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1 - Introduction

In recent years, techniques coming from the study of ordinary differential
equations (ODEs) have been applied to the analysis of systems of conservation laws
in one space dimension,

(1) u +f(u), =0 where u(t,x) € RY and (¢,2) € [0, + oo x RR.

In the previous expression, ; and ,, denote the partial derivatives with respect to the
variables ¢ and « respectively and the flux f : RY — RY is a function of class C2. In
view of physical considerations (see e.g. Dafermos [7]) it is of great interest con-
sidering the second order approximation

(2) wi + fW®), = e(BuHus)

%-7

where B is an N x N “viscosity matrix” satisfying suitable conditions and ¢ is a
parameter, ¢ — 0", In particular, the Navier-Stokes equation in one space variable
can be written in the form (2) and by setting ¢ = 0 it formally reduces to the Euler
equation. For the time being, we focus on the Cauchy problem obtained by coupling
(2) with the initial datum

(3) u*(0, ) = uo(x).
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Establishing general results on the convergence of the family of functions u* sa-
tisfying (2)-(3) is still a mayor open problem, but partial results have been achieved
and ODE techniques have often played an important role: see again Dafermos [7] for
a complete overview and a list of references. Let us just mention the work by
Bianchini and Bressan [3], which established convergence (under suitable assump-
tions) of the family of functions u* solving (2)-(3) in the case of the “artificial viscosity”
Bw*) = I (identity matrix). The proof in [3] employs a special decomposition of the
gradient «/, obtained by relying on ODE analysis.

These notes aim at providing an informal overview on some of the ODE techni-
ques that are more frequently applied to the study of the limit ¢ — 0% of (2). The
exposition is addressed to non-experts, so notions are usually first introduced in a
simplified context and then discussed in more general situations. Also, in most cases
these notes only provide an heuristic idea of the proof of the results that are in-
troduced, and refer to books or to original research papers for a more rigorous
discussion. The discussion has, of course, no sake of completeness: in particular, to
simplify the exposition very few references are provided. For a more satisfactory
bibliography, one can refer to the books by Dafermos [7] and by Serre [19] (con-
servation laws and their viscous approximation). An extremely rich exposition of the
analysis of invariant manifolds for ODEs is in the book by Katok and Hasselblatt [14]
(see also the book by Perko [17]).

To simplify the exposition, most of the following sections (all but the last one)
focus on the case of the “artificial viscosity” B(u*) = I, so that (2) reduces to

(4) u; +f(u£)x = gujcx

However, many of the considerations extend to more general cases (sometimes the
extension is not straightforward, though). The details concerning this extension can
be found in the original research papers that are quoted in the following sections.

Also, most of the analysis described in the following sections apply to the study of
the non-conservative case

(5) u; + AW’ eulul, = eBuus

X

where A is a suitable N x N matrices. Note that (2) can be written in the form (5) by
setting A(u*, eu’) = Df (w*) — eB(u®),,, where Df denotes the Jacobian matrix of the
flux f. Again, the details concerning this extension are available in the original re-
search papers quoted in the following sections.

The exposition is organized as follows: Section 2 informally describes the con-
nection between the analysis of the limit ¢ — 0™ of the viscous approximation (2) and
the study of ODEs by introducing the notions of traveling waves and boundary
layers. Section 3 deals with the Center Manifold Theorem and Section 4 mentions
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some applications to the study of the viscous approximation. Section 5 deals with the
Stable Manifold Theorem, while the last section of these notes (Section 6) is more
technical and describes a possible way of extending the definition of center and
stable manifold to a class of singular ordinary differential equations arising in the
study of the viscous approximation defined by the Navier-Stokes equation in one
space variable.

2 - Some motivations

This section aims at discussing some links between the study of the viscous ap-
proximation of a system of conservation laws in one space dimension and the ODE
analysis by informally illustrating the notions of traveling waves and boundary
layers.

2.1 - Traveling waves

Let us start with some heuristic considerations. For every ¢ > 0, (4) is a para-
bolic equation and one expects a strong regularizing effect. Conversely, it known
that, even if the initial datum u is smooth, nevertheless in general a classical so-
lution (i.e., a solution of class ¢ of the Cauchy problem (1), (3) may break down in
finite time: remarkably, this may happen even in the scalar case N =1 (see e.g.
Dafermos [7, Chapter 4.2]). Hence, when studying the limit ¢ — 0" one handles a
family of very regular functions which is expected to converge to something which
has a much weaker regularity. Traveling waves are often regarded as useful tools
to handle this behavior and to describe the formation of singularities in the limit.

To fix the notations, let us introduce the following definition.

Definition 2.1. Let ut,u" € RN and o€ R be given. The function
U:R—-R¥isa traveling wave for (4) joining the states u™,u~ € RY and having
speed o if U(y) satisfies

(6) U" = [fU) - aU]

and

(7) lim =u" lim =u".
Y—— 00 Y—+ 00

In the previous expression, U’ and U” denote respectively the first and the
second derivative of U with respect to the variable y. Some observations are here in
order. First, the link between (6) and (4) is the following: if U solves (6), then one can
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verify by direct check that a solution of (4) is obtained by setting

(8) w(t, x) == U<x ; Gt) .

Also, the function U is a solution of the ordinary differential equation (6), hence it is
of class C* and the same regularity is inherited by u¢. However, by taking the
pointwise limit ¢ — 0" of u* we get

lim U(y) ife—at<0
y—— o0

u(t,x) = lim (¢, %) = lim U(x - “t) =
e—0* e—0+ e lir+n U(y) if © —at > 0.
Yt o0

One can then verify that the pointwise limit u(¢, ) provides a distributional solution
of (1).

Summing up, we have that, if conditions (7) hold, then the solution of the parabolic
equation defined by (8) is regular for every ¢ > 0, but converges pointwise to a
discontinuous distributional solution of the conservation law. This is why traveling
waves are often used to study the non trivial behavior mentioned above, namely the
appearance of singularities when passing from the vanishing viscosity approxima-
tion to the hyperbolic limit.

Let us now see why the ODE analysis comes into play: the following considera-
tions are quite informal, for a more precise and rigorous exposition see for example
Bianchini and Bressan [3, Sections 3, 4]. Let us consider the equation (6): usually, the
values u*, #~ and ¢ are not prescribed. Conversely, one wants to understand for
which values of ™, u~ and ¢ there is a solution of (6) satisfying

lim =u" lim =u".
Y——o0 Y=+
To select a unique solution of (6), one needs to assign 2N + 1 parameters: for ex-
ample, one can assign a Cauchy datum for U and for U’ and the value of ¢ (remember
that U takes values in RY ). As a matter of fact, in many situations one does not
manage to assign so many conditions and apparently one ends up with an under-
determined problem. By assigning 2N + 1 parameters, however, one is neglecting
an important information: the values of #* and ™ are not prescribed, but never-
theless we require that both the limits %Erﬁlt U(y) exist and are finite. In particular,

this implies that U is bounded on the whole R. In many situations, one actually has
even more information: given a value % € RY, one looks for values of u*, u~ and ¢
satisfying the following property.

9) Both " and u~ are close to u, o is close to 4;(«).
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Here 2;(u) denotes the i-th eigenvalue of the Jacobian matrix Df (). As we see in
Section 3, the Center Manifold Theorem allows to exploit the information (9) to
reduce the number of conditions one needs to impose on (6) to select a unique so-
lution.

2.2 - Boundary layers

Boundary layer phenomena are observed when studying the viscous approx-
imation of initial boundary value problems.

To illustrate the heart of the matter, let us focus on a specific situation. Consider
the family of problems

uf +f )y = eug,
w(t,0) =up®  u¥(0,2) = up(x).

As established in Ancona and Bianchini [1] (see also the previous work by Gisclon
and Serre [10]), under suitable assumptions on the data wu; and u, for every ¢t > 0
the family u*(t,-) converges in LllOC to u(t,-), a distributional solution of (1) sa-
tisfying the following condition: for every t > 0, TotVaru(t,-) < + co. The point
where boundary layers come into play is the fact that, in general, the boundary
condition is lost, namely (note that the limit below exists since the total variation is

bounded)
(10) li%l u(t, x) # up(?).
x—0+
To study the “loss” of boundary condition (10), the key point is the analysis of the
steady solutions of (4), satisfying f (1), = eu,,. To understand why steady solutions

are able to capture this behavior (the loss of boundary condition), let us start by
considering a toy model.

Example 2.1.  Consider the vanishing viscosity approximation of a scalar,
linear conservation law

(11) ui +ou;, = eu;, a <0

and let us focus on the steady solutions u*(t,x) = U,(x), obtained by solving the
linear ODE

(12) aU, =¢U!.

Also, let us itmpose on (12) the conditions

U,0) = up xLignoo U, () = wy.
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Then by performing explicit computations we get U (x) = [uy — o) 6™/t 4.
Hence, by letting ¢ — 0" and, by exploiting a < 0, we obtain that, for every x > 0,
U.(x) converges to U(x) = uy and hence the boundary condition U (x) = uy is “lost”
since %lirg U(x) = uy.

Some observations are here in order: first, by introducing the change of variables
(¢, 2)—(et, ex) one can transform the equation f(u%), = eu’, into f(u), = Uy, Also,
assume that we want to study the “loss of boundary condition” for a linear system of
conservation laws

w; + Auy = uy, where u € RY.

Here, A is an N x N matrix and we assume that it admits N real and
distinct eigenvalues. We want to proceed as in Example 2.1 by focusing on
the steady solutions u(x,?) = U(x) and assigning the conditions U(0) = u; and
Tiiinoo U(x) = up. However, it turns out that these conditions are compatible if
and only if the vector u, —uy belongs to the subspace of RY generated by
the eigenvectors of A associated with strictly negative eigenvalues. Let us
now consider the general case: the second order approximation of a non

linear system of conservation laws
w +fW), = Uyy where u € RY.

To extend the argument in Example 2.1, we have to study the system

[y =0"

(13) .
U@0) = uy lim U(x) = up.
r—+ 00

In view of the previous considerations it is thus natural to ask ourselves the question:
what are the values of u, and u ensuring that (13) admits a solution? Note that such a
query has some similarities with the problem we discussed at the end of Section 2.1,
namely we are concerned with an ODE, we want to prescribe some asymptotic be-
havior and we ask ourselves what are the data compatible with such an asymptotic
behavior.

As we will see, an answer to the above question can be obtained by relying on the
Stable Manifold Theorem, discussed in Section 5.

Finally, to fix the notations, we introduce the following definition.

Definition 2.2.  Let the states uy, ug € RY be given. A boundary layer for (4)
connecting the states u, and ug s a solution of system (13).
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3 - The Center Manifold Theorem
In this section we are concerned with studying the asymptotic behavior of the
solutions of the ordinary differential equation

V' =G(V) where V € R?

in a neighborhood of an equilibrium point V. Without any loss of generality we can
assume V = 0, namely G(0) = 0. In Section 4 we will then apply our analysis to the
study of the system (6).

Let us start by considering two simple examples where G is linear.

Example 3.1.  Assume that V = (x,y,w,z) and that

X 2 0 0 0 X
y | |10 -1 0 0 Y
(14) wl 1o 0o 0o =3||w
2 0 0 3 0 z
By solving the ODE explicitly we obtain
x(t) Pl (1)
y@) | _ e 'y(0)
w(t) w(0) cos 3t — 2(0) sin 3t
2(t) 2(0) cos 3t + w(0) sin 3t

Note that the eigenvalues of the above matrix are 2, —1 and £31. Ifthe initial datum
belongs to the eigenspace associated with the eigenvalue with positive real part,
namely if the initial datum is in the form

(2(0),0,0,0),

then the solution blows up exponentially fast when x — + oo, while when x — — oo
it converges with exponential speed to the equilibrium point. Conversely, assume
that the initial datum belongs to the eigenspace associated to the eigenvalue with
negative real part, namely the initial datum is in the form

(0,%(0),0,0).

Then the solution converges exponentially fast to the equilibrium for x — + oo,
while it blows up exponentially fast when x — — oo. Finally, assume that the initial
datum belongs to the eigenspace associated with the eigenvalues with zero real part,
namely it is in the form

(0,0,20(0), 2(0)).
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Then the solution does not converge exponentially weither at + oo nor at —oc.
However, the solution is globally bounded on the whole real line.

The second example focuses on a linear system where, however, the matrix is not
diagonalizable.

Example 3.2.  Assume that V = (x,y) and that

w ()= o))

The above matriz has eigenvalue 0 with multiplicity 2 and hence the whole R? is the
eigenspace associated with eigenvalues with zero real part. By solving the equation

<ac> B (ac(O) + y(O)t)
y) (0) '

In this case the solution is not bounded on the whole R unless y(0) = 0. However, it
does not blow up exponentially neither at x — + oo nor at x — — oc.

explicitly we get

3.1 - The Center Manifold Theorem

3.1.1 - Statement of the theorem

Let us first introduce some notations: B(6 ,0)is the ball with radius J and center at
0in R%, Also, DG(G) is the Jacobian matrix of G computed at V = 0 and V¢ will be its
center subspace, namely

(16) Ve=Zi®Zs@...Z,,

where each of the Z; is an eigenspace associated with an eigenvalue /; with zero real
part,
Z; = {¥ such that [DG(0) — ;I3 =0 for some k <d} Rel; =0.

We are now ready to introduce the main result of this section:

Theorem 3.1.  Consider the first order ODE
(17) V' =G(V), VeR’

where G : R — R is a C? Sfunction satisfying G(0) = 0. Assume that the center
space V¢ defined by (16) is non trivial, namely V¢ # {6} Then there exists a
constant 6 > 0 small enough and a continuously differentiable center manifold M°
satisfying the following conditions:
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1. M°is parameterized by a function
(18) ¢, : B(0,0)n V¢ — R?,

Also, M° is tangent to V¢ at the origin.
2. M is locally invariant for the ODE (17). Namely, if Vo € MS, then the so-
lution of the Cauchy problem

Vi =G(V)
V() =V

belongs to M° if |t| is small enough.
3. let V(t) be a solution of (17) such that V(t) € B(9, 6) foreveryt € R. Then

Vi) e M for every t € R.

An important remark is that the center manifold (17) about the equilibrium point
0 is not unique (see for example the lecture notes by Bressan [6] for an explicit ex-
ample). In other words, suitable examples show that in general there is more than
one manifold satisfying conditions (1)...(4) in the statement of the theorem. We will
come back to this point in the proof of the theorem, when it will be clear where this
lack of uniqueness come from.

The proof of Theorem 3.1 discussed in here is the same as in the notes by
Bressan [6]. For a more general viewpoint, one can refer to the book by Katok and
Hasselblatt [14].

3.2 - Proof of Theorem 3.1

The proof is divided in several steps, and only some of them are provided below
(see [6] for the complete argument).

STEP 1: HEURISTIC. The heuristic idea is that the manifold M° should play the role
that in the linear case is played by the center space. In exploiting this idea one should
keep in mind that, as Example 3.2 shows, the solutions of a linear system lying on the
center space in general are not bounded on the whole real line: the only requirement
we can reasonably impose is that they do blow up exponentially fast neither at + oo
nor at — oo.

To make an extension to the general non linear case we have to handle some
technical difficulties. First of all, we need to introduce a localization argument. Also,
because of the non linearity we cannot require that the solutions lying on the center
manifold do not blow exponentially neither at + oo nor at — co, but only that they are
controlled by exp (y|t|), where 7 is a small positive constant.
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STEP 2: INTRODUCTION OF A CUT-OFF FUNCTION. Let
p(V) = G(V) - DGOV
be the second order term in the expansion of G. We then have
(19) Ip(")| < C[VF and |Dp(V)| <CV

for a suitable constant C and for V in a small enough neighborhood of 0.

We want to reduce to the case when p has compact support and small C! norm.
We thus introduce a smooth, even cut-off function p : R — R satisfying
1 if ¢ <1

0<p() <1foreverytec R and t) =
<p) < v p(t) {0 it >,

We then define
ps(V) == p(V) p(|V]/6),

thus obtaining that the support of ps is contained in B(ﬁ, 20). In the previous ex-
pression, d denotes a small constant whose exact value is determined in the following.
By relying on (19) we also get

Ipslleo < sup  [p(V)] < 4Co”
XeB(0,20)
and )
\Dps(V)| = |Dp(W)|p + [p(V)] || 5 < Co.

By combing the previous observations we can make the C' norm arbitrarily small by
choosing ¢ small enough.
In the following, we will study the solutions of the ODE

(20) V' = DGOV + ps(V).
By construction,
DGOV +ps(V) = G(V) when [V] <6

and hence any claim holding for the solutions of (20) holds for the solutions of the
original equation V' = G(V) confined in B(6, 0).

STEP 3: DEFINITION OF A FIXED POINT PROBLEM. We first have to introduce some
further notations: for simplicity, in the following we denote by A the Jacobian matrix
DG(6). Also, the stable and unstable space of A are the subspaces of R? associated
with the eigenvalues with negative and positive real part respectively. Namely,

(21) VI=N1®N2®...Ny, Vi=PioPys... P,
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where the N; and the P; are eigenspaces associated with eigenvalues with negative
and positive real part respectively:

N, ={ve RY (A—iil)kv =0 for some k <d} Rel; <0
and
P ={ve RY (A- iil)kv =0 for some k <d} Rel; > 0.
In particular, since
RI=Vi@V" Ve,
then any x € R? satisfies & = T + Ty + 72, Where
RV o RT—V" RV

are the projections onto V¥, V* and V* respectively.
Note that the ODE

V' =AV + ps(V)

can be then written as the coupling of the ODEs

(7sV)' = AnV + myps(V)
(7V)' = A,V + m,ps(V)
(V) = An.V + neps(V).

We have exploited the following equalities:
AV = AV mAV =AnV  mAV =ArV  for every V € RY.

We solve each equation separately and by applying the “variation of constants”
formula we obtain that the components 7,V (t), 7,V (t) and 7.V (f) satisfy

t
2 V(t) = AT VR, + JeA(t_s>7rsp5(V(8))d8

tS
t

(22) V@) = A, Vt,) + JeA(t_s)ﬂup(s(V(S))dS

tu

t
7 V(t) = AR V(L) + JeA@*%pa(V(s»ds.
te

In the previous expression, i, t,, and t. denote real values which will be assigned in
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the following. Also, we have exploited the standard notation

o0 tnAn
eXp(At):Z e

n=0

Let 1; denote as before an eigenvalue of A, then we set
p, :=min{Re/; : Rel; > 0}
and

f_ :=min{—Re/; : Rel; < 0}.

There exists some constant C > 0 such that, for every v € R? and for everyt < 0, we
have

(23) e, ¥ < CeP+25| and |eAlmyd| < Ce-1/2|7|.
We now fix a constant positive constant > 0 satisfying

By B
;7<m1n{ 5 o
and set

Y, = {V e 1~ oo, + ool; R such that sup [V(®)|e " < + oo}
teR

Then Y, equipped with the norm
V], := sup [Vle "
teR

is a Banach space. Note that
V)| < e’”“HVH,7 foreveryte R, VeY,.

Loosely speaking, the space Y, contains all the function which “do not blow up with
too fast exponential speed” neither at 4+ oo nor at — oc.

The goal is now defining the map ¢, in (18) by solving a suitable fixed point
problem in Y. First, we observe that, if the function V' € Y, then by relying on (23)
we get that, for any ¢; < min{t, 0},

|eA(t_tS)7Z8V(ts)| < o P-t=t)/2 5=t ||V||,7 — e—ﬁj/zHVH’]e(—ﬂ-‘rﬁL/Q)ts

and hence
 dim e V(t,) =0 for any given t € R.

In the same way one can show that, if the function V € Y,, then

lim [eA "7, V(t,)] =0 for any given t € R.

ty—+ o0
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We now go back to formula (22), we set t. = 0, x. = 7.V (0) and we let {;, — — oo and
t, — + oo, eventually obtaining

t
V(t) = V(1) + n V() + m, V() = eMa, + JeA(t_S)ncp(;(V(s))ds
0

(24) t

t
N J A0 (V())ds + J A, py(V()ds

+ 00

for every V €Y,

FURTHER STEPS IN THE PROOF OF THE CENTER MANIFOLD THEOREM.

e By applying the Contraction Map Theorem, one can show that, for any x, € V¢,
the fixed point problem (24) admits a unique solution V' € Y,. To verify that the
hypotheses of the Contraction Map Theorem are satisfied one has to exploit
that p; is a function with compact support and small C' norm.

e The map
$,: V= R
which parameterizes the center manifold is then defined by setting
(25) ¢, (xe) := V(0).
e One can then prove that such a map is continuously differentiable and that the
tangent space at the origin is V°.
e By construction, the map ¢, satisfies the following properties: first, for any
x. € V¢ the solution of the Cauchy problem
{ V' = AV + ps(V)

26
(26) V(0) = ¢, ()

belongs to Y,, and hence it “does not blow up with fast exponential speed”
neither at + oo nor at — oo. Conversely, any solution of (26) verifying

sup [V(t)|e ™ < +o0
¢

satisfies V(0) = ¢,(x.) for some Z, € V*.

e We set M :=¢,(V.) and we eventually come back to the original equation
V' =G(V). As pointed out before, G(V) = DG()V + ps(V) when |V]| < o.
Consequently, any claim concerning the solution of

V' = DGOV + ps(V)
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can be reformulated in a claim concerning the solutions of V’ = G(V) which are
confined in 3(6, o) for every t € IR. By relying on this observation one concludes
the proof of Theorem 3.1.

A REMARK CONCERNING NON-UNIQUENESS. As pointed out before, in general the
center manifold of (17) about a given equilibrium point is not unique. The reason is
that in the proof we have some freedom in choosing the cut-off function p: hence, both
the map ¢, defined as in (25) and the manifold M depend on the choice of p and are
not unique.

4 - Some applications of the Center Manifold Theorem to the analysis of traveling waves

The Center Manifold Theorem has been applied by several authors to the ana-
lysis of traveling waves: see Dafermos [7] for a list of references. In this section we
will discuss a possible approach, due to Bianchini and Bressan [3] and in the second
part we will deal with applications to the study of the vanishing viscosity approx-
imation uf + f(u), = eus,.

4.1 - A center manifold of traveling waves

Let us now go back to the problem we discussed at the end of Section 2.1: we are
given the traveling wave equation

(27) U" = [f(U)—oU]" where Uec RY

and a value % € RY. We want to find solutions U/ admitting finite limits as y — =+ oo,
. EI:PQO = u”F and satisfying the following properties: first, for every y € R, U(y) be-
lJongs to a small neighborhood of #%. Also, o is close to 4;(%), where ;(%) is a given
eigenvalue of the Jacobian matrix Df(u). More precisely, we want to exploit the
information we have on U to reduce the number of conditions one has to assign on
(27) to select a unique solution.

By setting p := U’ we get that (27) can be written as the first order system

U=p
(28) p = [Df(U) — a]]p
o =0.

We now apply the Center Manifold Theorem: first, we observe that the point
V= (U, 0, (D)) is an equilibrium for (28). Hence, from the third claim in the
statement of Theorem 3.1 we deduce the following. There exists a constant 6 > 0
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and a center manifold M such that any solution of (28) satisfying
(29) (U@, py),0) = V| <6 for every y € R

lies on M°. As we mentioned in Section 3, the center manifold of a system about a
given equilibrium point is in general non-unique. In the following we will arbitrarily
fix one center manifold and denote it by M°.

We now want to investigate the structure of M. First, we compute its dimension,
which is the dimension of the center space. By setting

V= (U,po) and GV)=(p, [DfU)-al]p,0)

we get that V € R2V*1 and the Jacobian matrix DG(V) is given by
0 I 0

(30) DGV)=10 Dfw) —»@I 0
0 0 0

In the previous expression, 0 and / denote the null and the identity N x N matrix
respectively. Let us assume that the matrix Df (#) has N real and distinct eigenva-
lues: this hypothesis of so-called strict hyperbolicity is quite standard in the study of
conservation laws (see for example Dafermos [7, Section 9.6] for a discussion on the
“bad behaviors” exhibited by systems violating strict hyperbolicity). Let #; denote a
unit eigenvector associated to A;(#%), namely

[Df @) — 2;(w)]7 =0 and || =1.
Then the center space of the matrix (30) is
V¢ = {(u,p,0) such that u € RV, p = a#; for some a € R, and s € R}.

Hence, the dimension of V¢ and of M is N + 2. This gives an answer to one of the

questions we asked ourselves: if we are looking for solutions of (28) satisfying (29), we

need to impose N + 2 conditions (instead of 2N + 1) to select a unique solution.
Let us get some more precise information about the structure of M°. Let

(31) ¢, : B(0,0) N V¢ — RV

be a parameterization of M°. From the proof of Theorem 3.1 we infer that ¢, can be
chosen in such a way that 7. o ¢,(x.) = x. for any x. € V. By applying this property
to system (28) we get

(32) n. 0 ¢ (U, a?;,0) = (U,a?;,0) for every U e RY aeR, ceR

and hence
¢.(U,a¥;,0) = (U, v (U,a, J),a),
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where y, : V¢ — RY is a suitable function whose properties we want to investigate.
Let {7 ...7x} be abasis of R¥ entirely made by unit eigenvectors of Df (). Then we
denote by . ... wy, the corresponding components of i, and we get

N
(33) l//c(U> a, O') = Z l//kc(Ua a, 0-)/)71(:-
k=1

To write (33) in a more convenient form, we first exploit (32) to get v;.(U, a,0) = a.
Also, any point (U, 6, o) is an equilibrium for (28), so it belongs to M°. This implies that

N
0=> ,.(U,0,0)# and hence that y,,(U,0,6) =0 for every k, U and o.
=1

By exploiting the regularity of the map v, we deduce that . (U, a,6) = ay,..(U, a, o)
for a suitable function y,,.. By combining the previous observations we then get
that (33) can be rewritten as

p= a(q_/:i + Z &kc(Uv a, U)ﬁc) .

kA
Since M is tangent at the equilibrium point to the center space V¢ we also have
(34) (77:1 + Z l/?kc(U, 07 )MZ(U))/VIC) = /'7:7:7

k£
namely (U, 0, 2;(0)) = 0 for every k # i. By setting
FUa,0) = (r +3 iUsa, am) |
kA
we then obtain that (33) can be rewritten as
p = ar(U,a,o0).

For convenience, we want to reduce to the case of unit vectors, so we write the
above relation as
(U, a,0)

p = G/‘/;/'z(U, a, O')l m,

where |7(U,a,0)| denotes the length of the vector. Note that (34) implies that
7(U,0,2;(0)) = #. Hence, the map
a—v(a) = al(U,a,0)|

is locally invertible in a neighborhood of (U,0,2;(0)): by assuming that the size of the
constant ¢ in (31) is small enough, we eventually get that the manifold M° is de-
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scribed by the relation
(35) p= ,U;iﬂi(Ua v, 0)7

where we have set 7; = 7;/|7;].

4.2 - Center manifold and convergence of the vanishing viscosity approximation

In this section we just mention the fact that center manifold techniques have been
exploited by Bianchini and Bressan [3] to show the convergence of the solutions of
the family of Cauchy problems

(36) { ui A f (), = eul,

w0, ) = upx).

More precisely, the following holds.

Theorem 4.1 (Theorem 1 page 229 in [3]). Assume that the flux function
f:RY = RN is of class C* and that, for every uw € RN, the jacobian matriz Df (w)
has N real and distinct eigenvalues. There exists a small enough constant 6 > 0
such that, if the initial datum in (36) satisfies

u € L'(R)  and TotVar{uy} <9,
then the following properties hold.

1. For any ¢ > 0, the Cauchy problem (36) admits a solution defined for any
t > 0. Also, there exists a constant C, which does not depend neither on e nor on
t, such that

(37) TotVar {u(t,-)} < C.

2. The solution u’ is stable in L' with respect to time and to L' perturbation
of the initial data. Namely, if by using a semigroup notation we denote by
t — Siug the solution of (36), then

Iiato = Stz < L(lto = wolls + 1t = 5| + V& — Vsl for every t, 5 > 0.

In the previous expression, L denotes a constant which does not depend nei-
ther on ¢ nor on the time.

3. Ase — 07, forevery t > 0, Siug converges strongly in LIIOC(R) to a function Syug

providing a distributional solution of (36). Also, the semigroup t — Syug enjoys
the stability property

ISs260 — Ssvoll ;1 < L(Huo — vl + |t — s|) for every t, s > 0.
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4.3 - Solutions of the Riemann problem

In this section, as a direct application of the center manifold construction dis-
cussed in Section 4.1, we go over the analysis of the solution of the so-called Riemann
problem

(38) ut x>0

w(0,2) = { _

u- x<0.

{ut +fw), =0

Here u+ and »~ are two given values in RY and in the following we focus on the case
|lut —u~| < o for a small enough constant ¢. The Riemann problem is a very specific
example of Cauchy problem, but is nonetheless extremely important. Indeed, its
study provides the building block for the construction of approximation schemes
(Glimm scheme [11], wave front-tracking algorithm) that have been used to establish
global existence and uniqueness results for the system of conservation laws
u; + f(u), = 0: see for example Dafermos [7, Chapter 14] and the references therein.
The first issue one has to address when studying (38) is that, in general, a dis-
tributional solution of (38) is not unique: in the attempt to select a unique solution,
various admissibility criteria have been introduced. An admissibility criterium was
introduced by Lax [15], who also constructed an admissible solution of (38). The
analysis in [15] relied on some technical assumptions on the flux f which were later
relaxed in Liu [16]. See also Tzavaras [20] and Joseph and LeFloch [13]. Bianchini
and Bressan [3, Section 14] provided a general construction of an admissible solu-
tion obtained by taking the limit ¢ — 0" of the vanishing viscosity approximation

ui +f(u®), = e,

+
w(0,2) = {u x>0

u- x<0.

In both [15, 16] and [3] the key point is the construction of the so-called i-wave fan
curve. Loosely speaking, the basic idea is the following: given u~ € RY, as s varies
the i-wave fan curve T;(u—,s) contains all the states " such that an admissible
solution of the Riemann problem (38) is obtained by patching together shocks (or
contact discontinuities) and rarefaction waves belonging to the i-family. In parti-
cular, this implies that there is a self-similar, admissible solution u(t,x) = U(x/?) of
(38) such that U(¢) varies only in a small neighborhood of the eigenvalue 4;(# ) and is
constant elsewhere, U(¢) = u~ for & < J;(u™) — d and U(E) = u™ for & > A;(u™) + 0.
We now informally go over the main steps of the construction in [3].

1. Wefixu~ € RY and we consider the same 7; as in (35), obtained by applying the
Center Manifold Theorem to system (28) about the equilibrium point
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(u*,(_)', ii(u*)). Here 7;(u™) is the i-eigenvalue of Df(u~). Given s > 0, we
consider the following fixed point problem, defined on the interval [0, s]:

T

(@) = u- + Jﬁ-(u(é), 0(®), oA ENdE

v;(1) = fi(z, u? v, 0;) — conv f;(1)

oi(1) = i conv f;(7).
dr

Here

T

fi(r):J;ii(u(é)7vi(f),0i(f))dé and 7;(u(&), vi(9), 0,(&) = (AW, 74),
0

namely /; can be regarded as a generalized eigenvalue. Also, conv f;(z) denotes
the convex envelope of f;(1),

conv f;(t) = sup {g(r) s.t. g is convex, g(&) < f(&) for every & € [0, s]}.

By relying on the Contraction Map Theorem, one can show that (39) admits a
unique continuous solution (u(r), (1), ai(r)) defined in a small enough
neighborhood of (", 0, 2;(u~). The functions (u(f), v;(7), O'i(‘[)) are all defined
on the interval [0, s].

. Assume that the interval [a,b] C [0, s] satisfies the following property: for

every t € [a, b], f;(t) = conv f;(r). Then one can show that
7 (u(0),v,(1), 6i(v)) = 7;(u(r)) for every € [a, b]

and moreover that the solution of the Riemann problem
{ w+fu), =0

_Jub) x>0
u(O,x)—{u(a) x<0

is a rarefaction wave of the i-th family (hence, in particular, the solution is
continuously differentiable in ]0, + oo[ x R).

. Conversely, assume that for every 7 € Jc, d[ C [0, s], f;(t) > conv f;(r) and that f;(c)

= conv f;(c),f;(d) = conv f;(d). Then, in particular, one can show that 7; is constant on
[c,d], o; = ;. Also, v;(7) > 0 on ]c,d[ and one can define the change of variables

de 1
dt )
x(O):d_C

2
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mapping « : Je,d[ — ] — oo, + oo[. Let 7(x) denote its inverse: one can show that
the function U(x) := u(t(x)) satisfies

U" = (f(U) — 5'1'U)/ and Tll:r_rloo Ux) = ule), leJrnoc Ux) = u(d).

In other words, there is a traveling wave connecting %(c) and u(d) and hence a so-
lution of the Riemann problem

{ut +fw), =0

_Jud) x>0
u(O,x)—{u(C) x<0

is
wd) x> gt
w(c) < ajt,

w(t,x) = {

which is called either shock or contact discontinuity depending on the values of
i (u(d)) and 4; (u(c)) (see for example the book by Dafermos [7, Page 213] for
the exact definition).

4. By relying on the previous steps and on further approximation arguments, one
can show that if (u(t),v;(r),0;(7)) is the solution of (39), then the family u*
solving

ui +f(u®), = eul,

(0,1 = {u‘ x<0

u(s) x>0
converges ¢ — 07 to the function
w- if o < g;(0)t
w(t,x) = { w(t) if © = o;(0)t
u(s) if x > g;(s)t.
We then define the i-wave fan curve by setting 7;(u~, s) := u(s).
5. When s < 0, the construction of 7;(»~, s) is analogous, the only difference being

that in (39) one has to take the concave envelope of f; instead of the convex one.

Finally, observe that the above construction can be extended to study the solution
of the Riemann problem (38) obtained by taking the limit ¢ — 0™ of the more general
viscous approximation

uf 4+ f(u), = e(Bu ),

under quite general assumptions on the matrix B (see Bianchini [2]). For extensions
to the analysis of initial-boundary value problems see Bianchini and Spinolo [5].
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5 - Stable Manifold Theorems

5.1 - The Stable Manifold Theorem

Let us first recall some notations: given the ODE
(40) V'=GW),

let V be an equilibrium point, which without any loss of generality is assumed to be
0. As before, we denote by V* and V* the stable and the unstable space respec-
tively, defined as in (21). Also, as usual, DG(0) denotes the Jacobian matrix of G
computed at 0.

Theorem 5.1. Consider the first order ODE (40) where G : R — R? is a C*
function satisfying GO) = 0. If V* is non trivial, namely V* + {6}, then there exists
a constant 0 > 0 small enough such there exists a continuously differentiable stable
manifold M?® satisfying the following conditions.

1. M’ is parameterized by a function
¢, : BO,)NV* — R
Also, M? is tangent to V* at the origin.

2. M® is locally invariant for the ODE (17). Namely, if Vo € M®, then the so-
lution of the Cauchy problem

V' =G)
4D { V) = Vo
satisfies V() € M? for every |t| small enough.
3. If Vy € M? then the solution of the Cauchy problem (41) satisfies

(42) J@|wmwﬂ:m

where
(43) ¢ = min{—Rel; such that ; is an eigenvalue of DG(G), Re); < 0}.

4. Conversely, if V(t) is a solution of (40) satisfying (42), then V() € M® for
every t large enough.

The proof of Theorem 5.1 can be obtained by relying on an argument somehow
similar to the one exploited in the proof of Theorem 3.1: a detailed proof can be found
in the book by Perko [17] (see also the book by Katok and Hasselblatt [14] for a more
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general viewpoint). One should keep in mind, however, that the stable manifold (i.e.,
a manifold satisfying properties (1), (2), (3) and (4) in the statement of Theorem 5.1)
is unique, while the center manifold is not. As a matter of fact, one can also define a
global stable manifold as

MP = U {V(t) solving (40) and satisfying V(0) € M*}.
t<0

In this way, we obtain a manifold which is globally invariant for (40). Namely, if
Vo € M%, then the solution V() of (41) satisfies V(t) € M? for every t.

5.2 - Applications to the analysis of the boundary layers

Let us now go back to the original problem described at the end of Section 2.2:
given uy, we want to describe the values of u; such that problem

U =fU)— flup)
U0) = uy Jcll»I-Poc U(x) = ug

admits a solution. By relying on part (3) in the statement of the theorem we get that
the previous problem admits a solution provided u; belongs to the stable manifold
M?, whose dimension is equal to the number of the eigenvalues of Df (uy) with ne-
gative real part. If all the eigenvalues of the Jacobian matrix Df(u,) have nonzero
real part, then as a matter of fact one can also prove the converse implication: if the
above problem admits a solution, then u;, € M?®.

5.3 - The slaving manifold of a manifold of equilibria

Loosely speaking, the Stable Manifold Theorem we discussed in the previous
section describes all the solutions of (40) that when t — 4 oo converge exponentially
fast to the equilibrium point 0.

Let us consider a more general situation: assume that there exists a continuously
differentiable manifold £ C R? which contains 0 and is entirely made by equilibria:

YV eE GV)=0.

As aside remark, note that we are not assuming that € is the set of equilibria, namely
we do not rule out the possibility that there are equilibria that do not belong to £. In
several situations, we are led to ask ourselves the following question: is there any
way to describe the solutions of (40) that converge to some point in £? Note that by
applying the Stable Manifold Theorem we describe the solutions that converge to a
given point, here we just require that the limit exists and that it lies somewhere on €.
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A positive answer to the previous question is provided by the theorem below.

Theorem 5.2.  Consider the first order ODE (40) where G : R? — R% is a C?
function satisfying G(0) = 0. Denote by E the space tangent to € at the origin. Also,
as before let V* be the stable space of G at the origin, defined as in (21): assume that
V* is non trivial, namely V° # {6}. Finally, let the constant ¢ be as in (43). Then
there exists a small enough constant 6 >0 and a continuously differentiable
manifold M™ satisfying the following conditions.

1. M™ is parameterized by a function
b BOON (VO E) - R
and it is tangent to V* @ E at the origin.

2. M"™ is locally invariant for the ODE (17). Namely, if Uy € M", then the
solution of the Cauchy problem
{ V' =G(V)

) V(0)=Vo

satisfies V() € M™ for every |t| small enough.

3. If Vo € M™ then there exists Vo, € € such that the solution of the Cauchy
problem (44) satisfies

(45) Jim [V(@©) — Vio|e/? = 0.

4. Conversely, if V(t) is a solution of (40) satisfying (45) for some |V| < 6, then
V(t) € M™ for every t large enough.

The manifold M" can be regarded as a uniformly stable manifold because it
contains the solutions of (40) that converge to some point in £ with exponential
speed uniformly bounded from below. As a matter of fact, the idea behind the
definition of uniformly stable manifold is a particular case of the idea of slaving
manifold. Loosely speaking, the slaving manifold relative to some manifold A
contains all the solutions of (40) that when ¢ — + oo approach A with exponential
speed: see again the book by Katok and Hasselblatt [14] for an extended dis-
cussion. We came back to this in Section 6 by considering in Lemma 6.1 another
class of slaving manifolds.

Theorem 5.2 can be proven by relying on the Hadamard Perron Theorem: see
Ancona and Bianchini [1] and the book by Katok and Hasselblatt [14].
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6 - Invariant manifolds for a class of singular ordinary differential equations

This section focuses on a class of ordinary differential equations in the form

av 1

%ZWF(V),

(46)
where V € Rd, F:RY — R? is a smooth function and { is a real valued, smooth
function. The singularity of the equation comes from the fact that { can attain the
value 0.

6.1 - Motivations

Singular ODEs like (46) may arise in the analysis of the viscous approximation
w +fw), = (Bwu,),

when the N x N matrix B(u) does not have full rank, which is the case of most of the
physically relevant examples. In particular, let us focus on the case of the com-
pressible Navier-Stokes equation in one space variable:

P+ (,DU)T =0

(47) (,Dv)t + (/702 + ]O)m = (va)x
2
(pe +p%)t + (v[%pvz + pe +pr = (kO + vvy),.

Here the unknowns p(t, x), v(t, ) and 0(t, x) are the density of the fluid, the velocity
of the particles in the fluid and the absolute temperature respectively. The function
p = p(p, 0) > 0is the pressure and satisfies p, > 0, while ¢ is the internal energy. In
the following we will focus on the case of a polytropic gas, so that e satisfies
e = RO/(y — 1), where R is the universal gas constant and y > 1 is a constant specific
of the gas. Finally, v(p) > 0 and k(p) > 0 denote the viscosity and the heat conduction
coefficients respectively.

Let us now compute the equations satisfied by the traveling waves and the steady
solutions of (47): for simplicity, in the following we focus on steady solutions only, but
the considerations we make can be repeated with small changes in the case of tra-
veling waves. We have to consider the equation

(pv), =0
(48) (/)?}2 + D) = V02,

(v[%pvz + pe +p]>x = (kO + vovy),.
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To write (48) in a convenient form we set
W= (vxa 0.)

and hence we get

<49> (4 22) ()= (8 2)(%)

Here, Ajs € R? is arow vector, As; € R? is a column vector and they both depend on
(p,v,0,%). Finally, Ags and b are both 2 x 2 matrices depending on (p, v, 0, ). The
exact expression of these terms is not important here: the important thing to keep in
mind is that the block b is invertible.

To write (49) in a more explicit form, we first assume v # 0 and from the first line
we get

1 _
pr=== Az - w,
where - denotes the standard scalar product. By plugging this expression in the last
two lines of (49) we get

1 -
2y = bt |:A22 - 5 A12A21:| wW.

Note that this expression makes sense since b is invertible. By combining the pre-
vious considerations we get that (48) can be written in the form (46) provided that

—A W
V= eR®,  FOV)= vib €R®
b1 |

Agov — Ag1Asp

S

and {(V) = v € R. Note that v is the velocity of the fluid and in general it can attain
the value 0.

Remark 6.1. FEquation (47) is the compressible Nawvier-Stokes equation
written in Eulerian coordinates. If we write the Navier-Stokes equation using
Lagrangian coordinates and we compute the equation satisfied by the traveling
waves and by the steady solutions, we obtain standard ODEs with no singularity.
See for example Rousset [18] for related analysis.

6.2 - What in principle can go wrong with (46)

There is a wide literature concerning the analysis of equations in the form

a1 .
el S 7
(50) = FV), VeR’,
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where ¢is a parameter that can go to 0 and F* is a family of smooth functions. For an
overview, see for example the lecture notes by Jones [12], which in particular provide
an overview of Fenichel’s works [8, 9]. The reason why we cannot directly apply
these results to the analysis of (46) is because the singularity {(V') depends on the
solution V itself, while in (50) the singularity is just a parameter. Hence, when
handling (46) we have to tackle the possibility that z(V') is nonzero at time ¢ = 0, but
then z(V) reaches the singular value 0 in finite time. When this happens, the solution
may experience a loss of regularity, as the example below shows.

Example 6.1. Let us consider the ODE

{dvl/dt = —1)2/’[)1

(61)
d?)z/dt = —V2.

It can be written in form (46) provided that V = (v, ), (V) = v, and

F(V) = (_;)72’72}1 )

The solution of (51) is

52 v1®) = \/11(0) + 02(0) (e — 1)

vo(t) = v2(0)e".

By choosing v2(0) > v1(0) > 0, we get that (V) = v1(f) can attain the singular value
0 for a finite t. Note that at that point t the first derivative dv; /dt blows up: thus, in
particular, the solution (52) of (51) is not cL

6.3 - Goals in studying (46)

The analysis concerning (46) and discussed in the following aims at applying the
ODE techniques described in the previous sections to the study of the viscous pro-
files of the Navier-Stokes equation.

More precisely, the goals are the following.

1. Find possible extensions of the Center Manifold Theorem 3.1 and of the
Uniformly Stable Manifold Theorem 5.2 to the case of the singular ODE (46).
Note that both theorems provide local results, so to study this extension we can
restrict to the solutions of (46) belonging to a small enough neighborhood of an
equilibrium point.
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2. Rule out the losses of regularity discussed in Example 6.1. To do so, we have to
find conditions that guarantee that the following property is satisfied.
(53) If {(V)#£0att =0, then {(V)#£ 0 for every t > 0.

3. Impose on (46) hypotheses satisfied by the viscous profiles of the Navier-
Stokes equation.

6.4 - Hypotheses

This section lists the conditions imposed on the functions F' and { to study (46),
and comments on them.

Hypothesis 6.1. The functions F : RY = R? and (:R?— R are both
reqular (being of class 2 is enough). Also, F(6) — 0 and C(ﬁ) =0.

The second part of Hypothesis 6.1 simply says that we are assuming that our
equation is singular and that the equilibrium point is 0, which of course is not re-
strictive.

Hypothesis 6.2. We have V((0) # 0.

Let S be the singular set
S:={V: {(V)=0}.

By relying on the Implicit Function Theorem and on Hypothesis 6.2 we get thatin a
small enough neighbourhood of 0 the set S is actually a manifold of dimension d — 1,
where d is the dimension of V.

Hypothesis 6.3.  Let M be any center manifold for

av
(64) 5 =FW)
about the equilibrium point 0.1 1|V is sufficiently small and V belongs to the in-

tersection M°N S, then V is an equilibrium for (54), namely F(V) = 0.

To understand why we impose Hypothesis 6.3 let us consider the following simple
linear example.
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Example 6.2.
dvl/dr = 7)2/8

(55) di)g/d‘[ = —1)1/8
de/dt = 0.
The first component of the solution is
v1(t) = Acos (t/e) + Bsin(t/e),

where A and B are real parameters. Letting ¢ — 07, we get that in general if t # 0
there exists no pointwise limit of vi. Note that (55) does not satisfy Hypothesis 6.3.
Indeed, the center space is the whole R® and it coincides with the center manifold.

However,
V2
F (V) = —V1
0

1s not identically zero when & = 0.
We now assume that there exists a non-degenerate set of equilibria.

Hypothesis 6.4. There exists a one-dimensional manifold of equilibria £
for the equation
av

v F)

which contains 0 and which is transversal to S.

The one-dimensional manifold £ is transversal to the manifold S if the intersec-
tion S N M has dimension zero.

Hypothesis 6.5. Forevery V € S,
V{V)-F(V)=0.
Hypothesis 6.5 is needed to rule out losses of regularity like the one in (51).
Indeed, let us go back to Example 6.1 we have

—V201

F(v,ve) = ( >, {(,v2) =v; and S = {(v1,v2): v1 =0},

hence
Vi(1,v2) - F(v1,v2) = — 2,

which in general is nonzero on S.
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To introduce the last hypothesis, let us consider the function
VW) -F(V)
v)

Thanks to Hypothesis 6.5 and to the regularity of the functions { and F', the function
G can be defined by continuity on the surface S.

G(V) =

Hypothesis 6.6. Let U € S be an equilibrium for (54), namely (V) = 0 and
F(V) = 0. Then
GV)=0.

Like Hypothesis 6.5, Hypothesis 6.6 is needed to rule out losses of derivatives.
Indeed, let us consider the following example.

Example 6.3. Let us consider the ODE

dvy /dt = —v3
(56) d’l)z/dt = —7.)2//01
dvg/dt = —7s3,
then we can set
— V301
Fvy, vz, v3) = ( — Vg ) , (1, v2, v3) = v1 and S = {(v1,v2,03) : v1 = 0},
— V301

so that
V- F=—-vv1=0 onS

and hence Hypothesis 6.5 is satisfied. As a matter of fact, one can verify that
Hypotheses 6.1 ... 6.4 are all satisfied as well. However, Hypothesis 6.6 is violated:
ndeed,

Gy, vo, v3) = — 03,
which is in general different from 0 on
{1, va, v3) : such that F(vy, va, v3 ) = 0 and {(vy, vs, v3) = 0} = {(0,0,v3)}.
By solving (56) explicitly we get, after some computations,
v1(t) = v1(0)A — A) + Av;(0)e !
va(t) = B[(1 — A)e! + A0

v3(t) = Av1(0)e ™,
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where A and B are suitable constants depending on the initial data. If
(A —Dv1(0) > 1, then the first derivative dvs/dt blows up at t =1In(A/A —1).
Note that this is exactly the value of t at which vi(t) attains 0. In general, for
every v1(0) > 0 if 1/(A — 1)v1(0) is not a natural number, then the solution is not
m C™ for m =[1/(A — Dv1(0)] + 1. Here [1/(A — 1)v1(0)] denotes the entire part.
Thus, we have a loss of regularity in higher derivatives.

Remark 6.2. Omne can verify that Hypotheses 6.1... 6.6 are all verified by the
viscous profiles (travelling waves and steady solutions) of the Nawier Stokes
equation (47).

6.5 - A toy model

To get a flavor of the behaviors we expect to encounter, we start by considering
the case when the singularity is only a parameter. Actually, to simplify things we
focus on a toy model where everything is linear and we can carry out the computa-
tions explicitly. Let us consider the system

d’l)1 /dt = — 5?)1
(57) dvs /dt = —vs /e
de/dt = 0.

First, we note that the subspace
E={0,0,¢: ¢cc R}

is entirely made by equilibria. If ¢ > 0 the uniformly stable manifold relative to £ is
the whole space R, since any solution of (57) decays exponentially fast to a point in E.

However,

5t

v ~e® and vy ~ e e

In other words, the speed of exponential decay of v; is bounded with respect to ¢ and
v is not affected by the presence of the singularity. Conversely, the speed of ex-
ponential decay of v, gets faster and faster as ¢ — 07. The second component of the
solution is thus strongly affected by the presence of the singularity and can be re-
garded as a fast dynamic, while the first component is a slow dynamic.

Summing up, in (57) any orbit lying on the uniformly stable manifold relative to &
decomposes as the sum of a slow and a fast dynamic.

To see what happens if we look for extensions of the Center Manifold Theorem,
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let us modify (57) by adding two more equations:

dvy/dt = —5v;
dve/dt = — vy /e
(58) dvs/dt = —vy
dvy/dt = v
de/dt = 0.

In this way, we have that
v3(t), v4(t) ~ Acost + Bsint

and hence we have a nontrivial center manifold. Note that we could not have added
something like

dvg/dt = —vy/e
d7)4/dt=7)3/8

because this would have violated Hypothesis 6.3. In other words, the center manifold
can contain only slow dynamics.

6.6 - Slow and fast dynamics in the general case

Singling out the slow and the fast dynamics and defining the center and the
uniformly stable manifold for the toy model (58) is a trivial task. However, to un-
derstand how we can proceed in the general case, let us first make some preliminary
considerations, still focusing on (58).

1. We introduce the change of variables
T=1/e
Then (58) becomes

dvy/dt = —bvse
dve/dt = — e
(59) dvs/dt = —v4e
dvy/dt = v3e
de/dr = 0.

2. We can single out the slow dynamics of (58) by considering the center space of
(59), which is given by {(v1,0,v3,v4,8)}.
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3. Let us now restrict the analysis to the center space of (59): we obtain

d’l)l/df = — 5’018

dvg/d‘[ = —V4&
d7)4/d‘[ = V3¢
de/dr = 0.

Hence, we can come back to the original variable ¢, obtaining an equation with
no singularity in it:

dvl/dt = —51)1
dvg/dt = —1V4
60
( ) d?}4/dt = V3
de/dt = 0.

4. We can then consider the center space of (60), which is given by V*
= {(0,v3,v4,¢)}. Then the center manifold of the original system (58) is exactly
V¢. Also, we can observe that & = {(0, 0, 0, ¢)} is a subspace of equilibria for (60)
and we can consider the uniformly stable space of (60) with respect to £ it is
given by {(v1,0,0,¢)}.

5. Let us now consider the uniformly stable manifold of (58) with respect to the
manifold of equilibria £ = {(0,0,0,¢)}. It is given by {(v1,v2,0,0,¢)}: as men-
tioned before, any solution in there writes as a fast dynamic (in this case,
(0,v2,0,0)) plus a slow dynamic (in this case, (v1, 0,0, ¢)) belonging to the uni-
formly stable manifold of (60) with respect to £.

Let us now discuss how one can proceed in the general case

av 1

(61) %)

FW).

Actually, we will not enter into the technical details, which can be found in [4]. The
heuristic idea is proceeding by following the same steps (1). . .(5) as in the case of the
toy model. Of course, now we have to handle additional difficulties coming from the
fact that there is a non linearity in the function F'(V). Also, {(V') is no more a para-
meter, but depends on the solution itself, and hence we have to rule out the possi-
bility that {(V) # 0 at ¢t = 0 but {(V') reaches 0 in finite time.

Actually, as a preliminary step it is convenient to introduce a change of co-
ordinates which allows to write (61) in a more convenient form, however, this is a
mostly technical step and in here we do not go into the details (they can be found
in [4, Proposition 4.1]).
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Let us now informally discuss how to extend the previous steps to the general
case (61).

1. We would like to use the variable t defined by solving the Cauchy problem

) { dr/dt = ((V(t))
7(0) = 0.

However, (62) defines a change of variables 7:] — oo;+ oo — ] — oo; + oo
provided that {(V(t)) does not attain the value 0. Hence, we actually proceed as
follows: we study the equation

av

(63) - =FW)

which is formally obtained from (61) by relying on (62). In particular, we focus
on the solutions of (63) lying on suitable invariant manifolds. We then prove
that for these solutions, the Cauchy problem

{ dt/dr = 1/{(V(2))

4
(64 10)=0

defines a smooth diffeomorphism ¢ : ] — oo; + oo — ] — oo; 4 ool. Hence, we
can come back to the original equation (61) and a posteriori infer that the
change of variables (62) is well justified and it is inverse of the one defined by
(64), so our argument works.

2. Hypothesis 6.1 implies that F(0) = 0. We then consider the ODE (63) linear-
ized about the equilibrium point 0. We then say that a manifold of the slow
dynamics is a center manifold of (63) about the equilibrium point 0 (any center
manifold works).

3. By exploiting Hypothesis 6.6, one can show that if V(¢) is a solution of (63) lying
on the manifold of the slow dynamics, then the Cauchy problem (64) defines a
continuously differentiable diffeomorphism. Hence by restricting to the
manifold of the slow dynamics we get that (61) and (63) are equivalent. In
particular, by relying on Hypothesis 6.3 we can show that the ODE satisfied by
the solutions V(¢) lying on the manifold of the slow dynamics is actually non-
singular.

4. We then consider system (61) restricted on the manifold of the slow dynamies
and we consider a center manifold about the equilibrium point 0: we can di-
rectly apply Theorem 3.1 because this system is nonsingular. This manifold
can be regarded as a center manifold of the original system (61): more pre-
cisely, we get the following theorem.



[35]

NOTES ON THE STUDY OF THE VISCOUS APPROXIMATION, ETC. 185

Theorem 6.1.  Asswme that Hypotheses 6.1 ... 6.6 are all satisfied. Then
there exists a manifold M defined in a small enough neighborhood of 0 and
satisfying the following conditions:

(@) if U(t) is a solution of (61) lying on M and (V) # 0att = 0then {(V) # 0
forevery t € R.

(b) M€ slocally invariant for (61). Namely, if V€ M°, then the solution of the
Cauchy problem

av 1
g WF(V)
V)=V

satisfies V(t) € M° for |t| small enough.

(c) There exists a small enough constant 6 > 0 such that the following
holds. If V() is a solution of (61) satisfying |V (t)| < J for every t € R,
then V(t) € M-

Remark 6.3. In the statement of the Center Manifold Theorem 3.1 and
of the Uniformly Stable Manifold Theorem 5.2 one assumes that suitable
subspaces (the center and the stable subspace, respectively) are non trivial.
One should actually add an analogous condition to the statement of
Theorem 6.1. However, to simplify the notations we can use the convention
that [F(ﬁ) /C(ﬁ)] = 6/0 =0 and that if a subspace is trivial then any
manifold parameterized by this subspace is just the origin 0. With these
conventions the statement of Theorem 6.1 is formally correct. We will
adopt the same convention i the statements of Theorem 6.2.

5. We now want find an extension of the Uniformly Stable Manifold Theorem.

First, we recall that Hypothesis 6.4 ensures that there is a manifold of equi-
libria & for (63) which is transversal to the hypersurface {V : {(V) = 0}. One
can show that the points of £ are also equilibria for system (61) restricted on
the manifold of the slow dynamies.

By relying on the analogy with the toy model, we would like to define a
manifold M"® such that any solution lying on M" decays exponentially
fast to some point in £. Also, any orbit lying on M"* should be written as
the sum of a fast dynamic and of some stable component coming from the
slow dynamics. However, since we are in the non linear case we expect
some interactions between the different components. The precise result is
the following.
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(65)
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Theorem 6.2. Let Hypotheses 6.1... 6.6 hold and denote by & the same
manifold of equilibria as in Hypothesis 6.4. Then there exist a constant ¢ > 0
and a manifold M"™ which is defined in a small enough neighborhood of 0
and satisfies the following conditions.

(@) If V(@) is a solution of (61) lying on M™ and (V) # 0att = 0then {(V) # 0
foreveryt > 0.

(b) M™ is locally invariant for (61). Namely, if V.e M™, then the solution of
the Cauchy problem

av 1
{ % = mF(V)
V)=V

satisfies V(t) € M™ for |t| small enough.
(e) If V(t) lies on M™ then there exists Vo, € & such that

Jim V) — Viole® = 0.
(@) If V(t) lies on M™ then
V(t) = Va@®) + Vi) + V, (D),
where Vy lies on the manifold of the slow dynamics and Vy satisfies
Jim_|V@let =0
Here the variable t is defined by solving the Cauchy problem (64). Finally,

V) s an interaction term which is small with respect to the previous two
(in the sense specified in the statement of [4,Theorem 4.2]).

The proof of Theorem 6.2 relies on the following lemma of standard flavor.

Lemma 6.1. Consider the ODE

av
P F)

and assume that Hypothesis 6.1 is satisfied and that the center and the stable
space about the equilibrium point 0 are both non-trivial. Let Sy be a sub-
manifold of a center manifold of (65) about the equilibrium point 0. Also, as-
sumethat Sy is locally invariant for (65). Then there exists a constant ¢ > 0 and
a manifold M which is defined in a small enough neighborhood of 0, is locally
mwariant for (65) and satisfies the following properties. If V() lies on M then

V() = Vo() + V(o) + V)(0),
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where Vy lies on So and Vy satisfies
1ir+n [Vi()|e = 0.

Moreover, V, is an tnteraction term which is small with respect to the previous
two (in the sense specified in the statement of [4, Proposition 3.1]).

Note that, in particular, the statement of Lemma 6.1 ensures that any so-
lution lying on M becomes exponentially close to an orbit on Sy and hence M
can be regarded as a slaving manifold for Sy. The proof of Lemma 6.1 is a bit
technical, but it can be obtained by relying on a fixed point argument.

Toward a proof of Theorem 6.2, one first defines Sy as follows. Consider the
restriction of (61) to the manifold of the slow dynamics: as pointed out before,
this system is non singular and £ is a manifold of equilibria. Hence, one can
directly apply the Uniformly Stable Manifold Theorem 5.2 and define Sy as the
uniformly stable manifold relative to £ of system (61) restricted to the manifold
of the slow dynamics. By applying Lemma 6.1 and by relying on some more
work one can then conclude the proof of Theorem 6.2.
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