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A dive into shallow water

Abstract. In this tutorial, we attempt to furnish a basic introduction on shallow
water modeling with specific attention to Saint-Venant equations. We propose a
selection of results, including derivation of the model, well-posedness of the Cauchy
problem, existence and stability of roll-waves, kinetic formulation and the corre-
sponding hydrodynamical limit, presented, whenever possible, in a simplified way
and designed mainly for readers that are not expert in the field.
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1 - Introduction

The interest of the mathematical community in Shallow Water equations have
been constantly increasing in the last fifty years. A parameter to roughly esti-
mate such growing attention is the ratio of the articles containing the words
“shallow water” in the title to the total publications, as registered in MathSciNet
database: this index has been approximately equal 6 x 10~° in the 50s and in the
60s and the increased to 8.6 x 107 in the 70s, to 2.8 x 10* in the 80s, to
4.4 x 107* in the 90s, and to 8.8 x 10~ in the last ten years (the last two years
exhibit an evident upward trend, as the same parameter amounts to 1.2 x 103
and 1.0 x 1073, in 2008 and 2009, respectively)!. In this respect, the Shallow
Water models analysis has recently trespassed honorable “competitors” as
Boltzmann and Hamilton—Jacobi research areas (see Fig. 1). Such great attrac-
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Fig. 1. The ratio of the publications on the subject to the total number of publications as
registered in MathSciNet database year per year relative to the period 1980-2009: Shallow
Water (continuous line), Boltzmann (dashed line), Hamilton—Jacobi (dotted line).

! For comparison, both the Navier—Stokes and Schridinger equations has been stably
over the level 2 x 10~ in the last twenty years, and at about 4 x 10~ in the last three.
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tion has different roots, somewhat summarised in the fact that shallow water
models settle into a lively cross-road where real phenomena and affordable
theoretical studies meet and positively interact.

The term shallow refers to the fact that the water/fluid dynamics under in-
vestigation satisfy the assumption that the horizontal length scale L is much greater
than the height length scale H, so that the ratio e = H/L can be considered small
and, in the limit ¢ — 0, simplified equations are formally derived. The first and
simpler mathematical model has been proposed by Adhémar Jean Claude Barré de
Saint-Venant (1797-1886) and published in [46]. The model consists in a hyperbolic
system of two partial differential equations with a structure that is the same of the
system for isentropic gas-dynamics in Eulerian coordinates in the case of pressure
with a power-law form with exponent equal to 2. Natural modifications of the model
emerge when additional physical effects are taken into account: viscosity, friction,
Coriolis force... As a consequence, the shallow water equations appear to be widely
applicable to describe different situations in fluid dynamics (river and channels
flows, atmospheric and oceanic motions...), partially explaining the large amount of
publications in the field.

This tutorial aim to trace an introductory path intended for not-expert and, thus,
the content is self-contained and simplified, whenever possible. Four different areas
have been selected: derivation of the equations (Sec. 2), well-posedness of the
Cauchy problem (Sec. 3), existence and stability of roll-waves (Sec. 4), kinetic for-
mulation and hydrodynamical limit (Sec. 5). The results presented here are slightly
modified versions of published ones; the reader interested in a deeper dive into the
subject is recommended to refer to the original articles (in particular, [28, 36, 2]). For
recently published Lecture Notes on the same subject, we flag ref.[5].

2 - Derivation of the model

In the analysis of flow of incompressible fluids, two different situations are
usually distinguished: the pipe flow and the open channel flow. In the former case,
the geometry of the region occupied by the fluid is fixed and regarded as a datum of
the problem; in the latter, the one that we will consider here, the liquid flows with a
free surface and the geometry of the domain, where equations should be solved, is an
unknown.

Analyzing a model over a domain with variable shape is an additional difficulty
with respect to the case of a fixed form, and any reasonable reduction able to cir-
cumvent such obstacle is tempting. The shallow water assumption gives one of such
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reductions: when the open channel flow has a vertical scale that is small relatively to
the horizontal one, it is possible to derive simplified equations by averaging the
vertical variable and disregarding appropriate terms as consequence of the small-
ness assumption. The first derivation of such system has been performed by Saint-
Venant (who also gave fundamental contribution to stress analysis), at the age of
seventy-four years [46]; since then, the simpler model for shallow water, consisting
in a system of hyperbolic conservation laws, is called Saint-Venant system. Depending
on assumptions and approximations, shallow water models may also contain other
terms and give raise to different type of partial differential equations. Let us also
stress that the smallness assumption on the ratio between vertical and horizontal
scale is closely related to the one used to derive modeling equations for thin films (see
[40] for a detailed account on such kind of phenomena from a physical perspective).

Here, we limit ourselves to the simpler case proposing two different formal
derivations. Firstly, we deduce the shallow water system starting from first
principles: conservation of mass and momentum. Since such derivation is based on
anumber of crude simplifications, we consider a different approach stemming from
a formal (but sound) reduction of the Navier-Stokes equations for incompressible
fluids. In this second approach, we will also consider how the equations are mod-
ified in the presence of viscosity; on the contrary, for the sake of simplicity, we will
not examine the terms relative to the presence of friction and Coriolis force, that
are also widely considered in the literature. For completeness, let us also stress
that shallow water model may also be obtained starting from the weak formulation
of Navier-Stokes equations with free surface, as recently showed in [8] in the case
of Bingham fluids.

By all accounts, the rigorous mathematical justification of shallow water equa-
tions starting from full incompressible Navier Stokes equations with free surface has
been obtained very recently in [10, 9], the main differences between the two articles
being related on boundary conditions at the bottom and at the free surface; speci-
fically, [10] refers to no-slip conditions at the bottom and surface tension forces at the
free surface, while [9] considers Navier conditions at the bottom and zero surface
tension. We refer to the original articles for details on how such convergence result
can be proved.

2.1 - A shortcut: departing from first principles

The simpler model for shallow water consists in a single layer of flowing water
with vertical height small with respect to the horizontal dimensions. We assume the
bottom, located at z = 0, is covered with a stationary solid layer of height Z = Z(x, y)
over which the water, with constant density p, flows. The height of the water column
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is described by the variable & = h(x,y,t), so that the height of water surface is given
by the sum & := & + Z. The unknown variables are the height 2 and the velocity v of
the water and they are coupled by the relations arising from conservation of mass
and balance of momentum.

Conservation of mass. As consequence of the reduced size of the vertical di-
mension, we assume that the velocity v of the water depends only on the horizontal
variable (and time, of course), v = v(x, y,t), and have identically zero vertical com-
ponent. Consider a column of water situated over the square @ centered at the point
(x,y) with sides ¢; of length L > 0. The mass contained in the column is (approxi-
mately) given by M = p L? h(x,y, t); the time rate change of mass is due to the flux
through the boundary of the column

thLU'n Z—PL{hUi(x+%7?/at)_hUi<m_g»?/>t>
£;€0Q 4
+hv-j (x,y+%,t>hv~j (w,y%,t>}

where n indicate the outward normal to the side ¢; and i, j indicate the normal vectors

(1,0,0),(0,1,0), respectively. Thus, we obtain the balance equation

on 1 (L (oL
E"‘I—J{hv-l <m+§7?/7t>—hv-t (x_gayat)

+hv-j <x,y+%,t>—hv-j <x,y—%,t>} =0.

Passing to the limit L. — 0, we obtain the usual linear transport equation
oh ..
5% +div(hv) =0,

that describes the conservation of mass.

Momentum balance. Ignoring effects due to other forces different from pres-
sure, the horizontal momentum equation given by the Newton’s second law of motion
reads as

av
(1) pgr = —gradp
where V = v(x(t), y(t), ) is the velocity of a particle moving with the fluid, p is the
pressure, grad is the horizontal component of the gradient. Since

v _oo owde ovdy i
dt ot Ooxdt Ooydt Ot
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the balance equation (1) can be rewritten as

a

(2) 5t

+v-Vv +})g‘radp =0.

To complete the derivation we need to determine an expression for the pressure p in
term of the unknowns % and v, and, eventually, the variables (x, ¥, t). Such expression
is based on two assumptions relative to the pressure: one at the free surface
¢ = Z + h and one inside the layer. The pressure p = p(x, y, 2, 1) at the upper surface
is assumed to be constant:

p,y, E(x,y,1),t) =po € R.

Additionally, the horizontal character of the fluid trajectories makes the vertical
variations so small that the Archimedian principle for static fluid is applicable
guaranteeing the istantaneous hydrostatic balance between vertical pressure’s gra-
dient balances gravity (generating a buoyancy effect): in formulas, we assume

Ip
3 L)
3) e~ 9P
Later on, we will see how this relation can be formally deduced from the Navier-
Stokes equation for incompressible fluids, when the vertical characteristic length is
assumed to be much smaller than the horizontal one.
Integrating with respect to z in [z, £] we obtain

¢

D@y, 2,8) = Py, E,8) — j %(ac,y,g, Bdl = po +gp(E - 2),

?

sothat grad p = pggrad(h + Z). Inserting in the momentum equation (2), we deduce
the system satisfied by % and v, that is

oh .
e +div(hv) =0,

i

8t+v~Vv +ggrad(h+ Z) =0,

or, in conservative form,

oh .
e +div(hv) =0,

o(hv)
ot

—i—div(hv QU +;gh2ﬁ[) =—ggradZh,

where w ® v = (w; v;); and div indicates the divergence taken row by row.
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2.2 - Derivation from incompressible Navier-Stokes equations

Next, we propose a derivation of the shallow-water system departing from
the open channel flow dynamics described by means of the Navier-Stokes
equations with appropriate conditions on the free surface. Such approach per-
mits to obtain sound derivations of the terms arising from the presence of
viscosity effects, friction with bottom, . ... Different regimes give raise to dif-
ferent limiting equations and the choice is dictated by the specific phenomenon
one is modeling (see [4, 11, 18] and discussions therein, for other significant
situations). Here, we closely follow [28] simplifying the presentation by dis-
regarding both Coriolis and friction terms (see [20] for the one-dimensional
case).

We consider the Navier-Stokes equations

DivU =0,

%—FDN(U@ U)=Dive(U)+ G

where Div is the three dimensional divergence operator, U € R? is the velocity,
oU) € R? x R? is the total stress tensor, Div a(U) are viscosity forces and G € RS
describes external vector fields (in this case, gravity). The system is considered in a
domain of the form

{(,y,2) : Z(x,y) <z < &x,y,0}

where Z describes the bottom topography and & the free surface, so that the function
Wi, e, y) = E(x,y,t) — Z(x,y) gives the height of the fluid column above the point of
coordinates (x,¥) at time {. The system has to be complemented with boundary
condition at the top and at the bottom of the domain.

At the free surface, we assume viscosity of air negligible and we ask for the
continuity of the normal component of the stress

O-(U)ns = — Po N, at z = f(xay7t)

where n; is the outward free surface normal, and py the atmospheric pressure.
At the bottom, disregarding friction terms, we assume both a wall-law and an
impermeable condition

{O’(U)an:O at z=Z(x,y)

U"anO

where 7; is the outward normal of the domain at the bottom and ¢ is any vector
tangent to the surface Z.
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Remark 2.1. A capillarity term could be incorporated in the analysis by re-
placing, in the boundary condition at the free surface, the term py with py — fx
where f is a capillarity coefficient, and « = «(t, x, %) denotes the mean curvature of
the surface ¢ at (x,y). Also friction effect could be taken into account by adding
appropriate terms in the bottom boundary conditions. Both capillarity and friction
are considered in [28].

Neglecting turbulence effects, we assume the total stress tensor to be
oU) = —pl+2uDU)*

where p is the local pressure of the fluid, x the dynamical viscosity and (DU)* is the
viscosity tensor, that is the symmetric part of DU. The proportionality of the visc-
osity tensor with respect to (DU)" is sometimes referred to as Newton’s viscosity law
and therefore the fluid is said to be newtonian.

Taking in account the specific form for the total stress tensor, the Navier-Stokes
equations for an incompressible fluid reads as

DivU =0,

%+Div(U®U+M) =2uDiv(DU)" + G

with boundary conditions

(p — po)ns — 2 (DU) ns =0 at z = &(w,y,1),
(4) (pI —2u(DU) )y, -7 =0 at z = Z(x,y),
U-n,=0 at z = Z(x,y),

where 7 is any tangent vector to the bottom surface Z. The conditions at the bottom
correspond to the so-called Navier conditions in the absence of friction.

Next, we assume that the dynamics is gravity driven, meaning that the unique
external force is gravity, and we disassemble horizontal and vertical directions to
reveal the structure emerging from the shallow water assumption. The final system
of equations will couple the height of the water column % and the vertical averaged
velocity

1 ¢
v(x,y,t) i =——— Jv(ac,y, {,td¢

h(,y,t)
Z

where U = (v, w). Letting G = (0,0, —¢g) and denoting by div the divergence op-
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erator with respect to the horizontal variables (x, ), the system becomes

ow
div +—:0
ivo ,

ov o(wv) v )
8t+d1v(v®v)+8—+gradp 2 div (dv)* +,uaz—|—,ugrad(az)

2 2
a—+d1v(wv)+8(w) 0 o

5t % —|—& adlvv+,qu+2/4(92 g.
The vectors ng, n; are given by the formulas
_ (—grad¢ 1) 1) _ (gradZ,-1) ~1)"

\/1+|g"radf \/1+|gradZ

The boundary conditions at the free surface z = ¢ turn into

(p — po) grad & +u{a—v + grad w — 2(dv)" grad é} =

0
D —Po +,u{gradf <8 + gradw) — 2%@0} =0,
and, at the bottom z = Z,
. ov
{(p[ — 2u(dv)") grad Z + u % + gradw
v ow
—,u(gﬁ—gradw)gradZ —-p+2u 5} -7=0,

v-gradZ —w=0

where 7 is any vector normal to the surface Z. By choosing as base of this tangent

plane the vectors
(1,0,0.2) 0,1,0,2)

\/1+|8EZ|27 V14 19,21

the first condition at the bottom changes into
N ov .
((p] — 2u(dv)") grad Z + ,u{% + gradw})n
v ow
+ (—ﬂ{g + gradw}gradZ —p+2u &) oZ =0,
. v .
(pI — 2u(dv)") grad Z + R gradw ; | j

v ow
+ (_”{E + gradw}gradZ —p+2u E) 0,7 =0,
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that is, in vectorial form,

ov N v ow

5 + gradw — 2 (dv)*grad Z = { (5 + gradw) -grad Z — 2 E}gradz
holding at the bottom z = Z.

Conservation of mass. Following [20], we introduce the indicator function
O, 2,Y,2) = Xz 2elz )y -

Since the particles move with speed U and the fluid is incompressible (i.e. DivU = 0),
there holds

%—i—Div(cj}U) zg—f—&-div(gév) +88—?;J: 0.

Integrating with respect to z in [Z, +0), we infer

+00

oh . o

0=+ J {dlv(qbv) *a@:} d¢
A

400
oh .
gﬂhv( J ‘15‘“15) +¢(v-gradZ —w)|,_, =0.

Z

Hence, since v - grad Z and w coincide at the bottom, we obtain

¢
g}tb—i—div(Jde) =0,

Z

that is
oh . _
E + le(hU) =0.

For later reference, by integrating in [Z, £] the transport equation for ¢, we get

14
oh .. 0
a-kdlv(]vdé) — (8—f+v gradf—w)
z

and thus we have

+ @ -gradd —w) =0
z=¢ =7

(5) %—&—v-gradé—wzo at z=¢

that is a relation between the horizontal and the vertical component of the speed U at
the free surface ¢.
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Scaling. Next, we a-dimensionalize the system so that parameters describing the
characteristic scales appear into play and relative sizes of characteristic lengths,
horizontal L. and vertical H become apparent. Set

HV L
=— T:.=—= P.=V?
w 7 v V
were W, V., T, P are characteristic scales for velocities (vertical and horizontal), time
and pressure and let us introduce the quantities

6= w=" G W/) LI S
b=y Pege @P= =g T PEp
Expunging for shortness the tildas and deflmng
H L
&:=— Re::V—7 Fr::L

we obtain the system

. ow
d1vv+8——0,
v o(wv)
E—i—dlv(v@v)—kgradp—&— 52
1 1 92 0
(6) ~Re {Zdlv(dv) +—28—Z+grad(a—7:)},
ow O(w?)
ez<(,%+d( )+—8 )+(’)z
10 5 o*w 1
_Re{8 divo + & 4w + 2 82}_ﬁ'

From the second equation, we infer that 8—;27 is of order O(£2) as soon as Re is bounded
away from zero.

Boundary conditions in adimensional form are, at the free boundary z = ¢&,

10v

(p —po)grad<+ - { 25

+ gradw — 2(dv)* grad é}
(7)

p— po+R1 {gradf (8 + ¢ gradw)—2é;w}=0,

and, at the bottom z = Z,
1 ov
& 0z

(8) _ (2 . _g0w
8z+8 gradw | - grad Z 262 grad 7,

+gradw — 2(dv)"grad Z

v-gradZ —w = 0.
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Note that the lattera relations do not depend on the Reynolds number Re and that, at
2 = 7, there holds 5~ = 0()

Hydrostatic approximation. Disregarding the terms of order & in the second
equation of the system (6), we obtain

d 1 19
p__1 .1 (

ow
®) 5= 72 Re o \ W "*2—)

oz

corresponding to relation (3) previously considered (the two equalities coincide when
disregarding the viscosity term, i.e. u = 0). This equality has to be coupled with the
information relative to the pressure at the free surface that is, disregarding the

O(£2)—term,
2 ow

Re 0z at z=¢.

P —DPo=

Integrating equation (9), we obtain

z
1 1 (0 .. 2 Ow
p{,2,y,2) — po = ﬁ(‘f—z)JrﬁJ&dlvvdéJrﬁ &(%yvz’t)

¢

= #(f —2) +Rie {divv(x,y,z,t) —divo(x,y, ¢, t)} +

Using the incompressibility relation, we deduce

2 ow
R_65(x7yazat)-
(10) p(t,x,y,2) = po + (f —2)— {dlvv(oc y,2,t) +divo(z,y, &, t)}

Again, ignoring viscosity, we obtain the usual linear dependence of the pressure with
respect to the height of the water column.

Momentum equation. Since we miss the equation for v, we integrate the equation
for v with respect to z in [Z, £]

14 ¢ ¢ ¢
gjvdé+dlv(J(v®v)dC>—&—Jgradpdé—%divj(dv)*dé
Z Z Z Z
=F:—Fy
where
RS 1 (10v
Fe = atv+(v®v)gradé wv+R {2 % +gradw — 2 (dv)* gradé}

1 ov

=@®uv)gradZ —wv + — { 5 s

+ gradw — 2 (dv)” gradZ}
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Using (5) and the first relation in (7), we deduce
F:=—(v-graddv+ @wev)gradé — (p — pg)’égradé =—(p— po)‘égradé.

Similarly, from (8), we infer

1 v ow
Fy= Re{< +f2gradw>~gradZ2%}gradZ.

Hence

¢ ¢ ¢
%Jvd(—i—div(](v ®v)dC> —&—Jgradpd{—— dlvj(dv) d¢
A A A

= —(p — po) % %

grad & — Rle{(aJrez gradw) -grad Z — Zaw}gradZ.
¢

Next, we consider appropriate reductions of the latter equation obtained by ignoring
small terms in the limit ¢ — 0, giving raise to an equation for the quantity 4 v. In what
follows, we consider the asymptotic regime determined by the position Re ~ O(¢71).

First order approximation. To start with, we consider the reduced system ob-
tained by disregarding all the terms of order O(¢). From rescaled system and
boundary conditions, we deduce

%o v

= 0(e), —

02 5|, = 0@

¢
hence

v v i v
%(x,y,z,t) = E(x/!/vév t) + J @(%%Ca t) dc = 0(3)
Z

As a consequence, we have
i ov
U(f)(/', Y,z, t) = U(.’)C, Y, Z» t) + J&ch Y, Ca t) dC = U(ﬁ(;, y,Zv t) + O(‘S)a
Z
and thus

v(x,y,2,t) = v(x,y,t) + 0(), VU =0Q0+ 0().

Hence, the momentum equation can be rewritten in the form

%(hﬁ) +div(ho @ 0) + Jgradpdé =—(p— pg)}ég'radé + O(e).
7
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At first order, the pressure is given by

1
p(t7.’)€,y,2) = Do +_2 (é - Z) + 0(6)
Fr
so that

1
p{q_ =po+0k and gradp = e grad(Z + h) + O(e).

Thus, we readily obtain the first order approximation for the momentum equation

9
ot

N 1
(ho) +d1v(hv Q0 +2Fr2 I) =52 grad Z h + O(e).

Ignoring the O(e)-term and collecting together with the equation describing con-
servation of mass, we obtain the unviscous Saint-Venant system for shallow water.
Using the conservation of mass, we can also write an equation for the average hor-
izontal velocity v

oo _ 1
(11) E+U~Vv+ﬁgrad(h+Z)—O(e)

where v - Vv indicates the action of the differential dv over the vector v.

Second order approximation. Next, we want to ignore term of order O(¢?) still in
the regime Re ~ O(¢71). To begin with, we obtain a better estimate of v in term of &
by taking advantage of the above approximated equation for the horizontal velocity.
Rearranging the original equation for v and using the incompressibility condition,
we obtain

1 v v . O(wv)
mw—§+dlv(v®v)+gradp+ 5 + O(e)
ov v

—E—&-U-Vv—kgradp—%waﬁ—O(g).

Since % = O(¢) and (11) holds, we also have

1 &%

1
i s = erad <p . é) +0() = 0.

By integration and recalling the bottom boundary conditions (8), we get

v _ v 2y _ .2 — 2
&_azz—‘rO(S)—O(S) and v—v|Z+O(s).

Hence the previously found relation between the horizontal speed and its vertical
average hold also at order O(¢2), that is

v(xvyaz7t) :E(xayat)+0(52)a VXU :6®6+0(82)
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Moreover, by integration with respect to the vertical variable,

¢ S
v .0 o¢ oz
J%d“%J”dC*”h%”’z%
7Z A
N R P

so that the following relation holds true

¢

(dv)* d¢ = h(dD)* + O().

N ——

Therefore, the momentum equation can be provisionally written as
0 i 2
a(hﬁ) +div(ho @ 0) + Jgradpd( “TRe div (k(do)")
Z

2
= —(p —po)|, grad — e divo|, grad Z + O()

having used also the incompressibility condition.
Next, let us consider the expression for the pressure. Recalling that (10) is ob-
tained by ignoring O(¢?) terms, we have

1 2 .. 3

(12) pt,x,y,2) —po+ﬁ(é—2)—ﬁ divo + O(),
since v = v + O(¢?). Differentiating with respect to (x,%) and integrating with re-
spect to z, we infer

i 1 2

= _ = S 3
JgradpdC =2 hgrad & o hgrad divo + O(),
Z

substituting, we obtain

2

== div(h(do)")

0 1 1

— (hv) + di hv®v+—h21>+—h rad Z —

oo V( 2F 12 2B
—ih rad di 6+£di v ad(Z+h)—£di vgradZ + O(£)
“Re'® VU T Re VU EN Re (VU8

2 .
=3q grad(hdivo) + O().
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Hence, we get the final system

O div(he) - 0,

ot
a(hv)+div<hv®v+1 h21> = —ih rad Z
ot 2Fr? F2 8
2 2 .
+R—e div (h(do)) + e grad(hdivo) + O

which gives the viscous shallow water system when ignoring the term O(e?).

Remark 2.2. Taking into account the capillarity effects amounts in replacing
the atmospheric pressure term p, with the difference py — fx where f is a ca-
pillarity coefficients and x is the mean curvature of the free surface £ For the
function x, there holds

K = el + O(>).

In the analysis, this term modifies the structure of the equation in the second order
approximation. Precisely, in equation (12) the term py is replaced by py — f e 4E;
accordingly, the final momentum equation is modified by adding at the right-hand
side the third-order term f¢h grad A(Z + h).

Remark 2.3. When friction of the fluid with the bottom is relevant, the
second condition in (4) has to be reshaped. Specifically, one can assume the following
modified boundary condition

(pI —2uU) )y -t = (k¢ + k. R|U)U -7 atz = Z(x,y),

for any vector t tangent to the surface z = Z, where x; and «; are laminar and tur-
bulent friction coefficients (the latter having the classical form proposed by the
French hydraulics engineer Antoine de Chézy).

Coherently, assuming r; and x; to be O(e), the right hand-side of the momentum
equation is changed by the appearance of a friction term of the form

—ag(h)v — ax(h) b |v|D,

where
To

1+cAn’

ET

h) — ___ &N
ae(h) 1+ eAh)?

ay(h)
for appropriate constants 7,71, A (see [28]). In Section 4, we will consider the hy-
perbolic shallow water model in the presence of friction. Consistently with the de-
rivation, we will consider a linear friction term of the form —r v, 7y > 0, obtained by
formally setting ¢ = 0.



[17] A DIVE INTO SHALLOW WATER 93

2.3 - Emergy dissipation

In the case of flat bottom, the viscous shallow water equations have the form

on +div(hv) =0,

ot

0 . I ,\ 2

a(hv) + dlv(hv QU +W h I) = Re VIh,v]
where
(13) VI, v] := div(i(dv)*) + grad(k divo)

describe the viscosity term. As observed in [19], not all of the possible viscosity term
are energetically consistent: depending on the form of the operator V, the corre-
sponding system of partial differential equations may or may not possesses a
Lyapunov functional describing conservation/dissipation of the total energy (kinetic
+ potential energy).

The form expressed in (13) is energetically consistent. Indeed, let us consider the
energy functional

1
2 Fr?

1
Elh,v] := J{éhv|2+ h2}dxdy.
Assume that the couple (%, v) is a classical solution of the shallow water system and
that appropriate boundary conditions are satisfied (so that all boundary term in
integration by parts vanish). Then

d 1 0 1
%g[h,v] = J{— v '@(hv)—'—é v- <h

dv 1 ok
2 ) ha

Using the equation satisfied by % and & v, we infer

d B . 1, 11 ).
= Elh,v] = J{v dlv(hv®v+2Fr2 K 1) + (Frz h—3 ol >d1v(hv)}
2
+%JUVUZ,U]
_—Jdlv{§h|v| U+ﬁh U}+ﬁJU~V[h,U]

so that

d 2
vl = EJ(U VI[h,v]) dedy.
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From the definition of V, we reckon
d 2 _ X 2 .
%E[h, vl = Re J{v ~div(h(dv)*) } dec dy + Re J{v -grad(hdive) } dedy
2 . . 2 .2
= %o J{v div(2(dv)*) } dee dy e Jh |div o] da dy.
Setting v = (u, v), we have
J(u ~div(l(dv)")) de dy = — Jh{(axu)z + % (0,u+ 0.0)° + (ayv)z} dr dy.
Substituting, we obtain the energy relation
%S[h, o] + Riejh{z do* 43 |divol} diedy = 0.

Different choices for the viscosity term may give unconsistent energy properties (as an
example, see [7] for a discussion relative to the case V[h,v] = h Av considered in [39]).

3 - Well-posedness of the Cauchy problem

In this Section, we discuss the Cauchy problem for the shallow-water system,
previously derived. To simplify the matter, we will always restrict our attention to
the case of flat bottom. The unviscous system fits into the class of hyperbolic systems
of conservation laws, whose existence theory is well-established (see [27]). In the
presence of viscosity, the system exhibits a hyperbolic—parabolic structure that is
known, but less popular. For this reason, we will examine the latter in details when
the spatial variable is one-dimensional, and we will only sketch how to deal with the
multi-dimensional case.

The problem of showing existence of classical solutions for the viscous shallow
water has been addressed in [12] (Dirichlet problem, Holder regularity), [24] (per-
iodic case, Sobolev regularity), [48] (Dirichlet problem, Sobolev regularity) [49]
(Cauchy problem, Sobolev regularity). More recently, low-regularity existence re-
sults has been proved by means of Littlewood—Paley decomposition, [51, 13]. A
different path concerns the analysis of weak solutions. We will not discuss anything
in this direction; for reader convenience, we limit ourselves to flag the articles [25]
(entropy solutions for the hyperbolic system, 1-d) and [6] (weak solutions for viscous
shallow water equations, 2-d).

We will also restrict the attention to the case of a strictly positive height h. In fact,
if the unknown & vanishes at some zones (as in the case of the dam-break problem, a
classical numerical experiment in this context), the flow admits some dry region, and
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the shallow water system suffers of the same kind of degenerations appearing in gas-
dynamics in the case of the presence of vacuum.

3.1 - The shallow water system without viscosity
The shallow water system in the absence of viscosity is

Oh
E + div(hv) =0,

(14) 1, 1
—(hv + div(hv QU+—h I) =——-hgradZ.

ot ) 2Fr? e

Under an appropriate change of variable, the system is symmetrizable and therefore
it fits in a general framework found by Friedrichs and widely explored in [27].
Indeed, assuming Z = constant and setting m = hv = (p, q), the unviscous shallow
water system reads

oh Op 0Oq 0,

ot o oy
op 0 (p* R 9 pqy
8t+8w(h+2Fr2 +8y<h)_0

0

dq 0 (pq 0 (¢ h?
ot " ow () Toy\n T ape
that is, in vectorial form,

ow
8JrA() +A()

where w := (h,p, q) and

0 1 0
Agw) == (—pz/h2+h/F1'2 2p/h 0 )
~pq/h* a/h  p/h

and

0 0 1
Ayw) = —pq/W? q/h p/h |
—@2/h2 +h/Fr* 0 2q/h

We look for a symmetrizer of the system, i.e. a symmetric matrix Ay > 0

a b ¢
r&o = ﬁ&g(ﬂ}) = b d e
c e f
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such that Ag A, and Ay A, are symmetric. In order to satisfy such constraint, two
sets of conditions have to be satisfied, namely

2bp  cq A A dp®> dh epq
CL—FT-‘F 7 (Aop&x)m:(Aopr) __W_FW_F
cp _ \ ep®> eh fpq
T~ (oA = (Ao = =T+ 5 T
Zep fq N \ ep
+T+7 (1&01&?/)23 = (‘A()A/&x)sz = 7
and
bp  2cq _ ., \ _epq f& fh
+7+ 7 (\OA\ ) (AOA\y>31 = 2 _|__
bg ) dpg eq® eh
7= (o) = (AoAy)y = =7 — G5+
dp Zeq \ eq
b+7+ 7 (X()[/X) (A%Oﬁ&y)gz_ﬁl
From the third equations of the two systems, we get
c—_°r_Ta p_ P _eq
h h’ h  h

and introducing the latter relations in the second lines of the two systems, we infer
eh/Fr?* =0, that is e = 0. Substituting, we get

dp* f¢¢  dh _dp* f¢*  fh
h2+h2 +F2 h2+h2 +F2
p 9P fq

B c=— 7 e=0

a=

so that d coincides with f. The final expression for the symmetrizer A is

1

v|? +—=h —u —v
T

—u 1 0

—v 0 1

fk;{)(w) - d(w)

where d =d(w) is an arbitrary positive function and v = (u,v). Choosing
d = d(w) = 1/h, the symmetrizer A, turns to be the hermitian matrix of the energy,
already determined in the previous section,

1
2Fr?

The general theory for hyperbolic systems of conservation laws applies and the

Aow) = d*E where E(h,v):= % vl + n2.
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following statement holds concerning existence of solutions to the Cauchy problem
for (14) with initial conditions

(15) h(x7 Y, 0) = hO(x7 ?/), h’v(‘%.a Y, 0) = (hv)()(xv y)

Theorem 3.1. Let hy, (hv)y € H® for some s > 2 and hy > ¢y > 0 for some cy.
Then there exists T >0 such that the Cauchy problem (14)-(15) has a unique
classical solution belonging to CH(R? x [0, T]) with inf & > 0.

Here we want to pay attention to the system for shallow water taking in account
the viscosity term and we will not survey details on the proof and properties of so-
lutions to the hyperbolic system (14); we suggest to the interested reader the clas-
sical reference book [27].

3.2 - Adding viscosity: hyperbolic—parabolic systems

The shallow water system with viscosity fits into the class of hyperbolic—para-
bolic system (for a short review on the local existence theory for a class of such
system see [45]).

Here, we restrict to the one-dimensional case and flat bottom:

oh 9
EJ“%(M) =0,
d

9 , R\ 40 [, ou

Fixed a reference state (h,), we consider a solution of the form (k. ) + (h,w).

(16)

Without restriction, by invariance with respect to galileian transformation, we can
assume % = 0. Then the perturbation (4, u) satisfies

oh | - ou

— 0
E“rhax“r%(h%)—(),

%_‘_g 1u2+i —iLé (]TL_F}L)G_M
ot ox\2 Fr?2) Reh+hox ox)

Dividing by & and denoting still by % the ratio & /h, we get the system

oh oh ou

E+u%+(l+h)%—o7

ou 8(1 9 ) v Ohou  Pu
+gh

o o “1thowon o2

(17)

2

where g = iiz/Fr2 and v := 4/Re, to be considered for (&,u) € (— 1,00) x R where i
now denotes the ratio between the perturbation of the height of the water with
respect to the reference height % to & itself, i.e. (h — k) /f_L, in the original variable.
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To prove a local existence of solutions of the Cauchy problem for (17), we apply an
iterating procedure based on the resolution of the (decoupled) hyperbolic—parabolic
system

2
8h+U@:F1’ ou o0“u

(18) i T

:F2

for given functions U, F'1, Fs. Tterative procedures of this kind have been used in the
fluid-dynamics context since [35], where a local existence result for viscous, com-
pressible, heat-conducting fluids is proved. Differently with respect to [35], where
the author reduces the analysis to an iteration problem for a single parabolic
equation for the speed variable, here we deal with a coupled hyperbolic-parabolic
iterative system. The two procedures are conceptually equivalent, since reduction to
a single parabolic equation amounts in incorporating into the coefficients of the
reduced equation itself the resolution formulas of the hyperbolic part of the problem.

To start with, we determine some estimates on the solutions 2 and u to the
previous equation needed to close the iterative argument, based on the following
result on ordinary differential inequalities.

Lemma3.1. Givenb = b(t) suchthatb(t) > 0foranyt, lety = y(t) be such that
y(@) > 0 for any t and

Y () +bt) < 2at) Vyt) + My()
then there holds

t

t
(19) y@®) + Jb(r) M9 dr < 2{2/(0) +1 Jaz(r)e*MT dr}eMt.
0

0

Proof. First, we consider the case M = 0. Set

t
Y@ :=y@) + B@®) where B(t) := Jb(‘[) dr.
0

Since b >0, B >0and 0 <y < Y. Hence

Y'(t) <2a®) vy®) <2ad) Y (@®).
Then, integrating the relation (\/)_’ )' < a(t), we obtain

t

VIO +BO < /5O + Ja(r) d.

0



[23] A DIVE INTO SHALLOW WATER 99

Squaring and applying the Jensen inequality, we obtain

t
y®) + B < Z{y(O) +1 Ja2(r) dr}.
0

-Mt

If M is any real number the function z := ye satisfies the inequality

2@+ b)) e ™M < 2a(t)e M2\ /2(2).
Then, by Step 1, we infer

t t
2(0) + Jb(r) e Mdr < z{y(()) +t Jaz(r) oMt dr}

0 0

and multiplying by ¢™’ we obtain the conclusion. O

Next, we derive estimates for the solution of the non-homogeneous transport
equation for the unknown % in (18). Multiplying by % and integrating, we get

d
%Ihliz < 2|Fy|pe|hlpe + J(axU)hz dw < 2|F1[zlhlz + 10Uy |l
R
Applying the inequality (19) with y=|hl5, a=|Fil,;, b=0 and

M := sup |0,U|;~(t), we deduce
7€[0,t]

t
(20) IBf2.() < z{ o[22+t J |Fy2a() e 7 dT}eMt.
0

Differentiating with respect to a the equation of % in (18), we get
0 0
E(axh) + %(U Ozh) = 0y F1.
Multiplying by 9./, we obtain
d
10N, < 210.F100h ] 2 J 0.(U 0,h) B dav
< 2(0,F 2|0l + 2J U 0,1 2 dee

< 2(0,F) | 2|0l — JaxU(ath d

< 200, F1|210chl 2 + 105U | |05hI7,
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so that, still with M := sup |9, U|;(7),
7€[0,t]

t
0,02 (t) < 2{ |0pho|72 + J |0, F|52(1) e M dr}eMt.
0

For k > 2, differentiating k-times with respect to x the equation of £, we get
(OFh); + (U 9,h) = OFF,

and, multiplying by 0¥k in L?, we obtain

d

7 O8R5 < 210FF |2 |0Fh|. — 2 Jaf;(U Dh) O h dee.
Let us consider the integral term at the right-hand side. Since

k
AU ) =Y (;“ ) U dh,

=0
we need to estimate terms of the form
JB’;*jUafc“hﬁf;hdx, j=0,... .k
There holds: for j = 0,

[k aunotns| < ioku ot o

< ‘aﬁvU|Hk‘fl |arh|§{1
forj=1,...,k—1,

ot o0t de] < 0.0y 19201 060

< 10Ul s |0uh|5n
forj =k,

U U 3 h oFh da < [0:U|p |08RI7:

< UBxU(a’;h)Q dw

< 0,U s [0:h 7.

k
Recalling that (f) — 2 we obtain, for k& > 2, the estimate
=0

|Q‘ <.

05l < 210F 1|10 o + 254 0,U | s | Ol

ISH

¢
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Therefore, summing with respect to k,

d

77 |00h s < 2100F 1| s Ochl s + 25100V ocr 100
By setting M[U] := sup |9, U|y1(x), we get

7€(0.t]

t

ERIORS 2{ |Duholf s +1 J |0 F 1[0 (1) e~ Ce MilUTe dr}eCkMk[U”
0

for some constant C' depending only on k.
Summing with (20), we obtain the following result.

Proposition 3.1. Let U,F; : R x[0,T] — R be functions such that, for
some s > 2, there hold

0.U € L*([0,T]; H*"),  Fy e L¥[0,T]; HY),
and, for any integer k € [2,s], set M[U]:= sup |0,U|gs-1.
t<[0,7

Then, if h solves the transport equation oih + U 0.h = F1, there holds
t
21) [l () < 2{ o e + ¢ J P17 (0) dr}eCkMk[U”,
0

for some constant Cj, depending only on k.

Now, we turn our attention to the solution of the non-homogeneous heat equation
for the unknown « in (18). Since

9 & k
a(alu) -V W(aﬂl) = QI;FZ»
there holds
d
7 |OFuf?. + 2v[0f w7, < 2(08F| |0l

Applying (19) with b = 2v|F1u|7., @ = |05 F2|,. and M = 0, we deduce
t t

22)  |0fuli0) +2v J |0l (o) dr < 2{ |0Fuol72 + J |0FFy2.(7) df}.
0 0

Thanks to the presence of the operator 92, we can get better estimates with respect
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to the regularity of F; by integrating by parts and moving a space derivative from
the forcing term 9" F; to the derivative of the solution 9. Precisely, for k > 1, there
holds

d
10Ul + 210kl = 2 J O Fy o de — —2 Ja’;lez O d,
so that, by Cauchy—Schwarz inequality and Young inequalities, we get

d 1
b7 | ul, + 200 lul7, < 2“35;% Ol dee| < . |0 Fs |7, + v] 0 7

and thus we infer
d g 2 i1, 2 L k1 2
%|6xu|Lz+v|6x M|L2 §;|8x F2|L2-

By integrating in [0, ], we readily obtain

v

t t
1
(23) |5 () + VJ 0 3 (0) dr < |0 ugl2e + J |02, (7) .
0 0

Collecting (22) and (23), we deduce the following result.
Proposition 3.2. Let Fy : R x[0,T] — R be a function such that, for some
mteger s > 1,
Fy € LA(0,T]; HY).
Then, if wis a solution to the non-homogeneous diffusion equation du — v 0%u = Fs,

there holds for any k € [1,s],

t t
(24) fult) + vj sl (0) dt < 2 ol + cJ Pyl (v)de
0 0

with C = C(T,v) = 2T + v L

Estimates (21) and (24) can be applied to the linear non-homogeneous equations
(18) and used to prove a local existence result by applying a fixed point argument.
Given g, T > 0, consider the spaces

X4 = C°([0, T1; H),
Y5 = {u € C°(0,T1; H%) : d,u € L*(0,T]; H)}
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with the norms

1/2
Il = { sup]m@n(t)} ,

tel0,T
1/2

T
[ { sup oz (6) + vj|axu§p<r>dr}
t€[0,T1] 0

and the product normed space
1/2
X5 = X7 x Y7, 1000l 5= {1l + el
Let F; = Fi(w, 0,u) and Fys = Fo(w, d,w) be such that F1(w,0) = Fo(w,0) = 0 for
any w. Given W = (H, U), let w = (h,u) = T W be the solution to
oh + U 0,h = F1(W, 0,U),
o — v Pu = Fo(W, 9, W)

with initial data (g, %9) € H°™1. In the case we are treating, functions F; and Fs have
the explicit form
Fi(w,0yu) = —(1 4 h) Opu,
Vv

Fo(w, 0,w) = —g 0:h — u Opu + Ty

Fixed T > 0, estimates (21) and (24), given for k > 2, give

T
I3 < 2{ il +7 | Flﬁmdr} exp{C Uy T},
0
||u||§k < 2ug|f + CT sup |Falfs,
r tel0,71

that gives, if HU||Y; < R, then
T
100,203 < 2R [(ho, o) 7 + 2% TJ |Fy |5 () dx
0
+CT sup |Falon
tel0,T]

with for some constant C > 0 (independent on R).
Both functions F; and Fo are such that F(w,0) =0 for any w. Hence, for
|w|;n < R, we have

|F1(w, ,u)|52 < Cr |0sul32,  |Fa(w, w7 < Cr |0:w0[3
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where Cp is a constant depending on E. Moreover, for any smooth function @, for
|flgse1 < R, there holds
|0:P()lge < CrIO:f |-

Hence, for |w|;. < R, we deduce
|F1|?{k—1 <Cp <|8xw‘?{k—l + |&@u|§,k>, |F2‘?{k71 <Cg |8xw|§{k71.

Finally, we need to control the L? norm of 6§§F1. The function F'; has the form ®@(w) u
where @(h,u) = —(1 + k). Since there holds, for k > 2,

k
(D) Opu) = &' (w) Aw Dy + > Wiw, ..., I w) D
j=2

then, for |w|; < R, we have
R 0,05 < Cr (100l72 + 10Zulipr ) < Cr(10:a005001 + 0l ).
Therefore, for |(k,w)|; < R, we infer
1% < Cr (|axw|%{k,1 n \axm‘gk).

As a consequence, for ||W|| xt < R we have the estimate

T
) <2 BT\ (ho,uo) o +Cr T ( s[ul%]|8xW?{k1+J|8xU|§{k(r) dr)
t<(0,

0
S 2@CRT |(h0’u0)|%{k —+ CR T|W|§(,YC‘

< 2“7 |(ho, uo) 5y + CRR?T.

Therefore the function w = (h,u) satisfies the same bound of W = (H,U) for
t € [0, T'] if the following condition is satisfied

1
(o, w0z < 5 R*(1 — Cr e T
1
The value at the right-hand side tends to 5 R? as T — 0. Therefore, given the initial
datum (%o, %), by choosing R > 2|(ho, uo)|; we determine an invariant region for
the transformation 7 whenever 7' < 1/Ck.

As soon as the H? norm of % is bounded, also the L> norm of 0,u is. Hence,
integrating along the characteristics, we infer
¢
) inf (1 + Rg)(x)

= — >
1+h (1+h0)exp( Jaxudt = oxp(T sup [0,ut])
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In particular, the function 1 + % remains uniformly bounded away from 0 as soon as
ho is and as soon as the value of R (bounding also the H? norm of ) is fixed.

Now that we have determined an invariant region for the transformation 7-, we
want to show that 7 is a contraction (choosing a smaller T, if needed). Given the
unknown W =H,U)and W+ Z =H + K, U+ V), set

z=0U)w)=TH+K,U+V)-TH,U).
The function z solves the Cauchy problem for the system
ok + WU+ V)ouk =F :=-Voh+F W+ Z,0,U+V) — F1(W,0,U),
o — v = Fo:= Fo(W + Z,0,(W + 2)) — Fo(W, 9, W)

with zero initial data. Our aim is to estimate ||(k, v)|| 2 in terms of (IKK, V)| pre
Fixed T > 0, by (21) and (24), we extrapolate

t t t
|k, )5 (t) + vJ 0,05(0) de < C (tJ |Filop(0) dr + J |Falon (1) df> .
0 0 0

We need to estimate the terms F; for i = 1, 2.

Lemma 3.2. Given ® € C*, k > 1, set AD(f;g) := O(f +g) — D(f). Then for
any R > 0 there exists Cp > 0 such that
(25) [AP(f; Dl < Cr |9 e
forany f, g such that | f|ge, |f + 9lge < R.

Proof. We prove the statement by induction over k.

Consider the case k = 1. For any R > 0, there exists Cy such that

[4D(f; 912 < Cr 19|12
for any f, g such that ||, |f + g|;n < E. Moreover, since
0pAD = A0, D) = AADf) = AdD) f + dD(f + 9) g

we obtain
|0, 4D, < |AAD) fi |2 + |[AD(f + 9) G212

< [AAD)| o [ folzz + AP + D 19212
< Cr 9l |felze + Cr 192112 < Cr gl
Next, let the assertion to be true for £ — 1. We need to estimate

|05 AP = |0 A0, P) |2 = 3 A(AD Dy f) -
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Since A(dP 9,.f) = AAD) O.f + D(f + g) Opg and |0~ (uv)|,2 < Clua|ge|v| s, we obtain
1051 A(AP B, f )| 2 < ClAAD) s 0e 5761 + C1PS + @i |02
< Cr9lm110nf |ger + Cr 19l < Cr 1915

that gives the conclusion. |

Applying (25), we deduce that, for [|W]| Pre W+ Z|| x <R bounded in H3,
t t
(|, ) |22 (E) + vJ 0:0[F (0 dr < CH (K, V)3 + CtJ |V 0,k |2 (0) dr
0 0
2
< Ct|E VI3

and, taking the supremum over ¢, we obtain
Gk, I3 < CHIE, V3.

Therefore, for ¢ sufficiently small, the transformation 7 is a contraction and it has a
unique fixed point. Altogether, the above procedure prove the following result.

Theorem 3.2. Given any reference state (h,u), let (hg — h,vy —v) € H3(R)
with infhy > 0. Then there exists T >0 such that the Cauchy problem for the
system (16) has a unique (classical ) solution (h,v).

Let us briefly analyze how the situation changes for the two-dimensional model
(without going in details). The system reads as

g—h +div(hv) =0,

(26) 2
—(lw)+d1v<hv®v+2F I ):—V[h,v]

Re

where
VI, v] := div(i(dv)*) + grad (kdive).
Setting v = (u, v), the system can be rewritten as

oh 0O 0
Eﬂ-%(h%) +8—y(hv) =0,

8u ou ou oh
E 896'+ 6y g%_ VVl[h,u,vL
ov ov ov

oh
E—i_ 8_+ 8—+ga = vVolh,u,v],
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where g = 1/Fr?, v = 2/Re and

1 1o} ou 0 ov 10 ov
o= degs (0 50) v (0 3y) vamg () +

1(10 ov 10 ou 0 ou ov
v '—E{m(h%) W%(h@) *a—y(h%) 25y (”—y)}'

Therefore, the system can be recast as

%+v-gradh = f(h,dv),

ot
v 1 0% 12 0Pv AN

where

oy
2.
=
I
7~
S Do
N = O
SN————
o)
oA
o
i
=l O
S =W
oy
o
N
I
A/~
O DN =
DO (e
SN————

+X 26—ha—u+8—h@+16_h@+18_h6_u
h\ Oxdx 0Oxdy 20ydx 20ydy)’
ov ov oh
gz(h,v,dh,dv)._—u%—p@_ga_y
v (10hov 10hou  Ohou zﬁh@
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Such representation permits to prove a local existence theorem, by applying the
approach presented in [45] and taken from the PhD thesis by S. Kawashima. We
stress here that such strategy has been recently improved in [47] by significantly
enlarging the class of initial data.

The strategy, following the same line of the one-dimensional case, requires the
following key assumptions:

i. the second order operator in the equations for v is symmetric and the corre-
sponding symbol is positive definite;
ii. the source terms f, g are zero at any constant state.
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Assumption ii. is immediate consequence of the specific form of the functions
f,91,92. Regarding the former request, we need to consider the matrix

1 3
262'1‘27’/2 5577

3

B, n) = B"& + B®n+ B = .
s J&+2r

obtained by formally replacing derivatives with respect to « with multiplication by &
and derivatives with respect to y with multiplication by 7. Since det B(E, ) = &* + 1,
the corresponding bilinear form is positive definite (for (&, #) # (0,0)) and condition
ii. is satisfied.

Hence, the following result holds.

Theorem 3.3. Given any reference state (h,0), let s > 4 and (hg — h, vy — V)
€ H*(R) with inf hy > 0. Then there exists T > 0 such that the Cauchy problem for
the system (26) has a unique (classical) solution (h,v) satisfying the regularity
properties

h—h € C°([0, T1, H*) N C*([0, T1, H* ),
v —v € C%([0,T1, H*?*) N C*([0, T1, H*"2) n LA([0, T], H*™1)

and

T
sup |(h —h,v — )5 + J(|h — bl + v — ﬁ|%[s+1)df
te[0,71 0

< C|thg — h,vg — 17)|§{.>-
for some constant C > 0 (depending on T).
See [45] for a sketch of the proof.

For any reasonable viscosity term, the same theory for hyperbolic-parabolic
systems applies. As an example, in [49], the viscosity considered has the form

VIh,v] = div(hdv) =
L, o] = div(h do) (@m@m+%m@m

corresponding to B! = B? = and B'? = 0. Also in this case, the bilinear form
BUE 4 B28y 4+ B2y is symmetric positive definite and therefore the local ex-
istence theorem applies. In the case of the (energetically inconsistent) choice
V[h,v] = h Av, the form of matrices BY is still B'! = B2 = I and B'> = 0 and, even if
energy does not decrease, local existence is guaranteed.
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3.3 - A glimpse to large-time behavior

Exploring the large-time behaviour is, of course, a much more complicate pro-
blem. In fact, it encompasses two different matters: global existence and stability.
Frequently, such aspects are treated together, since solutions possessing a special
symmetry are often globally defined and asymptotically stable. As a consequence,
initial data close to such distinct configurations likely generate solutions that are
defined for any positive time and that converge to the special solution itself.

Here, we concentrate on the analysis of linear stability of a very particular class of
solutions: the constant states. Linearizing a systems of partial differential equations
at a reference solution consists in writing the equations satisfied by perturbations of
the fixed state and then disregarding all of the non-linear terms. In the case of
perturbations of a constant state, one is faced to treat a constant coefficient linear
system of PDEs that can be converted in a system of linear ODEs by means of
Fourier transform. Applying Inverse Transform procedure, it is possible to obtain
precise information on the Green function of the original linearized problem. Such
classical strategy has been explored in [26] in the case of a general class of hyper-
bolic—parabolic systems in one space dimension, containing also, as a special case,
the shallow water system with flat topography and viscosity.

Here, we concentrate on the two-dimensional viscous system for shallow water
with flat topography

oh ..
e +div(hv) =0,

(27) ? 1

a(hv) + div(hv QU+ 5 ghzl) =vVI[h,v]

where the viscosity V is given by (13) and g = 1/Fr?, v = 2/Re. Let us fix a reference

state (h, v) and consider initial data that are small perturbation of such state. Because of

galileian invariance of the system, we can assume without loss of generality v to be zero.
The perturbation (&, v) satisfies the nonlinear system

2—?4— div((h + k)v) =0,

%((l_&+h)v)+div<(}7¢+h)v®v+%g(l_z+h)21) =vWh+ h,v].

Assuming all nonlinear terms to be negligible, we obtain the linearized equations at
(h,v) for the perturbation (%, v)

on + hdive =0,
o

5t +ggradh = vV[1,v].
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In the one-dimensional case, the speed v can be easily eliminated and the height
perturbation % turns to solve the scalar equation

Ph - Ph Ph

i ghw +v Ty
In the absence of viscosity, the equation satisfied at the linearized level by the
perturbation % is the wave equation; when v > 0, presence of the viscosity terms
translates into the presence of a third order dissipating term (of Sobolev type).
Going back to the bi-dimensional case, when considering the Cauchy problem
for (28), it is natural to follow an approach based on the Fourier—Laplace trans-
form and looking for (complex-valued) solutions in the form (h,v)=(H,V)
-exp(At +i(¢x + ny)). The linearized system (28) transforms into the linear system

AA\(jﬁ 57 ’7)(5) =0

where
A ihé ihn
. , 5 1 3
AG g = | 78 AH2vE 4o 5 V<N
. , 1
1y gvéiy A+§v§2+2v;72

Therefore, the dispersion relation of the linear system (28) is
detA(4,&,n) = l(iz +g vpP A+ 1)2,04) + yh p? </1 —i—% va) =0,

where p? := & + .

Given (&, ), the sign of the real part of 1 determines if the corresponding solution
is dissipated or not. Poorly speaking, if ReA < —c¢( <0, for some ¢y > 0, for any choice
of (&, i), then the solution is stable, since any possible periodic perturbation decrease
(exponentially fast) in time. Due to presence of a conservative structure, a simple
modification of the reference height & produces a perturbation, arbitrary small in the
uniform norm, that is not dissipated in time. Hence, the request of the real part of A to
be uniformly negative is never satisfied, since the choice (&, 7) = 0 gives 1 = 0. The
typical prototype of PDE exhibiting such behavior is the classical linear heat
equation (when considered in the whole space).

Inspired by the standard case of linear diffusion, we expect to find a slower rate
decay (algebraic, instead of exponential) if a relaxed version of the request on the
real part of 1 = A(¢, ) is satisfied: namely, Rel < 0 with equality holding if and only
if A=0and Re X < — ¢y <0 for any |1| > ¢ > 0 for some ¢y, e > 0. The rate of decay is
then determined by the local behavior of 4 at (&, ) = (0,0).
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First of all, let us note that there are no values (&,7) # (0,0) such that 1 € iR.
Indeed, assume by contradiction that for some 1 =10, 0 € R, there holds

det A, n,i0) = (Vﬁpz - 502)/)2 + iO(v2p4 +yhp? - 02) —0,
2
then, we should also have, for some p # 0,
yhp? =507, Vplayhpt=0"
implying v =yh = 0.

Formally, as (¢,7) — (0,0), we deduce the following formal asymptotics expres-
sion for /

. = 1
J=4i\/yhp? —vp? + 0(p?), /1:—5 v &+ o(p?)

as p — 0, corresponding the three different advective-diffusive modes with
characteristic speeds \/ﬁ and 0. Hence, all the elementary modes with
(&,n) #(0,0) decays in time. We leave to the reader to check the behavior of 1 as
p=1&+1P— .

These properties give an heuristic argument in favor of stability of the constant
states (at least at linearized level) for the viscous equation with V given by (13). In
[49], the asymptotic stability of constant states has been rigorously proved in the
case of a viscosity of the form

VIh,v] = grad(h divov).

In this case, it is possible to eliminate divv from the linearized equation and show
that the (linearized) perturbation / satisfies the third order partial differential
equations

o%h - oh
—=dA{ghh+v—
o (g i 8t)’

that is analogous to the one already found in the case of one space dimension.

With a more detailed analysis, it is possible to determine the shape of asymptotic
profile of perturbation of constant states, amounting in a superposition of nonlinear
diffusion waves (see [23] for the one-dimensional case).

System (27) possesses also other special interesting solutions, in particular, the
so-called viscous shock waves, i.e. planar travelling wave solutions connecting proper
asymptotic states. Such kind of solutions has been widely explored in the context of
gas-dynamics, particularly in one space dimension. A pionereeing result, based on
energy estimates, is contained in [33]. The approach of stability by means of point-
wise estimates of the resolvent kernel of the linearized equation has been performed
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in [31, 32] for general hyperbolic—parabolic systems, giving complete results relative
to the nonlinear stability of small shocks for isentropic gas dynamics. More con-
tributions relative to the case of large shocks can be found in [1].

4 - Roll-waves

A distinctive feature of the shallow water system is the presence of a term de-
seribing the topography of the region where the flow is occuring. The interaction
between the dynamics of the fluid and the geometry of the physical domain gen-
erates a rich class of different behaviors, due to the fact that the topography term
appear in the equation as a zero order term, possibly generating a sort of reactive
response. The aim of the Section is to present a framework where transport me-
chanism and geometry structure cooperate in the formation of remarkable struc-
tures: the roll-waves. Such structures, frequently observed in reality and experi-
mentally reproducible in laboratory, come out as surface signals propagated by the
flow of water along an open channel over an incline. They consist in almost periodic
patterns with wave-form and possessing smooth parts separated by breaking jumps.
The regime of the flow is sub-critical at the left of the jump and super-critical at the
right, meaning that the velocity of the fluid, relative to speed of the wave, rises from
lower to higher value of the corresponding characteristic velocity.

As described by Dressler in [17], roll-waves are consistent with the shallow water
description given by the hyperbolic Saint-Venant model, relative to topography with
constant slope m, without viscosity and in presence of friction. Mathematically, this
means that the system

oh .
e +div(hv) =0,

(29) P 1
o) + div<hv BU+5 g h* 1) =gmh —r(h,v)v,

supports planar traveling wave solutions, i.e. solutions of the form (h,v)(x,t)
= (H,V)(k - x — ct), for some unit vector k and speed ¢, with properties similar to the
physically observed phenomenon. The couple (H, V) is the profile of the wave, and the
constant ¢ € R is its speed. Coherently with the real observed phenomenon, the
presence of the friction term 7(h, v)v, where r = r(h, v) is a real-valued function to be
specified later on, turns to be indispensable.

In this Section, we portray the existence theory of such solutions and we discuss
the problem of stability, following the approach considered in [36]. Since we deal with
the shallow water system without viscosity, the approach has to take into account the
possibility of jumps at both level of existence and stability.
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The analysis of roll-waves in the presence of viscosity is a widely open direction of
research. In [37], existence and linear stability of periodic viscous roll waves has been
analyzed. Recently, in [22], it has been proved that spectral stability, namely, the
assumption that all of the point spectrum of the linearized operator at the periodic
wave is contatined in the stable half-plane, implies both linear and nonlinear stabi-
lity. Nowadays, more detailed results on stability properties are not available.

4.1 - Traveling waves for a scalar balance law

A simplified model for the description of roll-waves, considered in [38], is given
by the following one-dimensional viscous scalar balance law
ouw 0 (1 2

o“u
22\ — _ il
2u> a(u c)+v8x2.

o ou
Rather than regarding at this equation as a realistic alternative model, we consider it
a starting benchmark case to understand the basic mathematical features of the
problem.
Disregarding the viscosity term, v = 0, and setting u+— u + ¢, x — & — ct, we end
up with the scalar hyperbolic balance law

ou 0 (1 ,
A general study of traveling wave solutions for scalar balance laws can be found in

[29]. Here, we concentrate on determining traveling wave solutions to (30): for ¢ € R,
inserting the ansatz u(x,t) = U(x — ct) into the equation, we obtain

alU
U-c¢’

(31) —cU' + (% U2> —alU = U=

Solutions to this equation are implicitly given by the expression

U
alé — &) = J S;—Cds —UE) - Uy —cln ?’
o

Forc # 0, it is readily seen that the equation has no global solutions except the trivial
one U = 0. For ¢ = 0, the equation reduces to U’ = @ and there exist a one-para-
meter family of global solution: U(&) = a(& — &) for arbitrary &, € R.

Motivated by the quest for bounded solution, we consider traveling waves with at
least a discontinuity point. By translation invariance, we can assume without re-
striction that the jump occurs at £ = 0. Denoting by % := %(0 + ), the values u4 has
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to satisfy the Rankine—Hugoniot and the entropy condition, that is

'M/++u,
C = —

Uy <U_ .
2 +

As a consequence, %, <c<u_.

For ¢ # 0, there is no global solution even in the class of discontinuous traveling
waves. Indeed, let us consider the case ¢ > 0: assuming ¢ = 0 to be a discontinuity
point, for & <0, the solution U stays above the level ¢ and it reaches for some finite
&1 <0 the level c itself. For &< &, it is not possible to prolunge the solution.

In the case ¢ = 0, the situation is different. Both numerator and denominator of
the right hand side of (31) vanish at U = ¢ = 0 and the solutions can trespass the
singularity of the equation. Thanks to this property, the set of bounded travelling
waves with zero speed becomes very crowded...

Proposition 4.1. The (steady) traveling waves ¢ of the equation (30) are in
one-to-one correspondence with the open subsets A of the real line different from R,
the correspondence being determined by the condition

R\A={reR : ¢@) =0}

Such solutions are bounded if and only if the corresponding open set A does not
contain any unbounded interval of the form ( — 0o, b) or (a, +00). Finally, the tra-
veling wawve s periodic if and only if the set A is periodic.

Proof. Let A be an open subset of R. Then there exists a countable union of
pairwise disjoint open intervals (aj, b;), k € N, such that

A= U (ag, by).

keN
If (ay, by) is bounded, we define the solution U in (aj, b;) by setting

ay + by
2

UQ=all—a) <€ {ak, D)

| vo—ae-n e [
For (a, +00), we set U(E) = a(& — ay) and, similarly, for ( — oo, by), U(E) = a(é — by).
We task the reader to verify that the solution defined is an entropy stationary so-
lution.

Viceversa, let U be a traveling wave solution of the balance equation. Let
C:={¢e R : U = 0}. Then it is possible to prove that the set C is closed and
that the solution U is given by the above construction relative to the open set
A=R\C. O



[39] A DIVE INTO SHALLOW WATER 115

All of the traveling waves just built are (highly) unstable. Indeed, solutions of (30)
with initial data in ! satisfy the relation

J w(e, t) de = e! J uo(x) dac.

R R

The traveling waves previously described are stationary solutions and they ne-
cessarily have zero mass. Any small perturbation corresponding to an initial datum
with non-zero initial mass gives raise to a solution with exponential rapidly diverging
mass. A finer description of the dynamics, based on the theory of generalized
characteristics, can be found in [30], showing that the family of traveling wave so-
lutions describe completely the asymptotic behavior of solutions of the Cauchy
problem for equation (30) (also, if the zero-mass constraint is forced, stability of the
waves family is completely recovered).

4.2 - Roll-wawves for the Saint-Venant system

Next, we turn our attention to the system (29), where, to be uniform with
Section 2, we choose 1y(h,v) = 1y > 0. This choice is different with respect to the
one selected by Dressler [17] (and considered in [36]). Assuming a topography of
the form

Z(x,y) = —mx

and looking for solution with vanishing second component of the velocity v, we re-
duce to the one-dimensional hyperbolic system
oh 0

5t Tap W =0

(32) p) 0/ 5 1 .,

&(huﬂ—% (hu +§gh ) =gmh—ryu.

A different frame could be considered where the height of the water is calculated
perpendicularly to the slope itself, the velocity parallel to it and the horizontal co-
ordinate is measured in the direction of the slope. The two description are not
completely equivalent when considering solutions with jumps because of the dif-
ferent meaning of the height variable.

Asin the toy scalar model, also in the case of the hyperbolic shallow water system,
roll-waves profiles turn to be necessarily discontinuous; thus, we primarily con-
centrate on the problem of determining the entropy jump conditions for the hy-
perbolic system under consideration.
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The admissibility conditions for jumps of the non-homogenous system (32) are
the same of the homogeneous hyperbolic system

on
ot
) 0/ 5 1 5\

0
—(hu) =0,
(33) ox

Such conditions are determined by the choice of a couple entropy/entropy flux, that,
in the present setting, are given by

E(h,u) ::%huz—i—%ghz, O(h,u) ::%hu3+gh2u7

corresponding to the physical energy/energy flux of the system.
Given h4 > 0, u=,c € R, let (h_,u_) and (h,,u, ) be an entropic discontinuity of
(33) with speed c, that is we assume that the function

houl) for x<ct,
H, U@, 1) := { (hy,uy) for x > ct,
is a weak solution satisfying, in the sense of distributions, the entropy inequality
o0& 09
(34) 5t + P = 0

The request of weak solution translates in the Rankine-Hugoniot conditions

[h(u — ¢)] = 0, [hu(u —¢) +%gh2] =0,
where [f]:=f. — f_ denotes the jump of the function f. Setting v := u — ¢, we obtain
(35) [hv] =0, {hvh%ghﬂ =0.

The entropy condition (34) reads as [Q — ¢ &] < 0. Still denoting u — ¢ by v, there
holds

Q—cé':%hv3+gh2v+c<hv2+%gh2> +%czhv.

Hence, by using (35), the entropy condition (34) translate into
1
(36) [2 ho? + gh%] <0.

By squaring the first equation in (35), we obtain a system for the quantities v :

R N Y
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whose solutions are

0 = gh’(h +hy), = ghﬂh + hy).
20

Inserting these relations in (36), we obtain

0> Ehvg—&—ghzv} :1h+v+{vi—v3+29(h+—h,)}

. gvuy _ 3
= 4h,(h+ h-).

Hence, the entropy condition is satisfied (if and) only if
(37) Uy —c)hye —h_)>0.

In particular, if %+ > ¢, then h_<h, so that the jump condition describe the
realistic phenomenon of the hydraulic jump consisting in an abrupt rise of the fluid
surface and a corresponding decrease of the velocity. Conversely, if u. <c, then
h_ > h..As we will see later on, the latter situation enters into play in the case of
roll-waves.

In the case u+ > ¢, since h_ <h,, we also have

ﬁ_h__'h_+h+<1 hy ho+hy  *
gh.  h. 2, Lo 2k gh_’

and, similarly, if u. <c,

v b ho+hy

hi h-+hy *
ghe e 2h, YT T2he Tgn

These formulas means that when the velocity is greater than the speed of propa-
gation of the jump, across the shock, the fluid jumps from super-critical
(Ju- —c| > \/gh_,) to sub-critical regime (ju, — ¢| < \/gh_+); in the opposite case, the
fluid jumps from sub-critical regime to super-critical regime.

Remark 4.1. An alternative procedure to obtain the entropy condition on the
jump is to determine the traveling wave solutions for the viscous Saint-Venant
system and then taking the vanishing viscosity limit. Precisely, let us look for so-
lutions (H(x — ct), U(x — ct)) to the hyperbolic—parabolic system

oh
a (h "=

—(hu)—i——(hu + = gh2> = 2(h%)
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the couple (H, U) satisfies
(HU —¢)) =0,
/!
(H UU —¢) + % gH2) =vHU.

Setting V = U — ¢, assuming (H, V)( — c0) = (h_,v_), and integrating in ( — oo, &),
we obtain

HV =h_v_,

HV? —s—%gHQ —h_v® — % gh®> =vHV' = —vH'V,

that is, by eliminating the variable V,

) 3 2 2 L o 202 02
H = 2vhv{H g<hv+zgh>H+ p .

Factorising, we obtain the autonomous equation

H = _2vh9 ——(H — h)H — h)H + e+ hy),

from which we deduce that an heteroclinic connection from %_ to /. exists if and only
if condition (37) is satisfied.

Now, we are ready to run into the existence problem of roll-waves for (32).
Inserting the ansatz (h,u)(x,t) = (H, U)(x — ct) with ¢ > 0 to be determined, we
obtain the system of ordinary differential equation

U-c H \(H)_ 1 0
g U—-c)\U ) H\gmH-nrU

or, in normal form,
,  roU—gmH
U —cf—gH’
, (e~ U)oy U —gmH)
HI(U ¢y —gH]

By the conservation of mass, H(c — U) = k € R; hence all trajectories lives on some
hyperbola with asymptotics lines H = 0 and U = c. Consistently with real roll-waves
structure, from now on, we concentrate on the case x > 0. By using the relation
U(H) = (cH — x)/H, we can write a scalar differential equation for the variable H

_ H(gmH? — croH + K1)

(38) H T2 ,
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which possesses only monotone solutions for any value of the parameter x.
Therefore, oscillating behavior may appear only admitting the possibility of dis-
continuous solutions.
Let & be a jump point of the wave profile. Then, setting H. := H(&, +) and
U, = U(&) £), there holds
U_—¢? U — ¢

<l<
gH- gH.

: R .Uy —¢f
In order to have a second jump point, it is necessary that the ratio % Cross
+
(decreasingly) the threshold 1. Because of translation invariance, we can assume

without restriction that the value 1 is reached at ¢ = 0. In order for such crossing
point to exist, the couple (H, Uy) of the value of (H, U) at 0 has to satisfy the relations

nU—-gmH=0, (U-—cf—gH=0;
thus, setting mg := m /7o,

_V1I+dmye—1 ¢ U_\/1+4moc—lc
T Itdmpc+1gmg’ 0 Vitdmec+1
The corresponding value for « is ry := (¢ — Uy) Hy. Note that the couple (Hy, Uyp) is a

constant solution of the system (32).
For such choice, equation (38) reduces to

(39) Hy

mHH — Hy) c
(40) H =PH) = ———" "V here H, .= —— — H,.
H2+H0H+H% g my
1.4 = / / /
/ / /
T 7 7/ 7/
4 7 / /s
/ / /
1.2 7 7 7
Ve / 7/
i 7 / e
7/ 7/ 7
_ 7 / s
// e //
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Fig. 2. The reference profile H = H(®) (continuous line) together with some of its
translations H; = H(¢ 4 0) (dashed lines) and the critical height Hy.
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We denote by H, the solution of the Cauchy problem for (40) determined by the initial
condition H(0) = Hy. The function H is globally defined and it is monotone in-
creasing if and only if Hy < H,, that is if and only if
¢
gmo

<2H0.

By substitution, this condition reduces to

\/1+4moc—1>1
Vi+4dmoye+1 2

that gives the condition 1 ¢ > 2. In this case, the asymptotics of H are described by
the limits H( — 00) = Hy and H'(+ c0) = m > 0.

In order to construct a roll-wave, we start by following the reference solution Hin
an interval of the form [0, £,] where &, is the first jump point at the right hand side of
0. Because of the Rankine—Hugoniot conditions, the left/right limits

(Hy, Us) = Iim (H, U)C, £ o)
enjoy the relations
1 1
H.i(c—Us.) = Ky, égH% —xoU_ :égHifK0U+.

Hence, given H_, the value H, is the unique value such that
H_ <H,, and FH,)=FH_),

where
1 12
(41) F(a):§902+;0—xoc.

The solution H at the right of £, is determined by the solution of (40) with initial
condition H(¢,) = H, and such solution is given by the same profile H shifted by
some amount if and only if H, > H;. Hence, denoting by H, the unique value in
(0,4 00) such that F(H;)=F(Hz), a jump at &, lead to a shifted profile
Hy(&) == H(E + 6) for some 6 if and only if H_ <H,. By joining many pieces of
translated profiles H, it is possible to build many different roll-wave profiles
corresponding to the same speed c.
We are ready to estabilish the following result.

Proposition 4.2. Assume m,ry,g > 0. Then, for any c such that

2
(42) ¢>e =210
m
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the bounded traveling waves with speed ¢ of the system (32) are in one-to-one corre-
spondence with the open subsets A of the real line that do not contain any unbounded
terval of the form (a, + 0o). The correspondence is determined by the condition

R\A={feR : HE) = Ho}.

Finally, the traveling wave is periodic if and only if the set A is periodic.

Proof. We can proceed exactly in the same spirit of Proposition 4.1. Given an
open subset A of R, we can decompose it as a countable union of pairwise disjoint open
intervals (ay, b;). For (ag, b;) bounded, we define the solution H in (ay, b;) by setting

HEO=HE—ap) Eela, &),  HEO=HCE-by) &€&, b,

where the jump point &, is dictated by the condition F(H (&, —)) = F(H(&, +)),
where the function F is defined in (41). Such condition dictate a single value of &, since
the map F(H(E — ay)) — F(H(E — b)) is monotone decreasing and

FHE = ) = FHE = b)|_ <O<FUHE - ap) = FHCE = b)|_,

=Uk

If (ag,br) is unbounded, then ay = —oco and b, =b € R and we simply set
H(&) = H(E — b) for any & <. O

The condition on the speed (42) can be interpreted in term of stability/instability
of the value (Hy, Uy). Indeed, the dispersion relation for the linearization of (32) at
H,U), withgm H —ryU =0, is

24 <2Uﬂ+%>/l+ (gm+%)u+(l72—gl:1)ﬂ2:0

where /1 and u denote time and space derivative, respectively. For u =i£and 1 = 10,
the dispersion relation becomes

GHE — 0+ U +20+2U9i =0,
Hence, purely imaginary values for 4 corresponding to & # 0 appears if and only if
0=—-2U¢and gH — U? = 0, translating into
2
H=H, = 7’_02.
gm
Moreover, the expansion for the branch 4 = A(«) such that 4(0) = 0 is given by

) _ 3 gm 7\ 2 2
A——ZU,u—i—T(H*—H),u + o(u) w—0,
rgH
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showing that, for small ux, u =&, the real part of A is negative. Therefore, the
equilibrium state (4, U) is linearly stable (linearly unstable, respectively) if and only
if H<H, (H > H,, resp.).

From (39) we infer that H is increasing with respect to cand Hy — H, as ¢ — c¢,,
with ¢, defined in (42). Hence, the admissible value for the speed c are all the ones
that correspond to unstable values for the equilibrium state (H, Uy).

In case of different choices for the friction term, one can still prove statements in
the same spirit. Of course, the basic condition on the parameters strongly depends on
the specific considered case.

4.3 - Stability for discontinuous waves

Analyzing the stability of roll-waves for the unviscous shallow water system is a
delicate issue because of the presence of discontinuities. The case of scalar equations
with convex flux is simplified by the possibility of using the theory of generalized
characteristics, introduced in [14, 15]. Such approach is well-defined also in the
system case (as soon as one deals with genuinely nonlinear hyperbolic systems) but is
much more complicate to employ.

A different approach consists in assuming from the beginning the structure of the
set of discontinuities of the solution and to deal with a system consisting of the
differential system (to be satisfied in the region where the solution is smooth) and a
number of algebraic constraints (given by both Rankine—Hugoniot and entropy
conditions, to be satisfied along the jump set).

First of all, let us consider the case of a scalar hyperbolic balance law

(43) g—? + % =g(u),

where f and g are smooth functions with f strictly convex. Given a steady state

U = U(x) with a single jump point at x = 0, let U* be the values U(0 + ). By the

entropy condition, we know that the following inequalities hold
fUH<o0<f(U).

Let us consider a solution u to the scalar equation (43) having the form

Ule — @) +u (@ — <), 1) r <),

U, t) = { Ux — &@) +ut(x — &@), 1) x> (),

for some (small) & = &(t). Then the functions u* solve for £ > 0,

+ +
(44) %+ (f'(U+u*)-¢) % =gU+u*)—f/(U+usU +& U,
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where U,U’ are calculated at y = x — &(t). For u* and & small, there hold
f'(U +u*) — & ~ f/(U*). Hence, the characteristic speed is positive for ¥ <0 and
negative for y > 0; therefore there is no need of boundary conditions at ¥ = 01in both
equations for u™*.

The shock location ¢ is determined by the usual Rankine—Hugoniot condition

45) U], + & w0, —u 0,0) =f (U +u™0,1) —f (U —u(0,1))
to be interpreted as a nonlinear transmission condition for »* at ¢.
Since f/(U) U' = g(U), there holds
gU@) +u) — U@+ U'@y) = (¢0) - ") U')u+hot.
and the linearization of the system (44) and (45) is

ou*
ot
U], = UNHut0,) — (U )u (0,1)

+
P % — (O DU+ 8Tty >0,

where U, U’ are calculated at y.
Following the classical Laplace—Fourier point of view, given / € C, we look for
solution with the form

(46) w iy, ) =t y), &) =e"(
with v*, { to be determined and we readily obtain the eigenvalue problem

f’(U)EZ(g’(U)—f"(U)U’—/l)vi—i—/lU’C +y>0
(47) dy ’
AU, ¢ = U wH0) - U v (0).
As a basic example, let us consider equation (30), i.e. let us choose

1
f&=55 g¢o=as

and a corresponding stationary solution U = U(x) such that U’(x) = a for any x # 0.
Then the system (47) becomes

dv* N
U%+M) —(L/IC :l:y>0,

A[U}OC =U"v"0) - U v (0).
Multiplying the equation for v* by U#/*~! and recalling that U’ = a, we get

+
i(Ui/a vi) _ Ui/a dL _’_& U),—l U vi _ AC U/l/a—l U = i(CLCU;’/a)-
dy dy «a dy
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Hence

(48) vE(y) = U (y) + al CeR.

_C e O
Utla(y) U*la(y)

Since U becomes zero at finite ¥ and we look for bounded solution, for Rel > 0, we
are forced to choose v*(y) = a (. Therefore, the above system reduces to the single
equation

Utal—-U al— U] (= [U](a— 1), =0.

For 1 # a, the system has no non-trivial solutions; for 4 = a, there is a one-para-
meter family of solutions given by (v, v, {) = k(a, a, 1), k € R and, thus, the wave is
spectrally unstable.

Such instability can also be recognized at the nonlinear level. Indeed, by as-
sumption, the stationary solution U is given by

ax+U_ x <0,

U(x):{ax+U+ x>0,

in aneighborhood ( — &, ¢) of & = 0. Hence, an initial data u, coinciding with U outside
(—¢,¢) and given in ( — &,¢) by

_Jax+U- x <,
Uo(@) = {aac+U+ x>,

for some { such that |{| <e, determine (locally in time) a solution coinciding with U for
|¢| > ¢ and such that in ( — ¢,¢)

ax+U_ x < el
ax+ U, x> (el

w(xe, t) = {

The location of the discontinuity is strongly unstable and can be easily destroyed by a
local perturbation.

Let us apply the same procedure to analyze the stability of roll-waves. This
program has been completely accomplished in [36] in the case of a friction term of
quadratic type and in the case of periodic roll-wave with large period. The analysis is
based on a precise description of the solutions to a degenerate linear system of o.d.e.
in an appropriate regime for the parameters of the system. Here, we restrict ourself
to sketch the approach, without proposing any complete stability result.

For a general system of balance laws of the form (30) where u € RY and fandg
are smooth functions from R” into itself, we can apply the same procedure used in
the scalar case. Let U = U(x — ct) be a traveling wave solution with a discontinuity at
0, then assuming that the perturbed solution has a single jump, we get the linearized
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system

O L) - et} = dg@ut +EU kg0
o y —cl)u™; =dgl)u y >0,

dU], = [(df@) - el)u*],.

Looking for solution in the form (46), we obtain
%{(df(U)—cl)vi}—l—/lvi:dg(U)vi—i—/lCU' +y >0,
[(ar@) e 1)v*], = 2¢[U],,

In the case of shallow water system, the conservative variables are . and p = hu, and
the jacobian matrices of the functions f and ¢ are explicitly given by

( 0 1 0 0
df (h,p) = P2 zp) and dg(h,p) = ( oy ro) .
—ﬁ+gh W gm—i—ﬁ T

The unique case of roll-wave with a single jump point at ¥ = 0 correspond to the
solution (H, U) with H such that

H(—o0)=H,, H(yy)=Hy,, HO-)=Hs, H(y) =H in {y<0},

for some ¥y < 0. Thanks to the relations (H U)' = ¢ H' and [HU|,= c[H],, the variable
v* = (k*, ¢F) solves the resolvent system

) %((A(H) —c ) + (BHE) + Ao = 2LH' (1, ¢,

[(AEH) = cl)v] = A{H]yA, ¢)

where, setting V. = V_.(H) := U(H) + /g H, the matrices A = A(H)and B = B(H)
are defined by

0 1 1 0 0
A= and B:=— .
V.V, V_4+V, H\ —gmH—vrU 1y

Asking for bounded solutions gives an additional constraint in the region y <0 since
the matrix A(H) — ¢ degenerates at y = ¥, and solutions may exhibit blow-up be-
havior as in the scalar case (see (48)). Such degeneration can be used to prove ex-
istence/non-existence of eigenvalues under appropriate regimes.

To go a little further and to peep at the kind of problems one is faced, we restrict
the analysis to the case of H sufficiently close to the critical value H, := 7% /gm? (so
that the profile (H,U) is a small perturbation of the constant state H;) and we
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content ourself to show that the resolvent system has no non-trivial solution for 4 real
and positive. This is not particularly surprising since the linearized equation at H,
has no positive real eigenvalues.

For y > 0, H is constant, hence the linear system of ordinary differential equa-
tions for v is homogeneous with constant coefficients

(50) (A(HY) — ¢l Z—Z+ (B(Hy) + 21)v = 0.

Setting Uy := (cH1 — 1)/ H1, there holds

det((A(Hl) — e+ BEHY) + 4 ]1)

= [(c— U* —gH]u — [(ZHI%)(«:— Ul)—gm} ﬂ+i<2—(]l+/1).

For A real, there holds
70
2Repu = (2/1+—)(C - U1 —gm,
H,

hence the real part of the eigenvalue u is positive for any choice of A > 0 if the fol-
lowing condition is satisfied

ro(c— Uy) > gmH;.

By using the relation (¢ — Uy)H = (¢ — Uy)H, and the explicit expression for Uy, H
and H; (see (39)-(40)), it is possible to check that the above condition is equivalent to
(42). Hence, for A real and strictly positive, equation (50) has no non-zero bounded
solution in (0, o), so that v = 0 in this region. The resolvent system (49) reduces to
the Cauchy problem in ( — oo, 0)

%((A(H) —cl) + (BEH) + Al)v = ALH (1,¢),

v(0) = —A{[H]y (AHz) — 1) ', ¢)!

where ( is a parameter. In the case { = 0, the system is homogeneous, so that the
problem has no nontrivial solutions; hence we can assume, without restriction, { # 0.

Moreover, for /1 # 0, by changing the independent variable and rescaling the
variable v by the factor 1{, we can rewrite the previous system as

d » 1 PP
d—H((A(H) —cl) +P(H) (BH) + 21)v = (1, ¢)',

v(Hy) = —[H]y(AHz) —c1) (1, ¢)

where P = P(H) is defined in (40).
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Since the matrix (A(H) — cl) degenerate at Hy, we can choose a row vector wy
such that wy(A(Hy) — ¢ ) = 0. Multiplying by w and calculating at H, we obtain the
(algebraic) conditions

dA 1
wo{d_H(HO) + o (B + 21 }U<HO> — (1,0,

v(Hz) = —[H]y(AHs) — ¢ 1)1, 0.

(61)

Next we can patiently perform expansion in the limiting regime ¢ — ¢. = 2ry/m,
corresponding to H — H. := 12 /gm?, U — U. = 7y/m, obtaining

2

wo = (0,1) + 0(1), P(H,) = TO;” (¢ —¢.)+olc—cy),
dA o 0 0
de(Ho):O(l), B(Ho)gm(z m/r0> + o(1)

-1 2 /0 -1
[H]y(A(Hz) —cl) ~ = — 39 <0 —27'0/7n> +0(1).
Multiplying the first equation in (51) by ¢ — c. and then passing to the limit, we obtain
the relations

(01)(12 m/quﬂ)(g 2;ol/m><2%1/m):

that reduces to the equation 73 4/m? = 0, hence /. = 0.

5 - Kinetic formulation

A milestone in the foundation of fluid-dynamics is to understand the link between
the system of partial differential equations describing the evolution at macroscopic
and mesoscopic scale. At the latter level, the description is usually given by the
Boltzmann equations

52) o+ & grad f = QL)

where ¢ is the mean free path of particles, f*(x,¢;¢) € R density of particles at
(x,1) € R? x [0, oo) with velocity & € Rz, Q[ f“]is a (collisional) operator. One of the
basic goal is to rigorously prove the so-called hydrodynamic limit, meaning that ap-
propriate integrated quantities of the solution f* converge as ¢ — 0 to the solution of
a corresponding system of PDEs (a striking result relative to the incompressible
Navier-Stokes equation is proved in [21]). For a review on Boltzmann kinetic
equation we refer to [50].
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Generalizing, the idea of providing a mesoscopic description for a macroscopic
system of hyperbolic/parabolic partial differential equations turned out to be useful
from many point of view, somewhat independently on the physical interpretation of
the equation (52). Analysis of optimal regularity of solutions, efficient numerical
schemes has been proposed departing from such a point of view (see [44] and des-
cendants), the main advantage being the semilinear structure of the kinetic for-
mulation and the possibility of the use of linear techniques (a recent review on the
subject can be found in [42]).

Here, we consider the Saint-Venant system in dimension % = 2 without viscosity
and with bottom topography with the aim of shortly deriving a kinetic formulation in
BGK form for the macroscopic system and presenting a result relative to the hy-
drodynamical limit for smooth solutions proved in [2].

5.1 - A kinetic version for the Saint-Venant model
Let the real-valued function ' = f(x, t; &) be a solution to the equation
1
(53) Of +¢-grad,f + F(o) - grad.f = QLf]

where the collision operator Q maps the set of functions { f : R* — R} into itself and
F, whose role is to take into account the presence of a macroscopic force acting on
particles, is a function from R? into itself. Next, we want to describe the specific
choice of the operator Q and of the function F in order to obtain in the limit ¢ — 0"
the unviscous shallow water equations, at least at a formal level.

Assuming that f — 0 as |£| — oo and the constraint

JQ[f]dfzo Vf @ R®? =R,

R?
the variable % is recovered by integration with respect to ¢ in R?: indeed, one can
easily obtain

I, 1) = Jf(x,t; o de
Rr?
T, 1) = J @t O de.

R

(54) Oh +divy,J =0  where

In general, let K = K(¢) be a function from R? to R? such that

JK(f)Q[f]dé=0 Yf R R,

R
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Then, setting

Ule,t) = J KO f (e, t: 0 de,

R?

multiplying by K (&) and integrating with respect to £, we obtain a system satisfied by
the macroscopic variable U

AU + div, J KO ©Ofd | - Fa) J grad K(©)f dé = 0.
R™ R"

Looking at the form of the flux term J in (54), it is natural to choose K(¢&) = (1, &).
Then, setting

h(x,t) := Jf(ac, ;&) d¢, (hv)(x,t) := Jéf(x, ;&) de,
R? R?

we obtain the following system for the macroscopic variable U = (&, hv)

(55) { Oh + divy(hv) = 0,

s ey — Py, Where 1B = J(feaé)M[f]df.

R"

In order to formally obtain the shallow water system, the potential term F, in-
troducing a bias in the evolution of the kinetic variable f, has to be chosen equal to
—grad, Z, where Z denotes the bottom topography, consistently with the fact that a
slope in the bottom will generate a transition of particles speed in the direction of the
slope itself.

Everything is now in the hands of the collisional term Q. Its rdle is to drive, in a
time-scale of order ¢, the solutions f toward a corresponding equilibrium config-
uration M[ f], usually called maxwellian or Maxwell-Boltzmann configuration, that in
the original gas-dynamics context has the form of a gaussian with shape determined
by the macroscopic variables.

As ¢ — 07, one may imagine that the solution f is exactly maxwellian, f ~ M[f];
as a consequence, we formally obtain the hyperbolic shallow water system by setting

1
| coominaz~nowo+j gt
R?
In 1954, Bhatnagar, Gross and Krook proposed a form for the collision term Q giving

raise to a simplified version of the original Boltzmann-like model, still preserving a
number of significant properties of the complete model. Such choice, dictated by the
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idea of generating a simple dynamics leading the solution f toward the corre-
sponding maxwellian state M[f], is based on asking Q to be written as

(56) Qlf1=MIf1-f
where the operator M| f] has the form

M[f]:=MU;¢  where U(x,t) = J K@) f(x,t; &) d¢,
R?
for some appropriate real-valued function M = M(U;¢). A kinetic model (53) with
the choice (56) is referred to as a BGK kinetic model (for a general framework of such
systems, see the fundamental article [3]) and any function f that is a fixed point for

the operator M is called a maxwellian of the system. To get a system for the mac-
roscopic variable U of the form (55), the function M has to be chosen so that

| minrae= [rae wa [ eminiaz= | eraz
R? R? R? R?

that is, in term of the variables 2 and A v,

b= JM(h,v;é)dé and  hv = JfM(h,v;f)dé.

R? R?

=

An innocent choice could be M(h,v;&) := hd:—,, where ¢ denote the usual Dirac
delta, describing the idea that, at mesoscopic level, all of the particles in location (x, t)
move with the macroscopic speed v. Regardless with the problem emerging from the
distributional context, such choice would not fulfill the request of determining an
approximation of shallow water system, since

j (€ © &) Mlh,v;)dE = J E®Eh ey dé = ho b,

R? R?

and no pressure term appears in the corresponding term .J. In fact, pressure effect is
determined by the fact that, at equilibrium, the density function f is spread around
the (average) speed v that is macroscopically observed.

Assuming the transport process to be isotropic, a realistic class for the function
M is
(57) M(h,v;&) = m(|E —v|, h)

for some function m = m(p, h). The following (straightforward) Lemma shows the
structure of the macroscopic equations corresponding to different choices of
function .
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Lemma 5.1. Let the function m = m(p, h) be such that
+00
(58) h:=2n J pm(p; h)dp< + oo.
0

Then, for the function M = M(h,v;¢) defined as in (57), there hold
M(h,v;&)dé = h,

RZ
EM(h,v; &) dé = ho,
R

E@OMh,v;E)dE=hv@v+ P,

R?

where

+00
Hm:njﬁmmmw
0

forany h >0, v e R%

Proof. It is just a matter of standard integrals computations:

{(=¢—v,weget

+o00
jwmé—wmmé:JnmamnxzznjpmmmMp:m
R? Rr? 0

J&m%—vhmdé=JCMM%de+vJWMGWMM

R% R? R?
+o00

=2nv J pm(p; h)dp = hv;
0

J@®cmuﬁ—vuMdé=ch+vxa@+vnmw—vuMdc
Rr? R?
:w®wJWMW%+J@®mWQM%

R? R?

131
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Since
Jacjmua;h)dc:o if i 5,
Rg
+0o0
| cgmacimdc =z | pPmimdr i
R? 0
the conclusion holds. O

The easiest example for the m is the characteristic function of an interval:
m(p; k) = C(h) 10 gy ()

with C = C(h) and R = R(h) functions to be determined. Condition (58) translate into
the relation C R% = h/n. Thus, we get
+oo R
Ph)=n J PP mip; h)dp = anpgdp = i CR'n = i R%h,
0 0

and we realize that shallow water model corresponds to the choice
1
= 2 = —.
R(h) = /29, C(h) ET
A suggestive choice for m is the gaussian form
m(p; h) = A(h) exp(—pz/B(h)).

In this case, request (58) becomes the constraint AB = h/z and
+00 +00 1 1
Ph) =n J Pmp;h)dp =An J PeBrdp= EABQn =5 Bh.
0 0

so that the Saint-Venant model accords with A(h) = 1/gn and B(h) = g h.

From now on, we consider the first type of function M with a simple choice for the
functions C and R, namely C(h) = 1 and R(h) = \/h/=, so that

1 if [E—vf <h/n
(59) Mh,v;8) := Jeere. 1t vPanim =
{EeR™: [E~v["<h/m} 0 if |é—U‘2 >h/7l',

and the formal hydrodynamical limit is
Oh + div,(hv) = 0,
O(hv) + div, J = F(x) I,

1
(60) where J(x,t):=hv®Uv + i B2 1.



[67] A DIVE INTO SHALLOW WATER 133

The macroscopic variable U, determined by the kinetic solution f, solves the system
(60) up to an error term arising in the flux term. In vectorial notation, the approx-
imate solution U satisfies the relation

61) AU +div, AU) - B, U) = div, (A(U) - j (KO ®e)f dé)
R"

with the manifest meaning for the functions A and B.
If we consider the system (60) together with the entropy 7, defined by
n(h, hv) = % hlvl>+ @(h)  where &(h) := %Z 2,

correspondingly, the kinetie system (53) can be provided of a (corresponding) kinetic
entropy, defined as
1
M= [HGOdz where HU,&) =5 IE.

R
so that, thanks to properties described in Lemma 5.1, we deduce the entropy com-
patibility condition

1 1 1
(62) HIMIT) =5 j 6 MUF1E =5 hlof + 12 = n(h, o),

RZ

meaning that the kinetic entropy at a maxwellian state coincides with the entropy of
the corresponding macroscopic variables. The relation is even more remarkable,
since maxwellian states minimize the kinetic entropy.

Proposition 5.1. For any f such that (1 + |é|2)f c L1(R?) and (&) € [0,1]
for any & there holds the minimization principle

(63) H[MUf]] < HIf]
with the equality holding if and only if M[f]=f.

Proof. For any v € R? there holds

[t = M e = [ (1= o +20- £+ o) (5 - i) e
RR? R?
Since f and M| f] have same mass and same first moment, we have

J R (F — MLF]) dé = j &~ vl (f — MLf]) de.

R? R?
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By applying the change of variable ¢+ & + v, we reduce to the case v = 0. Such
choice bears

[kpr-rmimae=— [ wpa-nac+ [ e
R2 |¢[*€l0,2/7] |E*¢10,/7]
> _n J A -prde+ J fFdé
T T
|EREl0,/2/7] |E[2210, /7]

:% def—h 0,

R2

with the equality holding if and only if f is the characteristic function of the set
{E€ R &P < h/n). O

The above result suggests to restrict attention to solution f taking values in the
interval [0, 1] (that is the range of the function M). The BGK-structure (56) guar-
antees that if initial datum for (53) satisfy this condition, then the same property
holds for any positive time; in other words, the set {f : f(¢) € [0, 1]} is an invariant
region for the kinetic equation we are dealing with. Indeed, given ¢ > 0, assume that
there is some ¢ > 0 such that there exist & and ¢ for which f(&,£;¢) = 1 + 6 with ¢
minimum with such property. Then

Of@ ) >0,  grad,f(x,§¢) = grad. f(X,§;E) =
and thus

Sz 1 = 1% 9
0< {0 f+¢ grad,f+F - grad.f}(Z,t;&) = S (ML= 1)@, 60 < —— <0,
thatisacontradiction. Hencef < 1 4 dforanyd > 0and, therefore,f < 1.Similarlywe

can prove thatf > 0. From now on, for any x,  we assume that f («, ¢; -) belong to the set
(64)  Ly(R%[0,1]) := {f € L'(R%[0,1]) : (1 + [¢*)f (&) € L'(R%[0,1D}.

The minimization principle (63) indicates that, in the absence of the source term, i.e. if
F = 0, the integral with respect to ¢ and to « of the kinetic entropy is a Lyapunov
functional for (53): indeed

=g [1efe emaa.r L7 - iy fae

R?

——senad, | [ ererac| -1 [0 - HOML0) e,

e
R? R?
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and thus, integrating with respect to «,

a J HIflde < — J{H[f] ~ H[MIf] Jdo < 0.

R? R?

When the source term is present, there holds

d 1
= J HLf)doe — “ {F(x) &f S {H(,O) ~ HMIF, é)}} dé do
Rr? RZx R?
hence
d 1
& rnas<im [ araca < e[ aviebsaca

R? REx R? REx R?

< |Fl,. % ” fodédn+ J HLf)dae

RZxR? R2

where fy(x; &) := f(x, 0; &). Therefore, the following estimate holds true

JH[f]dac < et JH[fo]daH%(eat ~1) ” fodé da,

R? R? RExR?

where a denotes the L>°—norm of the function F.

5.2 - A few words on the Cauchy problem

Before dealing with the singular limit ¢ — 0T, let us consider the evolution de-
fined by the kinetic equation for ¢ fixed (for definiteness equal to 1) and let us con-
sider the Cauchy problem

S(@,0;8) = fola; O,

where M[f]:= M(h,v; &) with M given in (59) and f; is a given initial datum.

Global existence results for BGK models have been considered by many authors
in literature with particular attention to the significant case of kinetic description of
rarified gas dynamics (see [41, 43] and descendants). Here, we consider the specific
model presented in the previous Section to show the basic difficulties arising in
estabilishing existence of a global solution to the problem.
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The natural strategy to prove well-posedness is to use a standard iteration pro-

cedure of the form
(65) { ' + ¢ - grad, 1 = ML -1,

@, 0;,8) = fo(w; O,

where the initial datum f; is assumed to take values in [0, 1]. First of all, it is easy to
estabilish that, under the assumption

[ fite-ctodz=a>o0,
R
all the functions of the sequence { f"} verify
R (x,t) := Jf”(x,t; EdE>cpet for any t > 0.
R?
Indeed, the positivity of M guarantees that, for any »,
O+ & grad, £ 1" >0,

so that the function /" is greater than or equal to the function g, solution to the linear

Cauchy problem
{8t9+é-gradxg+g:0,

9, 05 := fola; O,
that is explicitly given by
g, t;6) = folw — et xe R% >0,

To prove convergence of the iteration algorithm (65), one is faced with the problem of
proving Lipschitz continuity of the operator M, in some appropriate functional
space. Here, we concentrate on the dependence with respect to £ and consider the
space (64) endowed with the norm

fly = | @ Bl ae
R?
Given fi,f> € L}, we have
IMLAT = MIfall, < J 1+ |f|z)|M(h1,Ul; &) — M(he,v1;8)|dé
R?

+ j (1 + || M B2, v1:O) — Mz, 023 O)| &

RR?
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The first integral at the righthand side is easily estimated; indeed, for h; < kg, there
holds

J(1+|f|2)|M(h1,Ul;f)—M(h2701;5)|d§= J A+ |+ v]P)dé
R? hi<n|EP<hy
1
= J A+ o] + e dé = (1 + |vf? +ﬂ(h1 +hz)> (hg — hy).
hy<m &7 <hs

Concerning the second term, for |[v; — vs|* > 4/ /7, we have

1
J (1 + 1Mo O — MO, v3: O] dE = b1+ [or + ool + 12,

R2

and, for [v; — vs|* <4 h/m, setting X := {& : /h/n < |E| < |vs — v1| + //7},

J (1 + [EP) MU, 015 &) — Mlh,vy; O] dé < J(l I + oy de
R? &
= @(h,v1,02) |1 — U2
where @ is a smooth function. Thus, for bounded hq, he,v1, U2, Wwe have
IMLAT = MIfllpy, < C(lhy — he| + o1 —v2]) < Clfi = folp
where the constant C depends on the L, —norm of 1, he, U1, v2. The basic question is

how to get L>° bounds on the macroscopic variables?

Following [43], we deduce such a priori estimates by means of the L*-norm of
high order moments of the function f. Precisely, let us set

Ny(f) := sup [E|7f(&), and my = J |E|f dé.
EeRr?
R?

Then, since 0 < f < 1, there holds

My
b= deiz J fdé+ J fdéSnRerf,
R? [EI<R [EI>R

for any R > 0. Minimizing with respect to R, we obtain
(66) h<Cm?

for some constant C' > 0. Moreover, we have

. PN IED
m= [ lasaes | asaesrig | ot
IKI<R E>R [¢>R
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so that, for q > 4,

Ny
i< Bhtpms VR > 0.
Minimizing again with respect to &, we deduce
(67) my < C N2 pla-d/a-2 @> 4

for some constant C' > 0. Combining (66) and (67), we infer
h<CNZi, — my <CNY.

To close the estimate, it is necessary to bound the quantity N,. To this aim, we note
that the dynamics of the term g, := |¢|? f is determined by the kinetic equation

gq + & - grad,g, = [T MIf]1 g,

Under the assumption of uniform positivity of %, the source term |&|YM[f] is esti-
mated by
ML < (1€ = o|" + o) MIFT < ChY? + ol
/2 ma |? 3
< Cht “FW < C(Nq +Nq).

By using this control, it is possible to show that the value Ny, ¢ > 4, is bounded for
small times. Matching all together, these arguments lead to an existence result of a
solution for the Cauchy problem, locally in time.

Global existence needs a control of the term |¢|Y M[f] by means of a first order
power of Ny, so that, with the help of Gronwall Lemma, one can determine an ex-
ponential growth for the term N,. Such program has been completely accomplished
in the case of rarified gas dynamics with gaussian maxwellian functions in [43] (see
also [34]).

5.3 - The hydrodynamical limit

In the remaining part of this Section, we concentrate on the problem of establishing
rigorously the validity of the hydrodynamical limit ¢ — 0, i.e. we want to show that the
family f* of solutions to the kinetic equation (53) converges as ¢ — 0 to the solution of
the corresponding hydrodynamical limiting system (60), as soon as the solution of the
hydrodynamical limit remains smooth. The result we present here is a simplified
presentation of the more general result proved by Berthelin and Vasseur, [2].

Let U be a solution to the macroscopic system (60) and let U? be the macroscopic
variable corresponding to the solution f* of the kinetic system (53), to be considered
as an approximation of U*. Following [16], we introduce the concept of the modulated
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function of a given function ¥ given functions U and U?, set
(68) Y(U*U) .=PU* —PU) — dPU)U* - U).

If ¥ is convex, P(U?; U) is quadratic in U* — U and its integral can be used to control
the L? distance between U and U.
In the present context, the modulated entropy #(U?; U) is given by

\ 1
(U U) = 5l vt —vf? + (" — h)?
since

18821 2 L 2 e &, 718872
2h|v|2h|v|<2|u|,u (= I v° — o) = 5 I o° — ]

and &(h*;h) = %(hs — h)?. The main tool to prove the hydrodynamical limit is to
v

control the space integral of the modulated entropy #(U?; U) and, specifically, to
prove an estimate of the form

(69) J n(U U, t) d < Cr/e vt e[0,T].
RZ

To reveal the quadratic structure of the entropy, we use the representation
1
nUy;Uo) = Jﬁdzn(Ue)(Ul —Uy) - (U —Up)db
0

where Uy := (1 — O)U, + O U;. Since

2
1
EnUNU, - Uy - U1 — U = (20 4 1) iy — o2
]’L() 2
2 1 2
—— (k1 — ho)vy - (h1v1 — hovg) + — |[h11 — hovo|
ho ho

1 1

= —(h1 — ho)* + — o1 — hovo — (hy — ho)vg|?
27 ]’Lg
1 hq_

= %(hl — ho)* +(}IL—00) lv1 — vl

estimate (69) reads as

L, Oh+A—Ok
%Jm—mdmjmw—wdmc\/é,

R? R?
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for any t € [0, 7], from which L?—convergence for the variable h* follows and,
whenever h* and & are uniformly positive, also for the velocities v*.

Now, our principal aim is to estabilish estimate (69). Given U smooth solution to
the system
U + div, A(U) — B(x,U) =0

and U’ the macroscopic variable corresponding to the solution f* of the kinetic model
(53), there holds
omWU*; U) = {omU?) + div,G(U?) — dn(U*) B(xx, U?)}
— dy(U){o,U* + div, A(U?) — B(x, U?)}
+ RA(U%U) + Rp(x, U, U)
where
RA(U%U) := div,.(GWU) — GWU?) 4 d*y(U) div, AU)U* — U)
+ dy(U) div,(AU?) — A(U))
Rp(x, U%; U) := dy(U?) B(x, U*) — dy(U) B(x, U?)
— &y(U) B, U)U* - D).

The term Rp is zero: indeed, using B(x, U) = (0, F(x) k), we reckon

dn(U®) B(x, U%) = F(x) k*v®, dn(U) B(x,U?) = F(x) k°v
d*y(U) B(x, U)U* — U) = F(x) h*v* — F(x) hv.

Integrating in space, we get
d

i J (nU*0) — nU*)) = — J dn(U*) B(x, U*) + JRA(US; U)

IR? IR? R?

— J dn(U){0,U* + div, A(U*) — B(x, U%)}

IR?

(70)

where, after manipulations, the term R4 takes the form

RA(UU) = divy(...) + > 9(U) 8, AU ).
Jk

Since A(U) = (hv,hv @ v + P(h) ), there holds
AU U) = (0,1 — v) ® (v —v) + P(h*; h) 1)

hence |A(U*; U)| < Cn(U?% U), and the space integral of the remainder R4 can be
controlled in term of the space integral of the modulated entropy.
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The integral relative to the source term in (70) can be estimated by means of the
kinetic entropy: indeed, since B(x, U) = (0, F(x) h), we have

d

< “ H(f, &) déda < “ F)&f deda

RZxR? RExR?

= J F(x) hWU* dx = J dy(U?) B(x, U?) dzc.
IR? IR?

Thus, setting

A@) = J {n(U‘S; U)+ J H(f*, &) dé — n(Ue)}dx,
R? R?

we obtain, for some constant C depending on the L> norm of U,

as
dt

< - J dn(U){0,U° + div, A(U®) — B(x, U*) }da + CJ nU* U) de.

R2 R2

Note that if 4 < C+/e, then also (69) holds.
Because of (61), we deduce

d AL‘
dt

<- J dn(U) div, (A(U*“) - J KOS dé) de +C A

R? Rr?
= J (dzn(U) grade) (A(US) — J KO oHf? dé) de + C 4.
R? R?

Thus, denoting by C a constant depending also on the W> norm of U,

dASCJ

i de+C4a

AU — J K © O f dé

R?

R?

and, as a consequence, by Gronwall Lemma, we obtain

t

A < £0) et + JeC(t—r){ J
0

R"

AU — J KO ® ) de

R™

dw} dr.
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Since K(¢) = (1,v) and
AWU) = (A1(U),A2(U)) = (hv,hv @ v + i R 1),
there holds

AﬂU%—Jéﬁdf=Mlﬁ—Jéﬂd¢=0

R? IR?

dx:J J@®éuﬁ—ﬂﬂfﬂdé

R%' R2

Therefore, we only need to control

J

R?

dx.

&dﬂ—J@@@ﬁM

R?

First of all, we deal with the functional
DU = [ I — MisDae
R?
Since

J DIf]de = —¢ ” (PO + Fw) grad.f*) dé da
R? R%xR?
_ 28{—% J HLf*)da + “ F(m)fdefdx},
R? RZxR?
integrating with respect to ¢ € [0, T'], we obtain
T t
J J DIfldadt < 28{ HIfi1da —&-J
0 2 0

R2 R

“|HmmﬁMM}

R?xR?

t
gg{z H[f(f]dac+|F|LxJ” (1+|éz)f6dédac}

R? 0 RZx R?

ge{z HLfSde + t|F, . “ frdedu

R? RExR?

t
+2F|,. J ML dac}.
0

R¥x R?
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Therefore, we have the preliminary estimate

I

T
DLf)da dt :j ” EP(f — MIfdédedt < Ce,
0 RZ2xR?

where the constant C depends also on the final time 7.
Since f* and M| f*] have same mass and first-order moment, for any { € R, there
holds

j €@ (f — ML) dé = J E—0®E -0 (f — ML) d,

R? R?

so that we obtain

j E© ) (f* — MLf) dé

RR%

< j € CRIfF — ML de
R?

where we can assume, without loss of generality, the first moment #° U? of f* to be
zero. The next (and final) lemma helps in estimating the right-hand side of the last
inequality.

Lemmab5.2. Lety := y(&) bethe characteristic function of the set {|¢| < 1}. Let
F, D be the maps from L}”(RZ; [0,1]) to R defined by

FLf = j IR £ — #E/R)| dé,

R?

DLf] = J €2 (£ — £(&/R) dé
Rr?

where R := (|f|L1/7z)1/2

(71) DIf1< FIf1< C|f],V/DLf1+ C2 DLf]
for any f € LL(R%[0,1]).

. Then there exists constants C1,Ce > 0 such that

Proof. Given Ry, Ry € [0, 0o] with B1 <R and a integrable function ¢ = ¢(&),

set
Ry

J 80 dé = J O 122y < e (©) IE.

Ry R?
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By definition of R, there holds

R +00 R +o0
2 _ T '
2R dem J%fdé R J(l Hdé+ l fae
Hence
R +o0
(72) l(l _ = Ilfdg.

We split the integrals in the definitions of 7 and D into the sum of two terms: one
given by the integral in a annulus containing {|v| = R} and the other given by the
integral in the complement of the annulus. Precisely, given R, Ry with B <R <Ry
to be chosen, set

Ry

Fulfli= j R 1@ — /R e, Foutlf):= FLF — Fuulf]

Ry
R;

Dyl f]:= J [P (f(& = 2&/R) dé,  Doul f1:= DLf1— Dyl f1.

Ry

We will estimate F,,[f]in term of D,,[ f]1and F;,[f]in term of D;,[ f] for appro-
priate choice of R, Ro.
Given Ry > R such that

R, +00
0< def< deé,
R R
we choose Ry <R so that
R R,
(33) |a-pae=[rac=m.
R R

Using (72), we deduce from (73) the relation

Ry +00
(74) l(l _pde = J e

Ry
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Then, thanks to (73),

R Ry
Dinlf] = j B (1—f)de + J E2f dé
R, R

R Ry
> —R? J(1 —f)dé + R? degzo.
R R
Similarly, from (74) it follows
Ry +00
2 2
Dol 1= [I1EF (1-f)de+ | 1erac
0 Ry
Ry +00 +oo
> B |(1-p)de v B | rae= @5 - R | rac=o.
0 Ry R;
Hence, both D;,[ f] and D,,;[ f] are non-negative.
Moreover, from the latter inequality, it follows
Ry
Foul 1= Doul f1+2 J P - e
0
Ry “+00
< Dol 1428} | (L= )dE = Dol f1+ 283 | 1
0 Ry
2R%
< DO?tt[f] + =5 R2 R2 out[f];
thus
R%+ R? R} + R*
]:out[f] >~ R2 R2 out[f] >~ R2 R2 out[f]~

Next, let us consider the term F;,,:

R Ry
Fulf] = j P - frde+ J E2f dé
Ry R

R Ry
< R* J (1 —f)dé + R} de(:: (R®*+ R3M.
Ry R
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At the same time, for a <R </ to be chosen, we have

a R R
Dol f1= j P —frde + j EPF e — J P de
Ry a a
R, B p
+ j EPF de — j P —prde+ j e de
B R R
hence
R p
Dinlf1> (J dé—M) + B (M— Jdé) +g(/f‘ —2R! +a4)
a R

> a2 {n(R2 — a®) — M} +/32{M (- RZ)} +g (ﬁ“ _ 2R+ a4).
Thus, by choosing a, # such that R% — a2 = % — R% = M /=, the following inequality holds

2 2 ,
Dylf]> E{(RZ’ +1E> _oR' 4+ (R2 Jﬂ) } e
2 - - .

Collecting the latter inequality together with (75), we obtain
fm[f] < (Rg +R2) \/% V Dm[f]

Hence,
5 9 R+ R?
f[f] = fm[f] + fout[f] < (Rz +R )ﬁ Dm[f] + Rz R2 Dout[f]
-
that gives the conclusion by choosing Ry = a R for arbitrary a > 1. |

To prove estimate (69) is a straightforward consequence of the inequalities

t
j WU Uy dee < A£(8) < C 4(0) + CJ j FLfldudr < C£0) +C e
0

R? R?

holding for t< T, with C > 0 depending on 7" > 0.
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