theorem, one needs a certain approximation
result, which is equivalent to some abstract sort of Dirichlet boundary condition.
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The last part of this paper is devoted to applications. We introduce deGiorgi-Nash
forms, for which many elements of the Kato class for X = C(Q) are known from the
deGiorgi-Nash Theorem. In Section 3.3, we prove that for any deGiorgi-Nash form
and any bounded @ ¢ RY, there exists a potential V € L;¢. such that the semigroup
associated to the perturbed form on L>*(Q2) leaves the space Cy(Q2) invariant.

1.2 - Notation and setting

Throughout this paper we will always work on the Hilbert space L?(M,dm),
where M is alocally compact topological space which is countable at infinity and »2 is
a positive Radon measure on M. We will often write L? for LP(M,dm), || - ||, for the
canonical normin L” and (-, -), , for the canonical duality between L and L, where
q is the conjugate index to p. For p = 2 we just write || - || for the canonical L?-norm
and (-, -) for the scalar product in L2. On L?, we will consider densely defined sec-
torial forms. We briefly recall some notions and facts about sectorial forms. For more
details we refer to [11, 14].

A densely defined sesquilinear form on L? is amapping a : D(a) x D(a) — C which
is linear in the first component and antilinear in the second; D(a) is a dense subspace of
L? and is called the domain of a. The form a is called sectorial, if its numerical range
O(a) := {alu,u] : w € D(a), ||u|| = 1} is contained in some right open sector

Z0={2€C\{y} : |argle —»)| < 6}

for some y € R and 6 € [O,g). In this case, (f,9). := A +»(f,9) + Real f,g] de-

fines a scalar product on D(a). To simplify notation, we shall assume that y = 0.
The norm induced by (-, - ), will be denoted by || - ||,. Throughout this paper D(a)

will be endowed with this norm. If (D(a), || - ||,) is complete, the form a is called closed.
We call the form a local, if

(i) We have alu,v] = 0, whenever u and v have disjoint support.
(ii) For every open subset w of M, the space

D(a,w):={u e D) : u=0 a.e. onM \ w}

is dense in L?(w, dm).

We recall that the support supp f of a measurable function f is defined as G°,
where G is the union of all open sets w such that f = 0 a.e. on w.

We also consider the space D(a) of bounded, antilinear functionals on
(D(a), | - ||)- However, we do not identify this space with (D(a), || - ||,) but we use
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L? as a pivot space: D(a) — L? — D(a). That is, we identify f € L? with the
bounded antilinear functional ¢, : D(a) 5 g — (f,g). We denote the duality pairing
between D(a) and D(a) by (-, -).

Given a densely defined, closed, sectorial form a, we may associate an operator A
on D(a)’ with the form a by defining

D(A) := D(a), —(Au,v) := alu,v] .

Itis well known (cf. [14, Theorems 1.55 and 1.52]), that A defined in this way generates
a holomorphie, strongly continuous semigroup (7 (t));>o on D(a). Furthermore, 7
leaves L? invariant and the restricted semigroup 7'(t) := 7 ()72 is also holomorphic
and strongly continuous. The generator Ay of 7' is the part of A in L2

A sub-Markovian form is a densely defined, closed, sectorial form a on L2, such that
the associated semigroup 7 is real, positive and L*°-contractive. The Beurling-Deny
Criteria (cf. [14, Section 2.2]) give a useful characterization of sub-Markovian forms.

If a is a sub-Markovian form with associated semigroup 7' on L?, then, using the
L>®-contractivity of T, it is easy to see that | T®)*f]; < || f||; for all f € L? N L* and
t > 0. Hence 7'(t)* may be extended to a contraction operator S(¢) on L. Denoting the
adjoint of S(t) by T (t), we obtain a semigroup on L satisfying T',.(t)f = T(®)f for
allf € L>NL*® and t > 0.

It is proved in [14, p. 56 ff.] that we obtain a consistent family (T)s<,<s of
semigroups on L?, i.e. for f € LP N LY we have T,(t)f = T,(®)f for all ¢ > 0. Here,
Ty := T. Furthermore, T, is strongly continuous for 2 < p <oo and T is an adjoint
semigroup. In particular, 7. is a(L>, L')-continuous.

In what follows, we will denote by A, the generator of 7,. This is the strong
generator for 2 < p <oo and the weak*-generator for p = co. It is known that the
holomorphy of T is inherited by the semigroups 7', for 2 < p <oo. For a proof of
these facts and other properties of consistent families of semigroups we refer to
[3, Chapter 7.2].

Since M is locally compact and countable at infinity, there exists a sequence
(n)n>0 of open sets such that w, cw,1 €M for any n > 0 (where A € B means Alis
compact and contained in B) and | J w, = M. We fix — once and for all — such a se-

quence. It is easy to see that D(aq, Z)n) as defined above is a closed subspace of D(a).
Thus, if ais local, then (a,,, D(a, w,)) defined by a,,[u, v] := alu, v]for u,v € D(a, w,),
is a densely defined, closed, sectorial form on L%(w,). We will denote by
Ay : D(a, w,) — D(a,w,) the associated operator. Using the Beurling-Deny cri-
teria, we see that a,, is a sub-Markovian form if a is. It is also possible to consider a,
as a non-densely defined form on L?(M). For this we refer to [14, Chapter 2.6].
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2 - Abstract results

2.1 - Local forms

In this section we are given a local, sub-Markovian form a on L?(M,dm). We
introduce local versions of the spaces D(a) and D(a)' and extend the operator A to an
operator A defined on a local version of D(a) taking values in a local version of D(a)'.
Then we investigate the connection between the semigroup generators A, and the
extended operator A.

As alocal version of D(a), we will use the space
D(Q)ye :={u € LEM) : Y >0 3u, € D) s. t. u =u, a.e. on o, }.

To define a local version of D(a)’, we use the spaces D(a,w,) introduced in the
previous section and then proceed similar to the definition of distributions. By D(a),
we denote the vector space of all elements of D(a) having compact support in M. It is
obviously D(a), = |J D(a, @,). Now we put

D((:t){OC :={¢ : D(a), — C antilinear : Vn >0 3 C, such that
‘(ﬂ(u)| <Cy- HuHa Yu € D(a, w,) } .

We note that if ¢ € D(a)],, then ¢ € D(a, w,)’ for every n € N. Even more is true. If
we endow D(a). with the inductive limit topology induced by the sequence
(D(a, wy))yen, then D(a){OC is exactly the dual space of D(a).. However, we will not
need this fact.

The reader should keep in mind that D(a){OC is a local version of D(a)’ and not the
dual of D(a);,. — hence one should think of [D(a)'];,. rather than [D(a).].

Now we extend the operator A to an operator A defined on D(a),. and taking
values in D(a),..

Lemma2.1. Letabealocal form on L2(M). Then the operator A has a unique
extension to an operator A from D(a). to D(a),, satisfying the following condition:
If u € D(a),. and u, € D(a) satisfies u = u,, a.e. on w, for some n € N, then

(1) <Au? v> = <A/M/7Z)/U> I
for all v € D(a) with supp v Cwy,.

Proof. Letu € D(a),,.. We have to give meaning to (/Iu, v) for allv € D(a).. So
let w €M and v € D(a, w) be given. There exists n > 0 such that w Cc w,,. Moreover,

since u € D(a),. there exists u,, € D(a) such that u = u,, a.e. on w,. Define Au by
equation (1). We only need to show that this is well defined. So suppose that v cw,
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and o Cw,, for some n,m € Ny. Further assume that u,,u,, are two elements of
D(a) coinciding a.e. with % on w,, and w,, respectively. We obtain

(AU, v) — (Atp, v) = alty, — Uy, v] =0

by locality, since u,, — u,, vanishes on w, N w,, and hence its support is disjoint from
suppv C @ C wy N Wy O

Of course we expect some relation between the operator A and the operators A,
We start with the following observation:

Proposition 2.1. Let 2 < p < oo and B, be the part of Ay in X, := LN e
Then, for 2 < p<oo, A, is the closure of B, and A is the weak*-closure of Bu.
Furthermore, for u € D(Ay) there exists a sequence u,, € D(By) such that u, —* u
and Bau, —* Axu.

Proof. Letu e D(B,)), ie. u € D(A3) NLP and Apu € LP. By consistency we
have

¢ ¢
(2) p- J Ty(s)Byu ds = 2- J To(s)Asuds = To(u —u = Tp(Hu — u,
0 0

where p- [ denotes the Bochner integral in L for 2 < p < oo and the weak"-integral
for p = co. It follows from [4, Proposition 3.1.9] ([10, Proposition 1.2.2] for the
weak™-case) that u € D(4,) and Apyu = Byu.

Let us prove that A, is in fact the closure of B),. First consider the case 2 < p <oo.
By consistency, T}, and Ts leave the Banach space X, invariant. The restricted
semigroup is strongly continuous and has generator B, which follows from a com-
putation as in (2). In particular, D(B,) is dense in X, and thus dense in L. Using the
holomorphy of T'; and consistency, we see that D(B)) is invariant under 7',. It is well
known (cf. [8, Prop. I1.1.7]), that this implies that D(B,,) is a core for A,,.

For p =00 we choose a different approach. Given u € D(A.), we put
Uy = 1o, (A —A)u. Then v, € L>NL>, whence wu,:=R(,A ), € D(By).
Since v, —* (A — A, )u and since R(1,A.) is weak*-continuous as an adjoint
operator, we have u, —* u. Furthermore

=AR(A, Asc)Vy, — Uy
—* AR A ) A —Au — (A —A)u = At .

This proves the claim. |
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Remark 2.1. Ifwe assume that not only Ts but also the adjoint semigroup
T5 s L>™-contractive, then we obtain consistent semigroups T, for 1 < p < oo,
cf- [14, p. 57]. In this case, Proposition 2.1 also holds for 1 < p < oc.

It follows from Proposition 2.1 that if M has finite measure so that L? C L? for
p > 2, then A, is the part of As in LP. In particular, A is an extension of A,. If
m(M) = oo, then L? is not a subset of L? and hence we cannot expect A to be an
extension of A,. However, we may ask whether A is an extension of A,,
i.e. D(4,) C D(m)o, and

(Au,v) = JApu ~vdm,
M

for all v € D(a), N LY, where q is the conjugate index to p. Theorem 2.1 shows that
this is indeed the case under a somewhat technical assumption which can be verified
in many examples.

Definition 2.1. Let a be a closed sectorial form. We say that a has rich
domain if there exist constants (Cy),en such that for every u € D(a) and n € N
there exists v € D(a) with the following properties:

1. v e D(a,wy,) and u = v a.e. 0n w,_1;
2. Plle,) < Cullllrz,)s
3. [ AV pga g,y < Cullltll 2200,y + 1A% pe g,y )-

In the proof of the following theorem and also in what follows, we will treat the
cases of norm convergence and weak”-convergence together. Given f,, f € LP we
will write p-limf, = f, which is to be understood as “f is the norm limit of f,,” for
p < oo, whereas for p = oo it stands for “f is the weak*-limit of f,,”.

Theorem 2.1. Let a be a local sub-Markovian form with rich domain. Then
A is an extension of A, for any 2 < p < oo

Proof. Let u e D(A,). By Proposition 2.1, there exists a sequence
Un € DAs|;2qp0) CD(@) such that p-limuw, =% and p-limA,u, =Ayu.
Furthermore, we have A,u, = Au,. Note that the sequences %, and A,u, are
bounded in LP. Now fix k € IN. Since a has rich domain, there exists a sequence
v, € D(a, w) N LP such that v, = u,, a.e. on wy_;. Furthermore,

(3) ”v%HLZ(wk) < Ck”“n”LZ(wk) < Ck”unHLP(wk) <M<oo
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and
||A”n\|1)(a,wk)’ < Ck(”u%”LZ(wk) + ||A“n||0(a,wk)’)

< Ck(”uﬂ”LP(wk) + ”Apun”LP(wk)) <M<,

for some constant M. Here we have used the inclusions LP(wy) — L2(wy)
— D(a,w;,) and the boundedness of the sequences u,, and Apuy in LP,

It follows from (3), that — after possibly passing to a subsequence — v,, converges
weakly in L2(w;) to some v € L?(w;,). However, as a sequence in D(a, w;) it also
converges weakly to (the same) v. Similarly, (4) and the reflexivity of D(a, ay,) imply
that — possibly passing to yet another subsequence — Av,, converges weakly to some
w € D(a,wy). Since A}, is a generator, its graph is closed and hence, by the Hahn-
Banach theorem, also weakly closed. Thus v € D(a, wy;) and Av = w.

Nowlet w cay_q and f € D(43) N L2(w) C D(a, wy) N LY. Here q is the conjugate
index to p. We have

(U, g :nlim Jun -fdm:nlim Jvn Sfdm=,f),,-

By Proposition 2.1, D(As) N L%(w) is a(L?, L9)-dense in LP(w). Hence, by density, it
follows that 4 = v a.e. on w. Furthermore, we have

(A, f )y g = T (Apuy, f),, = lim (Av,, f) = (Ao, ).

N—00 N—00

Here the second equality follows from the fact that u,, = v, a.e. on w;_; and the
locality of a. Since D(A2) N L?(w) is the domain of the operator associated to the form
(o, D(a, w)), it is dense in D(a, w). It follows that A,u = Av in D(a, ). Since o was
arbitrary, it follows that u € D(a)j,. and Apu = Au. O

2.2 - Kato perturbations

In this section we consider again the Hilbert space L2(M, dm) as in the previous
section and a local sub-Markovian form a on L?(M, dm). In this whole section we fix
Jo € —0(a)° C p(A). We are interested in the elliptic equation

(5) Jot — Au = ¢

where ¢ is an element of D(a){Oc O D(a). In particular, we want to investigate
whether solutions to (5) have a certain regularity, i.e. whether u belongs to some
function space X. If ¢ € D(a)’ then (5) has a unique solution % € D(a). If p € D(a){oc,
then we cannot expect solutions « of (5) in D(a). But there might be several solutions
of the elliptic equation in D(a)y,.. We build our theory in such a way that we just need
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information about “local” solutions of (5), i.e. we consider u, = R(4y,.4,)p. We call
this a “local” solution, since u,, satisfies

20y, v) + aluy,, v] = (p,v),

for all v € D(a, wy,), that is, Agu, + Au,, = @ on D(a, w,). For ¢ to belong to the local
Kato class, we will require these “local” solutions of (5) to belong to X “locally”.

Definition 2.2. Let X and (X(wy))n>o be vector spaces of (equivalence classes
of) measurable functions on M. We say that X is localized by (X(wy))p>0 ¥f

1. X(wy) | X, t.e. X(@pa1) C X(wy) foralln > 0 and X = [ X(w,);

2. If u € X(w,,) and v is a measurable function such that uw = v a.e. on w,, then
v € X(wy).

Here, in slight abuse of notation, we have identified a measurable function
with its equivalence class. In the rest of this article, we will talk about mea-
surable functions and tacitly identify them with their equivalence classes
whenever necessary.

Definition 2.3. Let X be a vector space of measurable functions and let a be
a local, sub-Markovian form on L2(M,dm).

1. The X-Kato class Kat(a, 19, X) of a is defined as
Kat(a, Z9,X) := {p € D(a) | R(Ap, A)p € X }.
2. Now assume that X is localized by X(w,). The local X-Kato class is defined by
Katioe(a, 10, X) := (] Kat(a,, o, X(w,),

neNy
i.e. Katy(a, 4o, X) consists of those functionals ¢ € D(a),,. such that for all
n € No we have R(Jy, Ay)p € X(wy,).

Note that the local Kato class depends on the spaces X(w,) used to localize X.
Clearly, Kat(a, 49, X) and Katy,.(a, 49, X) are vector spaces. We will see in Section 3.1,
that the Kato class may depend on the parameter ;. We next characterize Ay-in-
dependence of the Kato class. Note that this also characterizes 4o-independence of
the local Kato class, if we apply it to Kat(a,,, 1o, X(w,,)).

Proposition 2.2. Let a be a local sub-Markovian form and X be a vector
space of measurable functions.
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1. Let A, u € p(A) with ). # . The following are equivalent:

(@) Kat(a, 4,X) C Kat(a, u,X).
(b) D(o) N X C Kat(a, 4, X).

2. Let A C p(A) be a set containing at least two elements. The following are
equivalent:

(a) Kat(a,1,X) = Kat(a,u,X) forall A,u € A

(b) D@)NX c N Kat(a, 1,X).
reAa

Proof. 1. Assume (a) and let u € D(a) N X. Then ¢ := lu — Au € Kat(a, 4, X) C
Kat(a, 1, X). The resolvent equation implies

R(u, Ap —u = (. — )R (u, Au .

By assumption, the lefthand side belongs to X. Since X is a vector space and 1 # u
it follows that R(u, A)u € X, proving (b). Now assume (b) and let ¢ € Kat(a, 4, A).
Then % := R4, A)p € D(a)NX, whence R(u, ADp=u-+ A —wRwuecX, ie.
¢ € Kat(a, u,X). 2. follows from 1. since A contains at least two elements. |

Let us consider the classical situation where .4 = 4 is the Laplacian on an open
subset Q of RY and X = C(Q). It is well known that 44 = 0 on an open subset w of Q
implies that » is continuous on w. Also in our abstract setting we require some
connection between the operator A and the local spaces X(w,).

Definition 2.4. We say that a local sub-Markovian form a has local kernel
belonging to X, if for all w, and u € D(a) the relation yu — Au = 0 on D(a, w,)
implies that u € X(wy).

Proposition 2.3. Let a be a local sub-Markovian form and X be a vector
space localized by X(w,). Assume that a has local kernel belonging to X. Then

1. Kat(a, A9, X) C Katjoe(a, 2o, X). Furthermore, for all n>0 we have
Kat (@41, 40, X(wn41)) C Kat(ay, Ao, X(wy)).

2. If ¢ € Kat,(a, 1o, X), u € D(a)oe and Aou — Au = o, then u € X.
Conversely, if ¢ € D(),, and Jyu — Au = ¢ for some u € D@y N X, then
[(/AS Kat]OC(C(, /l(),X).

Proof. 1. Let ¢ € Kat(a, 4y,X) and n > 0. Then u := R(Jy, A)p € X C X(w,).
If we put u,, := R(4, Ay)p, then Ao — u,) — Aw — u,) = 0 on D(a, w,). Since a
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has local kernel belonging to X, we obtain u —u, € X(w,). But then also
uy, = u — (U —uy,) € X(w,), hence ¢ € Kat(a, g, X(w,)). Since n was arbitrary,
o € Katj.(a, A9, X). The proof of the second statement is similar.

2. Fix n € Ny. By definition of D(a),,. there exists v € D(a) such that . = v a.e.
on wy,.1. By the definition of A we have Ayv — Av = ¢ on D(a,w,). Since
p € Katje(a, 1o, X) we have u,, := R(Jo, A,)p € X(w,). Now the relation Ag(v — u,,)
— AW — uy,) = 0 on D(a, w,) implies that v — u,, and hence also v and u belong to
X(wy). Since n was arbitrary, u € X.

For the converse, assume that Agu — Au = pE D(a){oc for some u € D(a),. N X.
Let v be as above and put w = R(4y, A)p. Then (1y — A)(v — w) vanishes on D(a, w,)
and hence v — w € X(w,). But since also v € X(w,), it follows that w € X(w,,). This
proves that ¢ € Katy,.(a, 49, X). O

Definition 2.5. Let a and b be sesquilinear forms such that a is a local, sub-
Markovian form. Note that there are no further assumptions on b, in particular, b
1s not assumed to be closed. The form b is called a sub-Markovian perturbation of a
if a+ b, defined by D(a + b) := D(a) N D), (a+ b)lu,v] := alu,v] + blu,v], is a
closed, sectorial form which is sub-Markovian. Such a perturbation will be called
local of a + b s local.

We are particularly interested in local, sub-Markovian perturbations b of a
“regular” form a such that the perturbed form a + b is regular again. To that end, we
introduce Kato perturbations:

Definition 2.6. Let a be a local, sub-Markovian form on L*(M,dm),
2<p<oo and b be a local, sub-Markovian perturbation of a such that
D(a), € D(b). For u € D(b) we denote by Bu the antilinear functional

D) 3 v~ (Bu,v) := —blu,v] .

1. b is called a (p,X)-Kato perturbation of a, if D(a) Cc D(b) and Bu
€ Kat(a, 1o, X) for all w € D(ax) N LP(M).

2. Now let X be localized by X(w,). Then b is called a local (p,X)-Kato
perturbation of a if Bu € Katy,.(a, A9, X) for all u € D(a), N LP(M).

Lemma 2.2. Let X be a vector space localized by X(w,) and a be a local, sub-
Markovian form on L2(M) having local kernel belonging to X. Then b is a local
(p, X)-Kato perturbation of a if and only if b is a (p, X (w,))-Kato perturbation of ay,
foralln > 0.
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Proof. Let b be a local (p,X)-Kato perturbation of a and u € D(a, w,) N LP.
Then u € D(a), N LP whence Bu € Katy,.(a, 49, X) C Kat(ay,, Ao, X(,)). That is, b is
a (p, X(w,))-Kato perturbation of a,,.

Conversely, assume that bis a (p, X(w,,))-Kato perturbation of a,, for every» > 0.
Let u € D(a),. Then there exists ng, such that u € D(a,w,) for all n > ny. By
hypothesis, Bu € Kat(a,, A9, X(w,) for all n > ny. However, by Proposition 2.3, we
see Bu € Kat(a,, 49, X(w,)) for all n > 0. O

Theorem 2.2. Let 2 <p < oq, a be a local sub-Markovian form on L?(M),
and b be a local sub-Markovian perturbation of a. Denote by S and Sy the operators
associated to % :=a+b on D(3) and L? respectively and by S, the (if p = oo:
weak*-) generator of the extrapolated semigroup on LP. Further suppose that Y is a
vector space of measurable functions and that R(4y, AL NY) C X.

1. If b is a (p, X)-Kato perturbation of a, then R(Ay, Sp)(L2 NLPNY)c XNLP.

2. Additionally assume that X is localized by X(w,), that a has local kernel
belonging to X, that, given u € D(a) and n € NN, we find v € D(a, wy1) such
that w = v a.e. on w, and that S is an extension of S,. Then, if b is a local
(p, X)-Kato perturbation of a, then R(4,Sp)(LP NY) C X NLP.

Proof. Letf e LP(M)NY. Then u = R(4,S,)f € LP. We have to show that
u € X.

1. If feL?nL?, then u € DS2)NLP C D(@)NLP and Syu = Au+ Bu by
Proposition 2.1. Hence u = R(4y, A)(f + Bu). By assumption f € Kat(a, 49, X) and
also Bu € Kat(a, 49, X), since u € D(a) N LP. Thus, u € X.

2. Since S is an extension of Sy, we have u € D(3)),, and (49 — A = f+ Bu. By
Proposition 2.3 2., it suffices to prove f + Bu € Katye(a, 4o, X). Let n € Ny be given.
By hypothesis, there exists v € D(a, w,,1) such that v = v a.e. on w,. We may
assume that v € LP. Otherwise we replace v by w := u™ AvT —u~ A v~ which is an
element of D(a), (since a is sub-Markovian) and satisfies |w| < |u| whence it is an
element of L?. By definition, Bu = Bv on D(a, w,) and Bv € Katyye(a, 1o, X). It follows
that Bu € Kat (a,,, 49, X(wy,)). Since n was arbitrary, the claim follows. O

The previous theorem gives sufficient conditions for R(4y,S;) to map L? into
L? N X and hence — in particular — for the domain of S), to be a subset of X. It is also
interesting to know whether also the semigroup 7, generated by S, maps L” to
L’'nX.

For 2 < p<oo there is no problem, since the holomorphy of the semigroup 7% is
inherited by the semigroup T, for such p, see [3, Chapter 7.2]. However for p = oo
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holomorphy and not even differentiability of the semigroup 7., can be expected.
Indeed , it follows from [13] that there exists an open bounded set Q C RY such that
the spectrum of the Neumann Laplacian on L>°(Q2) contains a vertical line. Thus, the
semigroup generated by it cannot be holomorphic or differentiable and hence does
not map L>*(2) into the domain of its generator.

Theorem 2.3. Let Y be a closed subspace of L™(M) such that D(S,.) NY 1s
norm dense in Y and assume that R(A,S.)Y C Y for all 2 >0. Then Y is in-
variant under the semigroup T and the restricted semigroup Tw|y is strongly
continuous.

Proof. For w e D(S,) the map t+— T ()u is strongly continuous. Since
D(S.) NY isnorm dense in Y, the same is true for arbitrary « € Y. In particular, for
u € Y we have

R, S.o)u = J e T Dudt
0

as a Bochner integral, not just as a weak™ integral. Now consider the quotient map
Q: L>*M) — L>*M)/Y. It is a bounded operator, even though not necessarily
weak”™ continuous. We obtain:

0=QR(, S )u=@Q J e T (udt = J e QT (Hudt.
0 0

By [4, Theorem 1.7.3 Jwe have QT .. (t)u = 0 a.e., that is, T, (H)u € Y for almost every
t. Since t — T (t)u is strongly continuous, we have T, (f)u € Y for every ¢t > 0. O

2.3 - Invariance of Xy
Let us again consider a local, sub-Markovian form a. We are interested in the
subspace X, of X consisting of elements of X vanishing at infinity, i.e.

Xo:={feX : Ve>03KcMs.t. |[f@] <eVeeM\K}.

In particular, we want to know, whether X is invariant under R(4,A.,). However,
belonging to X is usually not a local property:

ExampLE 2.1. The space X = CO(RN) ={u e C(RY) : u(x) — 0asx — oo}
cannot be localized. Indeed, consider the constant function 1:x+— 1. If X was
localized by some spaces X(w,), then for every k >0 there exists a function
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fi € Co(RY) such that fi = 1 on wy. It follows from the definition of “localized” that
fi and hence 1 is an element of X(wy). Since k was arbitrary, it would follow that
1 € Cy(RY) — a contradiction.

Thus, to obtain semigroups on Xj, one has to use different techniques. One
possibility is to use domination and we will use this approach of Section 3.2.

In this section, we introduce a second approach which makes use of Lyapunov
functions and will be applied in Section 3.3.

Definition 2.7. Let a be a local form. We say that a satisfies the local
maximum prineiple if the following holds:

If2>00<¢e€e D(a){o(3 andv € D(a)lf)C satisfies v — Av = o, then u,, < v, where
un = R(4, Ay)g. In other words, for any nonnegative ¢ € D(a),,. the smallest non-
negative solution of Ju — Au = ¢ on D(a, w,) is the one belonging to D(a, wy,).

Here, we call an element ¢ € D(a),,. positive, if (p,u) > 0 for all u € D(a):.

Theorem 2.4. Let a be a local sub-Markovian form satisfying the local
maximum principle and assume that A s an extension of A, for every p € [2, oo,
The following are equivalent:

1. D(a), is dense in D(q).

2. For some (equivalently all) p € [2, co] we have p- lim R(1, A,)f = R(4,Ap)f
forallf € LP. A

3. For some (equivalently all) p € [2, 00] we have that if f € Lﬁ and v e D(a)ﬁOC
satisfies Jv — Av = f then R(, Ap)f < v.

Proof. 1. = 2. for p =2: We have D(a,) C D(a) and a, —a =0 is uni-
formly sectorial. Condition (1) states that D := D(a). is a core for a. Clearly,
D c liminf D(a,) and a,[u] — alu] for all w € D. Now 2. for p =2 follows
directly from a version of the convergence theorem “from above” (cf. [11,
Theorem VIIL.3.6]) for nondensely defined forms.

Now assume that 2. is true for some p € [2,00]. We show that 2. holds for
any q €[2,00]. It suffices to prove this for nonnegative f € L?. Since
(L —APRUADSf = (- A)R(A,Aq)f =f, the local maximum principle yields
R, A)f < R4, Aui)f <R(,Apf for all n>0. Hence R(4,A,)f converges
pointwise a.e. to some function g € LY.

If f € LP N LY, then, by consistency, R(1,A,)f = R(,A,)f. By our assumption
we have p-lim B(4, A,)f = R(4,A,)f and hence g = R(/,A,)f. The dominated con-
vergence theorem implies ¢-limR(4, A,)f = R(4,A,)f. Since the forms a,, are
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uniformly sectorial, the operators R(4,.4,) are uniformly bounded. Now the result
for general f € LP follows by approximation.

2. = 3.: Let v € D(a);. be given such that v — Av = f for some f € L". By the
local maximum principle we have R(A, A,)f <v for all n. But now 2. implies
R(,Apf =lim R, Ay)f <.

Now assume 3. holds for some p. We prove that it holds for any ¢ € [2, ]. By
density, there exists an increasing sequence f,, € LP N LY, such that ¢-limf, = f.
Using consistency and positivity we obtain

RO, A)f = R, Ap) M < R(AAN)f <w,

by assumption. Hence R(1,A4,))f =q-limR(4,A))f, <v, by the continuity of
R(2,A)).

3. = 1.: Define the form b by b[u, v] = a[u,v] and D(b) = lTa)cD(ﬂ). Then b is a
closed sectorial form and the continuity of the lattice operations imply that it is also
sub-Markovian. Furthermore, the local spaces and operators associated to the forms
a and b agree, in particular, b satisfies the local maximum principle. However, b
satisfies condition 1. of this theorem and therefore 3. of this theorem holds true for
b. We obtain R(A, B2)f < R(4,As)f for all f Li. Since we assumed that 3. holds
also for a we obtain the reversed inequality and thus R(4,As) = R(/, B2). In parti-
cular D(Az) = D(B2). However, by general theory, D(A3) and D(B2) are cores of the
forms a and b, respectively. Hence a and b coincide on a common core and thus have
to be equal. O

Definition 2.8. Let a be a local sub-Markovian form. We say that a has
abstract Dirichlet boundary conditions if a satisfies the local maximum principle
and D(a), is dense in D(q).

Lemma 2.3. Let pe€[2,00],4>0 and a be a local sub-Markovian form
which has abstract Dirichlet boundary conditions. Further suppose that A is an
extension of Ap. If g € D();t, satisfy g < if — Af and g € LP, then R(2,A,)g < f.

Proof. First note that if a is any sub-Markovian form, then, for 2 > 0, also the
resolvent R(4, A) of A is positive on D(a). To see this, let ¢ € D(C[)'+ and define
u = R(2, A)p. Since a is submarkovian, v~ € D(a) and a[u*,%~] < 0. Thus

0< (p,u ) =Au,u )+ alu,u 1< —Au | —alu,u 1< —Au|?.

It follows that = = 0.
From this observation we obtain R(4, A,)g < R(4, A,)(Af — Af ) for any n > 0. By
the local maximum principle we have R(/, A,)(Af — Af) < f, whence R(4, A,)g < f,
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foralln > 0. Sinece a has abstract Dirichlet boundary conditions, Theorem 2.4 implies
R(4, Ay)g — R(4,A,)g and the statement follows. O

We are now prepared to tackle the invariance of Xy. We shall consider the space
Xp := X N L™ and assume that X, is closed in L*°. Clearly, X is a closed subspace of
X,. By X, we denote the vector space of all elements of X; having compact support.

Theorem 2.5. Let a be a local sub-Markovian form which has abstract
Dirichlet boundary conditions. Assume that Xy is a closed subspace of L™, that X,
1s dense 1 Xy and that for some A1 > 0 we have R(A,Ax)X. C X; for all A > 1. If
there exists Ay > 0 and a strictly positive function ¢ € Xy N D(a),. such that

(6) )~0(ﬂ - A(ﬂ 2 07
then for A > max{Ag, 41} we have R(1,A)Xo C Xo. If Ap € Ly then it suffices to
check Jop — Ap > 0 outside a compact set K C M.

Proof. It follows from (6) that for 4 > 4y we have ip — fl(p > (4 — 49)p. Hence,
by Lemma 2.3, (1 — A9)R(4,A)p < ¢. For f € X, we may find ¢ > 0 such that
| f] < co since ¢ is strictly positive. It follows that

OSR&AmHﬂSR&AmkwéiC

w?

This implies R(4, A.)X. C Xy. The general case follows by approximation, using that
R(1,Ax)X, C X; for 1 > /.

For the addendum observe that if Agp € L., then ip — Ap >0, whenever
A— ;u() > ||/10(p — A(””L%(K)' O

3 - Applications and examples

3.1 - The C(Q)-Kato class for multiplication operators

In this section we consider the simple case where A is a multiplication operator.
The purpose of this section is to give an example that the (local) Kato class may
depend heavily on the parameter /.

We work on the space L?(Q, dx), where Q is an open set in RY. We consider the
sub-Markovian form a defined by

amw:jwmwmmm,nmzﬁmx
Q
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where 0 < m € L*°(Q). In this case, D(a) = D(a)’ = L3(Q). Furthermore, the associated
operator A is the multiplication operator given by Au = — mu. In particular, p(A)
={1: 0+ m)! e L} and for 4 € p(A) we have R(Z, A)f = (1 + m)’lf. We shall
consider the regularity space X = {u € L?(Q) : 34 € C(Q) such that % = u a.e. on Q}.
For u € X we denote its unique continuous version by .

Proposition 3.1. With the above definitions we have:

1. For A€ p(A) we have Kat(a,2,X)={u(l+m) : u € X}. In particular,
Kat(a, 1, X) is dense in L*(Q).

2. If A, 1 € p(A) with ) # 1, then
Kat(a,1,X) nKat(a,u, X) = {u(A+m) : uwe X, u|; =0},

where U 1is the set of all points x € Q such that no version of m is con-
tinuous at x.

Proof. 1.is clear. For 2., define m( by

mo(x) := lim sup f m(y)dy .
r—0

B(x,r)NQ

Since almost every « € Q is a Lebesgue point of m, m is a version of m. It has the
following additional property:

If m has a version m which is continuous at xo, then 7.(xy) = mo(xo) and my is
continuous at x. This means, m is continuous at every point x € Q\ U. Now let
f € Kat(a, 1, X) N Kat(a, u, X). Then there exist u,v € X with

f=ul+mg) =0(u+my) a.e..

We see that (&t — v)(A + my) = v(u — A) a.e. This implies that m is continuous on the
open set O := {x € Q : u(x) # v(x)}. Indeed, m, agrees almost everywhere on O
with the continuous funetion (% — 17)_1?7(;4 — A) — . Since O is open, it follows that m
has a version which is continuous at every point in O. But the properties of 1y imply
that in fact m agrees with this continuous version everywhere on O. Now define
w := (4 — V)(A 4+ my). Clearly, w is continuous at every point x € O. If x € Q\ O,
then u(y) — v(y) — ulx) — v(x) = 0 for y — x. Since (1 + my) is bounded, it follows
that w is continuous at x. Altogether, w is continuous.

We have seen that w and v(x — 1) are two continuous functions which are equal
a.e.. Hence they are equal everywhere; in particular, v = 0 on O°. It follows that
v(J + my) is a continuous function, whence f has a continuous version which vanishes
on O° and thus in particular on U. This proves one inclusion in the statement, the
other inclusion is obvious. O



248 MARKUS BIEGERT, MICHAEL EINEMANN and MARKUS KUNZE [18]

Lemma 3.1. There exists a measurable function m :[0,1] — [0,1] such
that the following holds. If m is a measurable function such that the set
N :={x €[0,1] : m(x) # m(x)} is a Lebesque null set, then m is not continuous
m every x € [0,1]\ N.

Proof. Let O, be a sequence of open sets which are dense in [0, 1], such that

|0y < % and (1 O,, = 0. Such a sequence may be obtained as follows:
Let {qx : ke N} =Qn[0,1]and {r; : k € N} = (Q+ n) N[0, 1]. Then define

1
U B(qk,m> , n even

keN

UB<77€,$) , n odd

keN

0, =

Now we define

> 1
m(t) = 2 5 l0.®).
Clearly, m is a bounded, measurable function with values in [0, 1]. Let m be a version
of m,say m = monl[0,1]\ N for anull set N, and x, be a continuity point of . Given
J € N, we find J; such that

_ _ 1
|m(axg) — m(y)| < T for all y € B(xo, ).

It follows from the triangle inequality that
1
(7 |m(x) — m(y)| < 5 for all x,y € B(x,0;) \ N .

But nowwe see thatforn =1,...,7 — 1andx,y € B(xp, ;) \ N wehavex € O, if and
only if y € O,.

Indeed, if x € O; whereas y ¢ Oy, then |m(x) — m(y)| > 271 — 272 = 272 by the
definition of m and the reverse triangle inequality. This contradicts (7). Now assume
that we know that x € O,, iff y € O,, for 1 <n <k — 1. If & € O}, whereas y ¢ Oy,
then |m(x) — m(y)| > 2-%*+D. This contradicts (7) whenever k + 1<j. Thus the
statement follows by induction.

It follows that B(xy, d;) \ N is either a subset of O, or of Of for 1 <n <j—1.
However, if B(xg,d;) \ N C 0%, then we have B(x, J;) C 0%, since O, is closed and

n’

hence contains the closure of every set it contains. But we cannot have B(xy, J;) C O,

since O,, is dense. Thus for any j € N we have B(xy,d;) \N C O, forn =1,...,j - 1.
Since j was arbitrary, €y ¢ N implies a9 € () O,, = 0. Thus x can only liein N. O
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The following corollary shows that the Kato class may depend heavily on the
parameter A.

Corollary 3.1. There exists a local sub-Markovian form a and a regularity
space X such that Kat(a,1,X) is dense in L? for every i € p(A) whereas for
2y it € p(A) with A # u we have Kat(a, 1,X) N Kat(a, u, X) = {0}.

Proof. Take a as above with the function m from Lemma 3.1. If m, is defined
as in the proof of Proposition 3.1, then it follows that m is a version of m which is
continuous in every point such that m has a version being continuous in that point.
Lemma 3.1 implies that m, is only continuous on a null set. Now the claim follows
from Proposition 3.1. O

3.2 - Regular perturbations of deGiorgi-Nash forms

In this section we introduce a special class of sub-Markovian forms on the Hilbert
space L?(Q, dx), where Q is a domain in RY. For these forms, many elements of the
local C(2)-Kato class are known as a consequence of the deGiorgi-Nash theorem.

Definition 3.1. Let Q C RN be a domain and let ai, b, ¢ belong to
L>(Q,dx, R) for 1 < 1,5 < N. Further suppose that ¢ > 0. Assume that there exist
constants 1> 0 and M > 0 such that the inequalities

N
Im " a;@)&&

1,j=1

N
Re Y a;@)&E > nlef? and

t,j=1

< MRe Y a;@)¢&

hold for all ¢ € CN and almost every x. A deGiorgi-Nash form is a form (a, D(a))
satisfying the following conditions:

1. D(a) is a closed subspace of H (Q) containing HY(Q) such that if f € D(a) then
also Re f and, for real-valued f, also f*, sgnf - (1 A f) € D(q).
2. Forallf,g € D(a) we have

N

a[f,g]:J

N
a;DifDig+ > biD;f)g + ¢fgdac .
o b=l -1
Clearly, deGiorgi-Nash forms are densely defined and local. It is not hard to see
that they are also sectorial and closed, in fact, || - ||, is equivalent to the Sobolev
norm || - ||z:. It follows from [14, 4.1, 4.2 and 4.9], that deGiorgi-Nash forms are sub-

Markovian.
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We note that D(a),. = H},.(2) and that if D(a) = H{(Q) then D(a)' = H 1(Q).

Otherwise D(a)’ is a subspace of H~1(Q). It follows from Hélder’s inequality that for

bounded 2 we have W-17(Q) — H1(Q) for p > 2. Recall that any ¢ € W17 may be
N

represented as g + > D;f;, where g,f; € L?, see [1, Chapter III]. Thus in the in-

=1
jection WP — H-1(Q) we identify ¢ with the functional

N
HY(Q) 5> u J(gu - Z ﬁDm) de.
i1

Q
We will be interested in the regularity space X = C(Q2), more precisely

X = {u € L} (Q) : u has a version which is continuous on Q} .

For localization we will use a sequence w, of open, bounded sets such that
Wy, C w1 C Q. This corresponds to choosing M = Q in the previous sections.
We will discuss an application of choosing M differently in the next section. In
this case, D(a, w,) = I-}(l)(a)) = {u e H'(RY) : =0 a.e. on ot }. However, I-:V(l)(con)
= H(l)(con) if w, satisfies a mild regularity assumption, e.g. if w, has Lipschitz
boundary. It is no loss of generality to assume that D(a, w,) = H(l)(wn) since every
domain may be exhausted by an increasing sequence of open sets having Lipschitz
boundary.
We localize our regularity space X by the spaces

X(wy) :={u e Llloc(.Q) : u has a version which is continuous on w,} .

Now elements of the Kato class for X = C(Q) are easily available from the deGiorgi-
Nash theorem [9, Theorems 8.22 and 8.24], which we restate in our terminology:

Theorem 3.1 (deGiorgi-Nash). Assume N > 2 and let a be a deGiorgi-
Nash form on L*(Q), w be an open subset of Q and /. € C. Furthermore, let
fi, Sy € LP(Q,dx), g € L(Q,dx) for some p >N and y € H(Q) be given. If
u € D(a) is a solution of the generalized Dirichlet Problem

w—Au = g+Y.Dif; on Hw)
Ao u = y on dw

then u s locally Hélder continuous on .

It follows that appropriate (local) LP and Sobolev spaces belong to the (local) Kato
class associated to a.
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Corollary 3.2. Let (a,D(a)) be a deGiorgi-Nash form, 1 € p(A) and N > 2.

1. If Qis bounded and D(a) = H(l)(Q), then LP(Q) C Kat(a, 2, X) forp € (g , oo}
and W=1P(Q) c Kat(a, 1, X) for p € (N, col.

2.1 pe (5 00| then I{,(@) C Katyela, 2. X0 If p e (N, o0] then W,1"(©)

= ﬂWﬁLp(wn) C Katloc(a, )»,X).

3. a has local kernel belonging to X (see Definition 2.4) and Kat(a, 4, X) and
Katjo.(a, 1, X) are independent of /. € p(A).

Proof. 1.If Qisbounded, then LP(Q), W-1(Q) ¢ H 1(Q) for the values of p
given in the statement. Since D(a) = H}(Q2) we have H~1(Q) = D(a)". The assertion
now follows immediately from Theorem 3.1 noting that u = R(4, A)p, is a solution of
D, ;o for v = 0 and right hand side ¢.

2. Follows from 1. and the definition of the local Kato class, observing that a,, is
merely the form a restricted to H é(wn).

3. If w € D(a) satisfies Aou — Au = 0 on D(a, w,), then u is a solution of D ;, 4,
with right hand side 0 € L*(w,) and boundary values y = u. It follows from
Theorem 3.1 that u € X(w,). To see that the Kato classes are independent of A
observe that since D(a) N X C L (Q) we have D(a) N X € Katjo.(a, 1, X) by part 2.

loc

Since 1 was arbitrary, D(@)NX C (] Katye(a, 4,X). Taking into account that

2€p(A)
a has local kernel belonging to X, it follows from Proposition 2.2 that
DynX c () Kat(a, 4, X). Proposition 2.3 yields the claim. O

2€p(A)

We now turn to Kato perturbations of deGiorgi-Nash forms. We will focus on
perturbing a deGiorgi-Nash form by a measure. Viewed as an operator, a measure u
should be associated with the form m[u, v] = | uv du. However, if 1 is not absolutely

Q

continuous with respect to Lebesgue measure, then the meaning of the latter in-
tegral is not clear. This leads to the following

Definition 3.2. Let (a,D(a)) be a deGiorgi-Nash form on L*(Q,dx). A po-
sitive measure u on L 1is called admissible for a if there is a continuous linear

appg J:D() — L2

loc

Q,dp), u—u
such that the following hold:

(A1) J preserves positivity, i.e. u > 0 da-a.e. implies Ju > 0 du-a.e.
(A2) J is multiplicative, i.e. if u,v € D(a) are such that u-v € D(a) then
Ju - v) = J(w)J ().
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(A3) Ifu € D(a) satisfies u < 1 then Ju < 1.
(A4) For o cQ there exists a constant C,, such that ||Jullrz, < Cp - lull, for
all w € D(a, w).

L N
Lemma 3.2. Let (a, D(a)) be a deGiorgi-Nash form, N > 2 and q > 5
IfV e L{ (Q,dx) is positive, then u = Vdu is admissible for a. One can choose J
as the identity map.

Proof. We first note that for Ju = u the conditions (A1)-(A3) are obvious. Let
u € D(a) C HY(Q). By Sobolev embeddings, u € L%(Q). Hence, by Holder’s in-
equality, [u[*V € L () for

loc
1 1 2N—2 2 N-2

BT ~1.
rgt N SNTTN

This implies that Ju = u € L (2, Vdx). Now let o € Q. Possibly embedding  into a
larger set with Lipschitz boundary, we may assume that D(a, w) = H, (l)(w). Hence, for
u € D(a, w) we have

J|“|2Vd90 < ”V”Lq(w,dx)nu”Q 2! < CZHVHLq(w,dx)||“||%{5(w) .

2N
LN-2(w,dx)
15}

Taking square roots, it follows that condition (A4) is satisfied. O

ExamMPLE 3.1. IfN =1, then D(a) C H'(Q) — C(Q). Thus if we choose J as this
mjection restricted to D(a), we see that awy locally finite measure on Q 1is
admissible for a.

Given a deGiorgi-Nash form a and x admissible for a, we define the form m by

8) mlu, v] = J@ﬁ du, D) = {ue D@ : @eLXQ,dw},
Q

where we wrote % := J(u). For v € D(in) we will write Mu for the antilinear fune-
tional —m[u, -].

Remark 3.1. We note that the form m depends not only on p but also on the
mapping J. However, for certain measures u there are canonical choices for J. If u
1s absolutely continuous with respect to Lebesgue measure, then J =1id is the
canonical choice. At the end of this section we will show that, under additional
assumptions on q, certain measures which are absolutely continuous with respect
to the Choquet capacity associated to a are admissible for a. Here the canonical
choice for Ju is the quasi-continuous representative of u.
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We will prove in Theorem 3.3 below that if 4 is admissible for a, then ntis a sub-
Markovian perturbation of a. Accepting this for the moment, we infer from Corollary
3.2 that m is a Kato perturbation of a.

Theorem 3.2. Let a be a deGiorgi-Nash form, N > 2 and m be defined by (8)
for some measure > 0, admissible for a. Then m is a local (p, C(Q))-Kato per-
turbation of a for every p > 2.

Proof. We first note that by condition (A4) we have D(a). C D(m). Now let
wCcQ,ve Wol’q(co) C Hi(w) C D(a) and u € D(n). We have

[mlu, v]| < J|7ﬁ| du < el 2 a0Vl 2@an < Cl||v||H(1](w) < Cal|vllyraq) -
)

Here we have used the Cauchy-Schwarz inequality, (A4) and the continuity of
the embedding W&’q(w) into H (1)(9). Since w was arbitrary, it follows that
Mu e ngi’q(.Q). Note that this is true for all € D(m), without any LP-condition.
It thus follows from Corollary 3.2 that m is a (p, C(€))-Kato perturbation of a for
every p > 2. O

We note that Kato perturbations of deGiorgi-Nash forms need not be associated
to a function or a measure:

ExamMpLE 3.2. Consider the form

N
Blut, v] := JZ Dy -Tde, D(b) = HYQ).

o =1

Using Sobolev embeddings and a perturbation result for forms (see [11, Theorem
VI.1.33]) it can be shown that for d; € LY(Q) the form b is well defined and a
sub-Markovian perturbation of any deGiorgi-Nash form a, provided that

1 1 1
q > max{2, N} and D(a) = Hé(Q). In this case, Bu € L" where e + 6 Thus, if
N . .
> o> then b is a (p, C(2))-Kato perturbation of a for any p € [2,00]

We now verify the abstract assumptions made in the previous section for the
perturbed form a + m.

Theorem 3.3. Let a be a deGiorgi-Nash form and u > 0 be an admissible
measure for a. Define m by (8). Then we have:
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1. mis a local sub-Markovian perturbation of a.

2. If'the coefficients a;; belong to Wheo(Q), then a+m has rich domain.

3. If the sets w, are chosen such that Hi(w,) = Hy(wy), then a + m satisfies the
local maximum principle (see Definition 2.8).

Proof. 1. We prove that a + ntis a closed sectorial form. Since J is positivity
preserving, the numerical range of m is a subinterval of the positive real axis,
whence a 4 m is sectorial. To see that a + m is closed, first observe that |ju|, .,
= [Juflgn + [[%]l2(q,)- Hence, given a || - ||,,, Cauchy sequence, we see that it is a
Cauchy sequence in (D(a),| - |;n) and in L*(Q,dw). By completeness of these
spaces, there exist u € D(a) and v € L3(Q, du) such that u,, — u with respect to
| -Il, and @, — v with respect to || - ||z, Since %, — % in L2 (dw), we have
% =v. This proves u € D(a+ m). Clearly, u, — u with respect to | - [/, By
condition (A4), C:*(€2) C D(a) N D(m). Hence a + m is densely defined. That a + m
is sub-Markovian follows from checking the Beurling-Deny criteria. Locality of
a + m follows from that of a and (A2).

2. Let n € N and choose ¢ € C*(wy) such that 0 < ¢ <1 and ¢ =1 on w,_1.
Using (A2) — (A4), it is easily seen that multiplication with such a function is a
bounded operator on D(a + m1). Conditions 1. and 2. in the definition of “rich do-
main” (see Definition 2.1) for v = pu are obvious. It remains to show that there exists
a constant C‘n, independent of u, such that

(9) ”(A + M)§0u||D(a+m,wn)’ < Cn(HuHLZ(a)n) + ”(A + M)u”D(a-o-m,wﬂ)’) :

To that end, first observe that

(10) (@ + m)lpu, w] = (a + nlu, pw]
N N
(11) + J U - (Z aiijW + Z biWDi(p> dx
ij=1 i=1

Wy,

(12) J ZD wazy ]§0

Wy

Now let B:={veD@a+m,w,) : [V, <1}. By definition, we have
(A + M)oull pa s,y = sup\(a+m)[(/)u w]|. To estimate this norm, it thus

suffices to estimate the absolute value of the terms in (10), (11) and (12).
Since multiplication with ¢ is a bounded operation on D(a 4+ m), there exists
a constant C,; such that

sup | (@ + nlu, pwl| < Cr 1 1A + M)l pio e, -

weB
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Using the Cauchy-Schwarz inequality, the absolute values of the terms in (11) and
(12) may be estimated by Cy.2 - ||| 12(,, 4z)» Where Cy 2 is a constant depending only
on the coefficients a;;, b; and ¢. Together, estimate (9) follows.

3. Let 0 < ¢ € D(a +m)j,, and 0 < v € D(a + M)y, With 1v — (A + M) = ¢ be
given. Fix » > 0 and put u,, = R(4, (A + M),)p. By the definition of D(a + 1),
there exists v,,.1 € D(a + m) such that v = v,.; a.e. on w,,;. We obtain

(13) Mty — Vg1, W) + (@ + 1)Uy — Vi1, w] = (p,w) — (p,w) =0,

for all w € D(a + m, w,). Arguing as in the proof of the weak maximum principle
(cf [9, Theorem 8.1]), this implies
(14) sup (ty, — Vnt1) < sup (U = Vus1)” .

Wy, Owy,
However, u, vanishes on the boundary of w,, whereas v, is positive there,
whence (#,, — v,41)" = 0. Thus, (14) implies that u,, < v,.1 = v on w,. But since u,
vanishes almost everywhere outside w,, we have u,, < v a.e. on Q. O

Remark 3.2. If one drops the requirement that ¢ > 0 in the definition of
deGiorgi-Nash form, then one obtains quasi sub-Markovian forms, i.e. forms a
such that y + a is sub-Markovian for some y > 0. All of our theory works also for
quasi sub-Markovian forms. However, perturbing a quasi sub-Markovian form by
a signed measure y, i.e. allowing signed measures in (8), one cannot expect a + m
to be quasi sub-Markovian again, unless the negative part = has an L™ density
with respect to Lebesgue measure. Indeed, the form

1
(a+m)fu,v] = Ju’W d — f(Lw(1)
0

s mot quast sub-Markovian.

We are now ready to return to our initial question when the perturbation of a
“regular form” is regular again. We recall that an open subset @ ¢ RY is called
Dirichlet regularif the semigroup generated by the Dirichlet Laplacian 45 on L>(Q)
leaves the space Cy(2) invariant and if the restriction of the semigroup to Cy(£2) is
strongly continuous. Here the Dirichlet Laplacian is the operator associated with the
deGiorgi-Nash form a with D(a) = H(l)(Q) and coefficients a;; = d;;, b; =0, ¢ = 0 for
1,7=1,...,N. However, this generalizes to much more deGiorgi-Nash forms.
Indeed, it is proved in [5, Theorem 4.1] that if a is any deGiorgi-Nashform with
D(a) = H})(Q) and Q is Dirichlet regular, then the semigroup 7', leaves Cy(£2) in-
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variant and the restriction to Co(Q) is strongly continuous, i.e. T is a Feller
semigroup.

Theorem 3.4. Let a be a deGiorgi-Nash form. Denote the semigroup on
L*>(Q) associated to a by Ty, and by A its generator. If Q2 has infinite measure,
additionally assume that a; € WLo(Q). Let 1 > 0 be an admissible measure for a
and define m by (8). Now let P, be the semigroup on L*>(Q) associated to a + m
and denote its generator by So. (= “As — 1”). Then the following hold.

1. R(1,S)L®(Q) C Cy(Q) for every A € p(Ss).

2. If Q is Dirichlet regular and D(a) = H(l)(.Q), then R(1,S) leaves Cy(Q) in-
variant for every A € p(Sy).

Proof. 1. By Theorem 3.3, m is a local sub-Markovian perturbation of a. In
particular, T, exists. By Theorem 3.2, nt is a local (0o, C(2))-Kato perturbation of a.

It follows from Theorem 3.1 that R(1, A.)L>(2) C Cy(2). Note that for every
u € D(a) and every n € N we find an element of H (1)(60“1) which coincides with % on
@y, — just multiply « with a suitable function in C°(w,+1). Furthermore, if S denotes
the operator associated with a + m on D(a + m)’, then its localized version Sis an
extension of S... This is clear if Q has finite measure, in the other case it follows from
Theorem 2.1 since a+ m has rich domain by Theorem 3.3. We also note that
by Corollary 3.2, a has local kernel belonging to C(£2). Hence the hypothesis of
Theorem 2.2 is satisfied and we may conclude that R(4,S.)L>(2) C Cy(R2) for
every A € O(a +m)° the case for general / follows from the resolvent equation.

2. By 1. we have R(1,S..)f € Cp(Q) for every f € L>(Q). It remains to prove that
R(4,Sx)f € Co(Q) for f € Co(R).

Using Propositions 2.20 and 2.21 of [14], it is easy to see that |Pa(t)f| < T2|f| for
every f € L*(Q). This relation clearly extends also to the semigroups P, and 7.
Now take Laplace transforms using the weak”-integral. It follows that

[R(Z, S0)f| < B(2,Ax)|f]

for all 2 > 0 and f € L™. Let f € Cy(Q2). By [5, Theorem 4.1], R(1, Ay)|f| € Co(22)
since Q is Dirichlet regular and D(a) = H}(Q). Since R(2,S)f € Cy(£), the above
inequality implies that R(4,Sy)f € Co(Q). |

We end this section by comparing our results with the results of [15, 19], where
regular perturbations of Dirichlet forms were considered. This also gives wealth of
admissible measures which define local (co, C(£2))-Kato perturbations.

In [15, 19], the authors consider a regular, symmetric Dirichlet form on
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L?(M,dm), where M is alocally compact Hausdorff space and m is a Radon measure
on X with full support. Recall that the assumption that a be regular means that
D(a) N C.(X) is a core for a and that D(a) N C.(X) is dense in C,(X) with the supre-
mum norm.

If X = Q is a domain in RY and m is the Lebesgue measure on €, then some
deGiorgi-Nash forms fulfill these assumptions. Note that in this case we necessarily
have D(a) = H{(Q).

Associated with a regular, symmetric Dirichlet form a, there is a Choquet ca-
pacity Cap,. Using this capacity, the authors of [15, 19] introduce several classes of
measures, in particular the class M of measures absolutely continuous with respect
to Cap, and the Kato class Sg.

The authors also consider a local Kato class Sk 1. which is defined by

Skioe := {1 € My : g € Sk for all compact sets K C X} .

Proposition 3.2. Let a be a deGiorgi-Nash form which is also a regular,
symmetric Dirichlet form on L*(Q, dz). In particular, D(a) = H(Q). Furthermore,
let ne SK,loc-

1. If Ju = u is the quasi-continuous representative of u, then, with this map J, u
18 admissible.
2. Define m by (8). Then m is a (p, C(Q))-Kato perturbation of a for all p > 2.

Proof. 1.Bythe properties of the capacity, J satisfies (A1), (A2) and (A3). This
has nothing to do with the measure . Nowlet w € 2 and put K := @. Since lgu € Sk,
it follows from [19, Theorem 3.1] that there exists a constant M = M such that

~12 2
| 1 < Ml
K

for all u € D(a). This proves that J(D(a)) CL120<:(97 duw). Furthermore, ||iL\|L2(#)

< VMg - ||u||, for all w € D(a, w), i.e. (A4) is satisfied.
2. This is immediate from Theorem 3.2. O

Using the notation of Theorem 3.4, the authors of [15] prove that if 7, is a
Feller semigroup and u € Sk . then also the perturbed semigroup P is a Feller
semigroup.

In our approach, we obtain from Theorem 3.4 that R(4,S.)Co(Q) C Co(Q)
whereas consequences for the semigroup have to be proved separately in a second
step. On the other hand, we cannot only consider more general forms than in [15, 19],
but also more general perturbations such as forms which are not associated to a
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measure (Example 3.2). Furthermore, in some cases we can also prove that P, is a
Feller semigroup even though 7', is not. This will be done in the next section.

3.3 - Perturbation by a Potential and Semigroups on Cy

In this section we address the question whether it is possible to perturb a
deGiorgi-Nash form such that associated to the perturbed form there is a strongly
continuous semigroup on Cy(£2) even though this is not necessarily the case for the
unperturbed form. In this section we do not assume that @ ¢ RY is Dirichlet regular.

Theorem 3.5. Let a be a deGiorgi-Nash form with D(a) = H\(Q) and
a; € Whe(Q). If g € C2(R) N Cy(Q) is strictly positive and satisfies
ij

(15) ID%g| < Clg|*™™ for 1< |o| <2

for some constant C > 0, then V = g2 is a local (oo, C(Q))-Kato perturbation of a
and the perturbed semigroup on L*°(Q) leaves Co(Q2) invariant. Furthermore, the
restriction of the perturbed semigroup to Co(Q) is strongly continuous.

Proof. We have V € L% (Q). Define m defined by (8) for 4 = Vdx and denote
by S, the weak*-generator of the semigroup P, associated to a + m on L. By
Theorem 3.4, R(4,S.) leaves the space C,(Q) invariant for every 4 > 0. Theorem 3.3
yields that a + m satisfies the local maximum principle. It is easy to see that a + m
has abstract Dirichlet boundary conditions. We may hence use Theorem 2.5 to prove
invariance of Cy(Q).

We try to use ¢ = ¢” as a Lyapunov function. Here, y is a positive constant to be
specified later. Then ¢ € C3(Q) N Co(Q) is strictly positive. Using integration by
parts, we see that

N N
.A¢ = Z CLij'Dij(ﬂ — Z b{,Di(ﬂ —CQ.
,7=1 i=1

Here, b; are modified coefficients depending on b; and partial derivatives of a;j ob-
tained from integration by parts. Rewriting this in terms of g we have

Ap = 19" Aog + 9y — 1)g'~%(CVg, Vg) — cg’

where Ayu := Au + cu and C is the matrix containing the entries a;;. Thus, we see
that

dp —(A—V)p =g 2((+ g% — 79409 — 7y — 1)(CVg, Vg) +1).

It follows from the assumptions on ¢ that gflog is a bounded function, say
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gflog < M. Choose 0 <y< min i ,1¢. Since (CVg, Vg) > 0, we obtain
2M

~ , 1
/I(p—A(p+V(ng’2<(/1+c)gz+é) >0.

It follows from Theorem 2.5 that R(/,S.)Co(2) C Co(2) for /4 > 0. Clearly,
C*(@) ¢ D(a+m), C D(Ss). Hence, by Theorem 2.3, P, leaves Cy(£2) invariant
and the restricted semigroup Pw|¢,(q) is strongly continuous. O

Corollary 3.3. Let Q c RN be a bounded domain, a be a deGiorgi-Nash
form on H{(Q) with a; € W-(Q). Then there exists a potential V € Li.(Q2) such
that the semigroup P, associated to a+ m leaves Cy(R2) tnvariant and the
restriction to that space is strongly continuous.

Proof. Let p(x):=inf{|x —y| : y € 0Q}. Then p is Lipschitz continuous,
strictly positive and p € Cy(Q). It follows from [18, Theorem VI.2], that there exists
g € C>*() such that ¢; p < g < c2p and the estimates (15) hold. Hence Theorem 3.5
yields the thesis for V = g2 O

Thus, if we perturb an operator associated to deGiorgi-Nash forms with
a; € Wh> with a potential which grows near the boundary as the square of the
distance to the boundary, then a realization of the perturbed operator on Cy(2)
generates a strongly continuous semigroup on Cy(£2).

However, not every boundary point of an open set is “bad”. Define the “good”
boundary Iy by

I'y:={x €0Q : Ig, € L>(Q) strictly positive, such that
Po®)g.(y) = 0asy —xVt>0}.

If x € I'y, then we have P, (t)f(y) — 0 as y — « for all f € Cy(Q2) and all £ > 0.
Indeed, if g, strictly positive and f € C.(Q2), then there exists a constant ¢ such
that |f] <c-g,. The positivity of P, (t) yields |P..(®)f| < cPo(t)gs, Whence
P .@)f(y) — 0 as y — xif Poo(t)g.(y) — 0 as y — x. Now the density of C.(2) in
Cy(Q) proves the assertion.

Thus, in order to prove invariance of Cy(£2), it remains to take care of the “bad
boundary” I'y := 92\ I'y. The question arises, whether it suffices to perturb a near
Iy, or else, to perturb a with a potential which grows near the “good boundary” I'y
slower than p~2. Indeed this is possible as the following consideration shows:

We consider a as a form on M := QU I'y. Our regularity space X however is
unchanged: X := {u € L (2) : 3 a version of u continuous on Q}. The approx-

loc
imating sequence w, has to be chosen such that | Jw, = M, i.e. w, has to contain
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some of the boundary of Q. However, for X(w,) we still only demand a version
continuous in the interior.

EXAMPLE 3.3. We consider Q = B(0,1)\ {0} ¢ RY. Then the “good bound-
ary” 1is the sphere 0B(0,1), whereas the “bad” boundary consists of the
point 0. Thus M:={xeRY :0<|¢| <1}. For localization we consider

1
Wy, = {xeRN : %<|x|§1} and

. ) 1
X(wy) = {u € Li (M) : u has a version continuous on o || < 1} .

Thus we have changed what we consider a “compact subsetset of 2” whereas our
notions of continuity remain unchanged (we do not require continuity on the
boundary). It should be noted, that concerning the Kato-class nothing has changed.
Only “local” now means local with respect to M (e.g. Lys. (M) is the space of functions
bounded on compact subsets of M, they may not explode near the good boundary).

This change in compact subsets now yields a different space Xy:
Xo:={uelC) : ux)—0asx— I1}.

The proofs of Theorem 3.5 remains unchanged when replacing Cy(Q2) by X,. Using
as ¢ a regular version of p;(x) = dist(x, I";) we see that perturbing with a potential
exploding near the bad boundary implies that P, leaves invariant the continuous
functions vanishing on the bad boundary. Combining this with the domination
result above, we see that P..Cy(2) C Cy(22) for such perturbations.
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