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1 - Introduction

In this paper I am collecting and enlarging the notes of a short course for PhD
students and young researchers, given in September 2009 at the International
School for Advanced Studies (SISSA/ISAS) of Trieste. The lectures have been given
within the seventh meeting in hyperbolic conservation laws and fluid dynamics. In
these lectures I took chance of presenting certain rather classical results, but also
more recent and even current advances concerning a subject which is related with
fluid dynamics, but also with the basic theory of elliptic systems of partial differential
equations and with the behavior of solutions when singular perturbations are pre-
sent. In particular -motivated by physical, numerical, and analytical insight- I am
presenting some results and open problems concerning the incompressible Navier-
Stokes system supplemented by certain slip boundary conditions. This paper cannot
be considered as an exhaustive treatment of the subject, but just a limited collection
of results along a research path I think most interesting, especially for young sci-
entists, potentially oriented in doing a research in related fields. In the setting of the
problem I am trying to emphasize the connections between modeling, numerical
aspects, computational tools, and the mathematical analysis. Most of the results are
strictly linked, but I am trying to look at them from different points of view, since
taking a (limited) detour in related fields can give new insight, new inspiration, and
also open new research avenues.
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I am deliberately skipping many details in the various proofs, since I am trying to
shed light on the ideas, with the hope of interesting the reader to this subject. In fact,
in order that the reader can focus directly on the (hopefully) most relevant points, I
am avoiding the most technical parts, but an extended and rather detailed biblio-
graphy is also added, where one can precisely find the missing details. In the re-
ferences one can also find recent results and attempts to understand more about
fluids and the fascinating research involving their mathematical analysis, modeling
of turbulence, and also the numerical resolution of real-life flows.

The presentation is intended for a reader with at least some background of Sobolev
spaces and of the basic variational results for elliptic and parabolic equations. The
knowledge of the (nowadays) “elementary” results in mathematical fluid mechanics
(existence of weak and strong solutions for the Navier-Stoke equations) is not neces-
sary, even if for a better understanding at least a qualitative idea of the basie results is
warmly welcome.

The paper is organized as follows: In Section 2 I introduce the problem I will
consider and I give the main motivations for the study of viscous fluids with slip
boundary conditions. In Section 3 I give some of the motivations that I believe re-
levant to study this problem. In Section 4 the main properties regarding the var-
iational formulation of the linear stationary problem are recalled. In particular, the
approach based on the introduction of the artificial compressibility is explained. In
Section 5 I recall the formulation for the time-evolution nonlinear problem and some
existence results. In Section 6 the connection with modeling of boundary conditions
in LES is explained, together with some rigorous results. In Section 7 some results
concerning the vanishing viscosity are recalled and some new results are announced.

2 - Setting of the problem

The incompressible (with constant density) Navier-Stokes equations read as

1) up —vau+ - Vyu+Vp=f in Q x 10, T],
V-u=0 in Q x]0,T1,

where the open set Q C R", n = 2,3, is the physical domain. The unknown # is the
velocity vector field with » components (and to avoid a too heavy notation I do not use
boldface symbols for vector fields). The scalar p is the pressure, while the positive
number v denotes the kinematic viscosity.

The differential operators V and 4 are the standard ones, while we observe that
the convection term is properly defined in terms of coordinates as follows

[(UV)ZL]Z = URORU;, for 1= 1,....m,
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and in the paper I use (when needed) the Einstein convention of summation over re-
peatedindices, while 0, denotes partial differentiation with respect to x;.. Itis alsoworth
noting that, due to the incompressibility, we can also write the convection term as

w-Vyu=V-uwou),
while in some cases the notation
(u-V)u= [Vulu

is used, thinking of Vu as a linear operator acting on the vector .

For an axiomatic derivation of the equations and for the precise assumptions
underlying the process, see Serrin [125]. Further details and other presentations can
be found in Chorin and Marsden [48], Batchelor [9], Lamb [93], and Landau and
Lifshitz [94].

In almost all the paper the space dimension will be n = 3, corresponding to the
case with more interesting physical meaning. In the 2D case the theory is much more
complete (regardless of the boundary conditions). In some cases I will restrict to the
2D case in order to point out some of the simplifications occurring in two dimensions.
The initial-value-problem must be supplemented with a divergence-free initial
condition

w(x, 0) = up(x), x € Q.

In presence of a domain Q2 with boundary I" = 902, one has to add suitable boundary
conditions. In literature, most of the results in domain with boundaries® are obtained
by supplementing the system with Dirichlet (no slip) boundary conditions

(2) u(xe,t) =0, on I x10,T].

The Dirichlet boundary conditions have been proposed by Stokes [131] since the
contrary assumption

“..amplies an infinitely greater resistance to the sliding of one
portion of fluid past another than to the sliding of fluid over a
solid.”

Condition (2) corresponds to consider that fluid particles adhere to the boundary,

hence they have the same velocity (generally vanishing) of the solid boundary.
The basic results on existence of weak solutions, local existence of strong solutions,

partial regularity and so on (in the periodic setting and with Dirichlet boundary

! Tn the whole space case one has just to assume suitable decay at infinity and of
particular interest is also the problem in the space periodic setting.
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conditions) can be found in many references, see for instance the books by Constantin
and Foiag [54], Doering and Gibbon [57], Galdi [65, 66, 67], Ladyzhenskaya [92],
Sohr [128], and Temam [137, 138]. Moreover the reader is warmly encouraged to read
the original sources, especially the masterpieces written by Leray [97] and Hopf [75].
Under the Dirichlet boundary conditions, one can (formally) use the velocity itself
as test function, obtaining -with suitable integration by parts- the energy balance

%%J|u\2dx+vJ|Vu|2dx:Jf-udac.

Q Q Q

This gives a control of the kinetic energy, which is critical to prove existence of weak
solutions. Moreover, it is well-known that there are long-standing open questions
related the 3D Navier-Stokes equations: Essentially we know global (in time) ex-
istence of solutions in a class in which we are not able to prove uniqueness, and
uniqueness in a class in which we are able to prove just existence for small times. The
“Million dollar problem” concerning the Navier-Stokes equations can be found in
the web site http://www.claymath.org/millennium of the Clay Institute.

I do not want to focus on a so hard and seemingly elusive-to-any-attempt open
problem, but I would like to take a slightly different path, a little bit more oriented
towards applications, and where there are realistic chances to obtain some new (and
non trivial) results.

2.1 - The Navier boundary conditions

It is well known that there are situations in which the boundary condition (2) may
not be valid. From the historical point of view, the slip (with friction) boundary
conditions proposed by Navier [111] (twenty years before the work of Stokes) were

) u-n=20 on I x 10,71,
fu.+T(u,p)=0, f>0, on I" x 10,71,
where n denotes the exterior unit normal vector to I”, while
U :=u—(u-n)n,
denotes the tangential part® of the velocity. In addition

T (u,p) = tu,p) — t(u,p) -n)n

21 use this notation which is historical, but one can also write the same in terms of
exterior product with the unit vector n, see also (46).
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denotes the tangential part of the Cauchy stress vector t defined by

n
t(uap) =1n- T(uap) = ZT7k(u7p)gk7
k=1

and, if J;; denotes the Kronecker symbol,
Tie(u,p) := =0 p + v(Oku; + Ojuy,).

Since the term 7 (u, p) in fact does not depend explicitly on the pressure, we use also
the notation

fu.+T(u) =0, B >0.

Probably Maxwell [107] first analyzed the two types of boundary conditions
(conditions (3) proposed by Navier and condition (2) proposed by Stokes),
observing that the same conditions may be derived also within the kinetic
theory of gases. In fact, the Navier-Stokes equations can be obtained by
taking suitable limits from the kinetic theory of gases and one obtains the slip
conditions with

mean free passes of molecules
macroscopic length

B~

Thus, for certain range of the parameters, the no-slip condition
u, =0 on I" x 10,71

can be recovered. In particular, the parameter f should depend on the visc-
osity v and on the mean free-path A, satisfying the pair of consistency con-
ditions:

f— o0 as 1 — 0 for v fixed,
p—0 as v — 0 for A fixed.

With the above asymptotics it is possible to recover in both cases the correct no-slip
boundary conditions for viscous fluids and the no-penetration conditions for ideal
fluids. Observe in fact that « - n = 0 is the condition supplementing the Euler sys-
tem, i.e., the Navier-Stokes equations with v = 0, see Section 7.

Remark 2.1. In contrast to Stokes [131] (in 1845) who employed continuum
mechanics, Navier [111] (in 1823) derived the equations by using some formal (and
possibly out the range of applicability) analogy with the elasticity theory and the
assumptionthat molecules are animated by attractive and repulsive forces. Overview
on the historical connections can be found in Cannone and Friedlander [46].
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Under the boundary conditions (3) one can perform integrations by parts similar
to those valid with Dirichlet boundary conditions, obtaining the energy balance

d

| P [ as v | (wup d = [ 5 ua
T Q e

Q

but the most interesting features of the slip boundary conditions can be better ex-
plained when considering the vorticity field w := curlu = V x u.

2.2 - A couple of vector identities

It is worth noting that, on flat portions of the boundary and if § = 0, the boundary
conditions (3) and
on I" x 10,71,
on I" x 10, T1,

1/{/ .

=0
@ oxn=0

=

=}

coincide. Observe that -in a certain sense- under the Dirichlet boundary conditions
(see [125]) it holds that w - n = 0, hence the slip conditions are really different from
the no-slip ones in the light of behavior of the vorticity field.

This leads us to consider (4), even when the boundary is not flat. Note that the
boundary conditions (4) are strongly related to the slip boundary conditions (3).
In fact,

t-zz%(wxm-z—vug—g on [

for each vector z tangential to the boundary. Note that the last term from the
right-hand side is a lower order term, and that @ x n and dn/dz are tangential to
I', while |0n/0z| is the normal curvature in the z direction. The relevance of
using boundary conditions involving the vorticity is that one can try to use the
vorticity equation in order to obtain estimates on the vorticity field and conse-
quently on the gradient of the velocity. Recall in fact that for divergence free
vector fields it holds

—Au = curl w,

hence, one can invert the Laplace operator showing that (at least in terms of ¢
estimates) w and Vu are equivalent. In the case of Dirichlet boundary conditions the
partial differential equations for the vorticity

oy —vdw+ - V)o — (o V)u = curl f,
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seem difficult to be used since in the integration by parts® arise some boundary
integrals which we are not able to control. In particular, most of the problems are
created by the Laplacian of the vorticity (this explains why for the Euler equations
this problem does not appear). Consequently new problems derive from the linear
part of the equations, while the well-known limitations due to the nonlinear terms
remains essentially the same. We set the problem in the flat case and for instance
consider Q = Ri = {x e R®: 3 > 0}, with boundary I' := {x € R* : 23 =0}. On
the boundary we consider, for § = 0, the conditions (3) (now equivalent to (4)) and we
obtain with direct computation

w1 = Gz — ABuz = 0+0,
we = O3uy — Oyug =0+ 0,
A3z = — Oy — oz =0+ 0,

where the last line follows since V - w = 0. With this at disposal we can show that

- JAco cwde = J\Vw|2dm,

Q Q
because the boundary term [ w-dw/OndS vanishes identically, and one can also
r

compare this Gauss-Green formula with Lemma 5.2 in the general case.

The mathematics of the Navier-Stokes under these boundary conditions presents
new problems: Many results are not straightforward and need some adaption, see
also Malek and Rajagopal [105]. As a further example, the finite element numerical
analysis requires some work, due to a) the choice of the basis functions and b) the
storage of the information is not the same as for the Dirichlet conditions. A study of
the numerical problems related to the implementation of (3) or (4) can be found in
Girault [71] (in this paper they are called non-standard), John [79, 78], Liakos [100],
and Verfiirth [142, 143].

Remark 2.2. In the case n = 2 the situation is considerably simpler, as we
will see in the next sections. In fact, for n = 2, the second boundary condition in
equation (4) is simply replaced by w = 0. Furthermore,

(5) é-zz%w—vu%kzx

3 Clearly in the space-periodic case and for the Cauchy problem, the use of the vorticity
represents a formidable tool. Problems in order to use the vorticity equation in the Dirichlet
case turns out since we do not know the boundary values of w, see also the results in
Rautmann [119].



[91 SOME RESULTS ON THE NAVIER-STOKES EQUATIONS, ETC. 9

where k is the curvature of I'. This vector identity is well-known and it can be used to
construct weak solutions to the Euler equations in the 2D case by approximating the
Euler equations with the Navier-Stokes equations supplemented by w-n = w =0
on I, see for imstance J.L. Lions [101], Bardos [8], Clopeau, Mzikelié, and
Robert [49], and in the stochastic context Bessath and Flandoli [37, 38]. See also
Section 7.1.

3 - Some problems in which the Navier conditions naturally arise

In this section I explain some of the motivations that make the Navier-slip
boundary conditions interesting from different points of view and not only a math-
ematical game.

3.1 - Certain physical situations linked with slip on the boundary

In Serrin [125, § 64] and Truesdell [140] it is pointed out that when moderate
pressure and low surface stresses are involved, the adherence condition is no
longer true. In this respect several authors proposed various slip (generally
nonlinear) conditions, modeling precise physical situations. Having in mind pro-
blems with high altitude aerodynamies and the interface of porous media,
Serrin [125], Beavers and Joseph [10], and Krein and Laptev [90] proposed var-
ious slip conditions. Recently, Fujita [64, 123] performed the analysis with the
“slip or leak with friction” boundary conditions. These conditions are of particular
interest in the study of polymers, blood flow, and flow through filters. The
boundary conditions studied in [64], are

u-n=20 on I" x 10,71,
if [{|<kn-T-n|, thenu,=0 on I" x 10, T],
if [t|=Fkn-T-n|, then3I1>0: u, = -1t on I" x 10,71,

where k > 01is a coefficient of friction. This problem is treated with the techniques of
variational inequalities, and turns out to be a particular case of the nonlinear
boundary conditions proposed in [125, p. 240]. These nonlinear (unilateral) condi-
tions are very-strictly connected to both the Navier and the no-slip boundary con-
ditions. See also Consiglieri [50] for related problems.

For laminar flows the Navier boundary conditions (3) also appears in the pre-
sence of rough boundaries, see Jiager and Mikeli¢ [76, 77] and Achdou, Pironneau,
and Valentin [1]. Among other nonstandard boundary conditions I recall those
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studied by Begue et al. [11]

nxu=0 on I x 10, T1,
p=20 on I x 10,71,

and the “do-nothing” Neumann conditions, appealing for numerical studies in pipes,
implemented in Heywood, Rannacher, and Turek [74]:

——pn=Kn on ' x10,T].

Some interest for slip boundary conditions has recently appeared also in problems of
shape optimization (see Bucur et al. [44, 45]), especially in presence of rough
boundaries.

My main interest about the Navier-type conditions comes from another theme
and more precisely the modeling of turbulent flows. In the next section I will explain
some of the results and connections with large scale approximation of fluids with
very small viscosities.

3.2 - Near wall models and turbulent flows

My interest in non-standard boundary conditions started from the study of the
numerical methods in turbulence. In order to briefly introduce the problem, I am
summarizing the main points. It is not possible to compress any reasonable under-
standing of turbulent flows in a few pages, but I am trying to give at least motivations
for the results that will follow. I also hope to interest the reader for a research field,
which is still lacking of the needed mathematical rigor. For turbulent flows new
insight and advances could come from the joint efforts of engineers, mathematician,
and physicists. The aim is to try to attack what has been defined by Landau [94]

... one of the great unsolved problems of classical physics.

The reader interested in a better and deeper understanding of the field can see
the books by Frisch [63], Pope [117], and Tennekes and Lumley [139]. As one
can notice I will not define what a turbulent flow is, but one can stem on the fact
that as the viscosity decreases, the flow becomes less and less stable and the
motion becomes “chaotic.”* From the mathematical point of view one can say
that uniqueness or stability are known only for large values of the viscosity
(with respect to the velocity of the flow), while the most interesting effects
appear when v ~ 0.

4 This word is used here in a purely qualitative way.
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Itis well-known that Kolmogorov’s [89] theory predicts that simulating turbulent
flows by using the Navier-Stokes Equations requires N = O(Re’/*) degrees of
freedom, where Re = UL v~! denotes the (non dimensional) Reynolds number and U
and L are a typical velocity and length, respectively. This number A is too large, in
comparison with memory and computational capacities of actual computers, to
perform a Direct Numerical Simulation (DNS). Indeed, for realistic flows -such as
for instance geophysical flows- the Reynolds number is order at least of 108, yielding
N of order 108....

With some technical assumptions and certain physical guessing, Kolmogorov has
been able to show that (at least for some classes of velocities considered as random
variables with suitable properties) the coherent structures of the flow (nowadays
called eddies) evolve into smaller and smaller ones, leaving the total energy un-
altered, till the point where they are so small to be destroyed by the viscous me-
chanism” and this happens in a proper statistical sense. The Kolmogorov length 5 at
which this occurs represents the smallest scale present in the flow and it is of the
order of Re~3/4. For scales below this length, the behavior is more or less the same of
solutions of the (dissipative) heat equation. Even if this is not rigorous (because to
obtain this behavior one has to postulate a mathematical knowledge of solutions that
we do not have) it is one of the reasons why one aims at computing at least the “mean
or large scales values” of the unknowns (u, p), those not involving scales smaller than
ng- This is not enough, since numerical simulations cannot reach a so small scale, but
motivated also from the fact that some gross characteristics of the flow behave in a
more orderly manner, Large Eddy Simulation (LES) is about approximating (spa-
tial) averages of turbulent flows, see Foias et al. [61]. Thus, LES seeks to predict the
dynamies (the motion) of the organized structures in the flow (the eddies) which are
larger than some user-chosen length-scale o. The length o > 0is related to mesh-size
of the grid used in the numerical simulation. It is clear that LES is a computational
tool, for which one tries to give a sound mathematical justification. One of the great
challenges of simulating turbulence is that equations describing averages of flow
quantities cannot be obtained directly from the physics of fluids. On the other hand,
the equations for the point-wise flow quantities are well-known, but intractable to
direct solution and sensitive to small perturbations and uncertainties in problem
data.

In the spirit of the ideas speculated probably the first time by Leonardo da
Vinei [56], the LES approach corresponds in finding a suitable computational de-

® This mechanism has been postulated in the early thirties by the meteorologist
Richardson [120].
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composition
w="1u-+u and  p=p+p,

where the primed variables are turbulent fluctuations around the over-lined mean
fields. In many cases fluctuations can be disregarded and this can be justified be-
cause in applications knowledge of the mean flow is enough to extract relevant in-
formation on the fluid motion. The “mean values” can be defined in several ways
(time or space average, statistical averages, solution of elliptic problems ...). If one
denotes the means fields by (u,p), and by assuming that the averaging operation
(whatever it is) commutes with differential operators, one gets the filtered Navier-
Stokes equations

O+ V- W@u) — v+ Vp=f,
V- =0.

This immediately raises the question of the interior closure problem, that is the
modeling of the second order tensor R(u) = u ® u in terms of the filtered variables
(u,p). Classical Large Eddy Simulations (LES) models approximate R(u) by
wew — vp(k/k.)Viw where w ~ u, and Viw := (Vw + vwT). Here vp > 0 is an
eddy viscosity based on a “cut-off frequency” k. (for a general discussion see [121]).

Remark 3.1. I am introducing the new variable w since when using any
approximation for R(u), one is not writing the differential equations satisfied by u,
but that satisfied by another field w, which is hopefully close enough to .

In recent years the role of Large Eddy Simulation increased and attracted the
attention of mathematicians. One can find extensive overview in the nowadays classic
book by Sagaut [121]. See also Geurts [70], John [79], Lesieur, Métais, and
Comte [98] and -for a more theoretical approach- the monograph I wrote with my co-
workers [32].

Here, I do not want to discuss the interior closure modeling, or other specific
issues of LES. I want to focus on the problem that, even if one has a disposal a set of
partial differential equations describing in some sense the mean values of the flow,
there is the need to describe the boundary conditions. The classical [89] theory of
turbulence starts with the homogeneous and isotropic case and the flow is in a
periodic box. In real life boundaries do exist and they are one of the biggest source of
problems. As a folklore one can recall the sentence of Heisenberg

... the boundary s the invention of the devil ...

Concerning this issue, it is also interesting to read the reprint of an old paper by von
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Neumann [145] in one of the latest volume of the Bulletin of the American
Mathematical Society.

In most cases in LES, the filtered velocity % is defined through a space-con-
volution

(6) w(x, t) = gy (o) * ule, t)

with a rapidly decreasing smoothing kernel g,(x) of width «. In several cases of
practical interest g, is a Gaussian, i.e.,

3/24 6/
,(x) := (@) —e 7.
T o

By definition, the value of % at a point xy on the boundary I” will mainly depend on the
behavior of « in a neighborhood of width « near that point: Even if u is extended to
zero for each x ¢ Q, it is clear that in general u(x) # 0.

boundary layer
in fluid region

Q

boundary

@ exterior
u=0

Fig. 1. Filtering the velocity does not yield homogeneous Dirichlet conditions at the
boundary.

Following the approach of LES (again trying to understand the possible con-
nections with the boundary conditions) I recall that another way of approximating
the equations -avoiding eddy viscosities- consists in approaching R(u) by a suitable
quadratic term. It is curios that the first LES model has been introduced by
Leray [97] with a different goal. In fact to construct weak solutions of the Navier-
Stokes equations in the celebrated 1934 paper he solved (in R®) the differential

problem
o wy—vaw+V-@ow) +Vg=f  in R®x10,T],
V-w=0 inR>x10,7T]

In this model the transport is realized by w, which is a field smoother than witself. In
particular in Leray’s work w is defined by means of a smoothing by mollifiers, as
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in (6). This approximation has the same properties of the recent Leray-alpha LES
model, where 70 satisfies® the elliptic equations

— o2 M + W = w.

One has to specify the boundary conditions for the above differential equation and
this is again absolutely non-trivial. It is also relevant to observe that (in absence of
boundaries) the solution w to (7) satisfies

w— U, as o—0,

where u is the velocity of the Navier-Stokes system. In this limit process the good
properties of w (which is smooth and unique) are lost and this is Leray’s proof for
existence of possibly non unique weak-solutions.

Remark 3.2. As one can understand this is not the real goal of LES, since
one would like to approximate u and not a single trajectory u. A first rigorous
result in this dirvection have been recently proved in a joint work with
R. Lewandowski [33] for the so-called Stolz and Adams [132, 2] Approximate
Deconvolution Model (ADM). Even if we are forced to consider the periodic setting,
to our knowledge such a “well posedness”, i.e., proving that w converges to u (which
18 the average of a weak solution), was not previously known for any LES model.

In order to describe the problems arising when studying the boundary conditions
for a LES model, I first recall that in the boundary-layer theory several log-law and
power-law asymptotics near the boundary are introduced, together with the ficti-
tious boundaries, in order to model turbulent flows within a small region near to I".
Roughly speaking, appropriate nonlinear boundary conditions are imposed on an
artificial boundary that lies inside the computational domain. The boundary condi-
tions may simulate (at least in a computational approach) the behavior of the
boundary-layer, and they are modeled to take into (partial) account of the peculiar
behavior of a fluid near the boundaries. In this respect we recall that Maxwell [107]
observed

... it is almost certain that the stratum of gas next to a solid body
18 i a very different state from the rest of the gas.

As we pointed out before, one basic problem in LES is turbulence driven by inter-
action of the flow with a solid wall. Mathematically, this is the problem of specifying

5 This is why it is also called a differential filter and it is generally used in the periodic
setting.
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boundary conditions for flow averages. Flow averages are inherently non-local: they
depend on the behavior of the unknown turbulent flow near the boundary. On the
other hand, to be guided by the mathematical theory of the equations of fluid motion
and seek boundary conditions that have hope of leading to a simple enough and well-
posed problem, those boundary conditions should be local. From the mathematical
point of view more complex conditions can be analyzed, but one has to keep in mind
that LES is a computational tool, hence the equations need to be implemented in a
efficient way. Introducing something too complex or numerically intractable will
have the only effect of moving problems from one point to another one.

In LES the question of finding boundary conditions when using a constant aver-
aging radius « is known as Near Wall Modeling. This is related to the extensive lit-
erature in Conventional Turbulence Modeling (CTM) on “wall-laws.” CTM seeks to
approximate long-time averages of flow-quantities and, conveniently for CTM, there is
a lot of experimental and asymptotic information available about time-averaged tur-
bulent boundary-layers. One common approach in CTM is to place an artificial
boundary inside the flow domain and outside the boundary-layer, together with a
Dirichlet condition for the stresses. The main difference between CTM and LES is that
LES would like to describe inherently dynamie phenomena, so imposing a condition
that 2 should match some equilibrium profile is probably not correct. One challenge in
LES is how to use the extensive information on time averaged turbulent boundary-
layers to generate NWM’s that allow time fluctuating solution’s behavior near the wall.

The classical approach (first introduced for the k¥ — ¢ model) consists in elim-
inating part of the boundary-layer, see Launder and Spalding [95]. The boundary
that is considered is not the real boundary I, but it is an artificial one 7'y, lying inside
the volume of the flow, where one can impose

nw-n=0 on I'y x [0,T],
(8) w. o
W“Tu,—&-l(u,p) =0 on I'1 x [0, T1].

In particular, when considering the Smagorinsky model” (studied with the above
artificial boundary conditions by Parés [115]) the turbulent stress-tensor in (8) is

" This is the oldest LES model introduced by Smagorinsky [127] with the intent of
studying geophysical flows. The mathematical properties have been studied starting with
Ladyzhenskaya [91] since they fit with the theory of monotone operators. We do not treat
here these equations, but we recall that they are still an intense research field. For the
treatment of the Smagorinsky model with Navier boundary conditions, especially in the
context of regularity, see Beirdo da Veiga [15].



16 LUIGI C. BERSELLI [16]

given by
T, p) = —0up + (v + vp)(Oku; + Oiuy)

where v is the usual kinematic viscosity, while vy = vp(x, V5%) is the turbulent
viscosity. The quantity u,,s appearing in Eq. (8) is the so-called wall shear velocity
(or skin friction velocity). It has the dimension of a length divided by a time and acts
as a characteristic velocity for the turbulent flow; for more details, see Landau and
Lifshitz [94, § 42-44] and Pope [117, § 7.1.3].

One recurring theme in these attempts is the use of non-local boundary
conditions to incorporate solution’s behavior in a strip near I', via an extra
forcing function in the strip along the boundary. The problem remains however,
difficult because the behavior of % on I” depends on the behavior of « in a o-
neighborhood of 7.

As pointed out in Galdi and Layton [68] the physical intuition may suggest
that

... large coherent structures touching a wall do not penetrate, but
wnstead slide along the wall and lose their energy.

Consequently the boundary conditions of Navier may be revisited by linking the
micro-scale / of the kinetic theory of gases with the radius « of the averag-
ing filter. Many NWM have been tested in the computational approach
(Sagaut [121] and Piomelli and Balaras [116]), the results are not uniformly
successful, and a positive outcome is very often based on a fine tuning of
parameters. This is why new models require at least a positive background from
the physical hypotheses and a coherent mathematical analysis. In particular, a
direct application of the Navier slip-with-friction boundary conditions (3) is
prevented by

1) The presence of recirculation regions;
2) The presence of fast time-fluctuating quantities.

The first problem is motivated by the fact that in recirculation regions the local
Reynolds number is very different from the main stream, and it is natural to
expect that f should depend (possibly in a nonlinear way) on a local Reynolds
number related to the local slip speed, i.e., if %, is the local tangential velocity

ﬂ = /))(OC7 |ur‘)

Preliminary analysis has been performed by John, Layton, and Sahin [80] and
Dunca et al. [102], and an appropriate power-law choice of f§ seems promising to
improve the estimation of reattachment points. To emphasize the role of re-
circulation in real life flows I want to stress that in the simulation of the blood
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flow within the carotid-bifurcation recirculation has a prominent effect, see
Quarteroni [118]. The limitation of the Navier law (3) in a boundary-layer theory
is that it can well-describe time-averaged flow profiles, but also the information
coming from fluctuating quantities in the wall-normal direction can play an im-
portant role in triggering separation and detachment. To try to overcome these
limitations, Layton [96] recognized a particular class of boundary conditions,
leading to conditions similar “in spirit” to the so-called vorticity seeding methods.
We will see more details about this in Section 6. Observe in fact, that in the 2D
case identity (5) implies the generation of vorticity at the boundary, proportional
to the tangential velocity. In particular, in [96] the following boundary conditions
are proposed to simulate the boundary effects

u-n = o?G(x,t) on I" x 10,71,
9) y
— U, +7(u)=0 on I' x 10, T1],
oaU

where G is a highly oscillating function in the time variable (hopefully a random
variable in numerical tests), while it may be very smooth in the space variables
and should satisfy the natural compatibility condition

(10) Jg(x, HdS=0 Vte 7T,
r

which is required by the normal trace of a divergence-free vector field.

This way of reasoning is also similar to the introduction of stochastic fluc-
tuations to simulate the micro-scale effects. A comprehensive introduction to
stochastic partial differential equations in fluid mechanics can be found in Monin
and Yaglom [109], Bensoussan and Temam [27], Visik and Fursikov [144], and
Flandoli [60].

3.3 - Vanishing viscosity limits

To conclude the introduction I observe that another motivation for the study
of slip boundary conditions are the recent advances on the vanishing viscosity
limits obtained by Xiao and Xin [148] and by Beirao da Veiga and Crispo [25, 26].
The main idea is that under Dirichlet boundary conditions one cannot expect to
have convergence (in strong norms) of the solutions to the Navier-Stokes
equations, towards those of the Euler equations with the same data, as v — 0:
There is the boundary-layer, characterized by large gradients and this prevents
from proving results of convergence, see Constantin [52]. It is also well-known
that in presence of boundaries one cannot expect convergence (or one can expect
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convergence only in special settings, see the review in Mazzucato [108]) if the
boundary-layer has some effect, see also Asano [6] and Sammartino and
Caflisch [122]. In 3D the situation is complicated, also for the fact that we do not
know the existence of reasonably weak solutions to the Euler equations. Anyway,
in the case of weak solutions %" (corresponding to the positive viscosity v) to the
Navier-Stokes equations Kato [83] proved that

w —u¥ in L*Q), uniformly int € [0,7], as v—0,
if and only if
(11) A
VJ IV @l dz — 0, as v — 0,
0

where %¥ is the solution to the Euler equation and " is a boundary strip of width 1/v.
Recent results have been also proved by Kelliher [86, 87] and Wang, Wang, and
Xin [147].

On the other hand in the whole space or in the periodic case it is well-known that
convergence takes place, see Section 7. Probably the most difficult part is showing
strong convergence with respect to the norm of the initial datum, part of the so-called
sharp convergence result.

The Navier conditions represent an intermediate path between having no
boundaries and having a solid boundary (in fact they have been used also for the
free-boundary problem). To understand why the Navier conditions allow to
simplify the problem, one can observe that if f = 0 and in the half-space case, one
can extend the solution (u,p) to the whole space by extending in a even (with
respect to {3 = 0}) way u;, uz, and p, while extending in a odd way ug. With this
procedure one obtains a new couple (u,p) which is a solution the Navier-Stokes
equations in R3. With this trick the problem is reduced to the Cauchy one and
this is tractable with the standard tools, see for instance [81]. On the other hand,
the generic non-flat case is much more difficult, because the reflection technique
does not seem to work and one has to introduce new tools also to study the
existence of strong solutions to the Navier-Stokes problem. Moreover, the 2D
theory is much more complete also in the non-flat case, but some sharp results
were still lacking, see Section 7, where recent developments are explained. On
the other hand, the approach to the 3D case is particularly new. There have been
important advances in the last three years [148, 25, 26] and I review some of the
new results. In addition, I announce some recent results concerning the well-
posedness of the boundary value problem in the non-flat case and I recall that in
the general 3D case some questions remain still open, and others are subject of
the current research.
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4 - The linear stationary problem

In this section I present the basic results concerning the linear and stationary
Stokes problem

—vdu+Vp=f

(12) V-u=0

with the slip boundary conditions (3). I am starting with this simplified problem
since its understanding represents one of the main building blocks to deal with the
Navier-Stokes equations under the slip boundary conditions.

In particular, we will see that existence of weak solutions derives from a fairly
standard application of the Lax-Milgram lemma, once the precise functional setting
has been introduced. We observe that the property of uniqueness is not straightfor-
ward: It depends on the geometry of the domain and on the values of the parameters
entering in the boundary conditions. Moreover, the regularity of weak solutions (if the
data of the problem are smooth enough) represents a non-trivial result. The H*(Q)
regularity of solutions, which represents the counterpart of the Cattabriga [47]
results for the Dirichlet problem, has been first proved by Solonnikov and
Séadilov [130]. Here, I will present a summary of the self-contained proof provided by
Beirao da Veiga [14, 16], which is particularly important for the estimates on the
pressure (I wish also to mention the results in [13] for the Dirichlet problem). Based
on a subtle treatment of the pressure, the regularity is obtained by means of the usual
Nirenberg translations method [114]. T also observe that the proof I am presenting
does not make any use of the vorticity equation, which is one of the main tools at
disposal when dealing with problems without boundary or with the Navier boundary
conditions. Next, I will briefly present also some simplifications and extension ob-
tained in the Master Thesis of Borselli [39] and by myself [30] in the context of very-
weak solutions, and which make substantial use of the vorticity equation.

4.1 - Notation

Here and in the sequel Q2 is a bounded, connected, open set in R?’, locally situated
on one side of its boundary I, a manifold of (at least) class C1! (Lipschitz-continuous
first derivatives). We use the classical Sobolev spaces W*4(Q) with norm || . || kg 20d
we also write H*(Q) = W*2(Q) (we use standard notation and symbols, see also
Adams [3] and Brezis [42]). If k = 0, we write simply ||. ||, := || . [, and, since the
Hilbert case ¢ = 2 represent the cornerstone, to simplify the notation we set

[l (N 2
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The number & can also be a real one and we will not distinguish between scalar,
vector, or tensor valued function spaces (the reader can extrapolate from the context
the correct meaning of the symbols). We also use fractional trace spaces on /" and we
denote by |- ||, its norm (with [|. [|; - := || . [|s2 ). As usual Wg’p(.Q) denotes the
closure, with respect to the norm of W*?(Q), of smooth and with compact support
functions. Since in the sequel we will deal many times with tangential vector fields,
we use the following symbol

H!:={veH(Q: (v n) =0},

and we also remark that, as for the standard Poincaré inequality, || V|| is a norm in
H7 equivalent to the canonical norm [|v]|, 5, see e.g. Galdi [65] (the same holds also in
the non Hilbertian case).

We use also the symbol (X)' to denote the topological dual of the linear space X
and (., .) denotes the duality paring. Generally we will denote the duality pairing of
spaces of functions defined on the boundary I" by (., .) .

The pressure in the Stokes system enters only with first derivatives and hence it
is determined up to an additive constant. To uniquely determine the pressure gen-
erally one imposes a vanishing mean value. In the sequel we denote by X4 the
subspace of functions of X with vanishing mean value.

4.2 - On a generalized Stokes system

Contrary to the Dirichlet case, the geometry of the domain is very important
when studying boundary values problems with Navier slip boundary conditions.
In the next sections we will also understand some of the substantial differences
between the flat and non-flat case. Here, we recall some of the restrictions which
are needed in order to study the linear case. In particular, the presence of
symmetries can give rise problems of non uniqueness. These issues are treated
in great detail in [14] and we report here the main conclusions. We say that the
domain Q is axially symmetric if it can be generated by a revolution around a
given axis [; (or even around by two orthogonal axes [; and l3). We also assume
that the origin of the coordinates belongs to both axes and denote by [; the unit
vector with the same direction of /;. Define the linear space (zero, one, or two
dimensional)

Z:={z: z=kil; xx, kieR},
with summation over repeated indices. The summation is taken over zero, one or

two indices, depending on the symmetries of the domain (obviously if there are
no symmetries Z = {0}).
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We say that we are in the special case if Q is symmetric and f = 0 and otherwise
in the generic case. We also use the following notation

Hl:={veH :(v2) =0, VzeZ}
and

H', = H'nH'.

Clearly it follows that H! = H & Z, while in the generic case H'(Q) = H..
I start considering the following “generalized Stokes” system
—vau — uNV(V-u)+Vp = f(x) in Q,

13
(13) Ap+V-u=g) inQ,
under the general non homogeneous boundary conditions

u-n = axr) on I,
Pur + T (u) = bx) on I’

where a(x) and b(x) are a given scalar field and a given tangential vector field on I
and the constants x, v, and / satisfy the assumptions

(14)

v >0, uw+v>0 and 2>0.

The (only apparent) complication coming from the study of a more general system is
motivated by the fact that it allows to give a better understanding of the role of the
pressure and of boundary data. Moreover, it can be used also to study problems
involving compressible fluids and clearly when i = 4 = g(x) = 0 one re-obtains the
classical Stokes system.

If 2 > 0 then in the “generic case” there is a unique solution to (13)-(14). On the
other hand, if 1 =0 the necessary and sufficient condition for existence is the
compatibility condition

(15) Jgdx:JadS,

Q r

which derives from the Gauss-Green formula applied to (13)s with (14);. The velocity
u is uniquely determined, while p is determined up to an additive constant, which is
generally set in such a way® that

1
p::p——deoc:O.
€|
Q

8 In this section the over-lined variable has nothing to do with the LES variables of the
previous sections.
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On the contrary, in the “special case” there are non-zero solutions to the homo-
geneous problem, that are rigid motions. In fact, the kernel of the linear problem
coincides with the linear space Z. If we take the couple (z,0) with z € Z, this is a
solution of the problem (13)-(14) with a =f =0 and b =g =0, since 4z =0,
V.2=0, (z-n)p =0 and Z(z) =0. The converse is also true but the proof
(see [14, App. 1]) requires some care: If (u,p) is a weak solution of the homo-
geneous problem, then necessarily # € Z and p = 0 (or a constant if 1 = 0). In the
special case the solution can be decomposed as ug = % + z, where u is the parti-
cular solution to the non-homogeneous problem such that [ uzdx = 0forallz € Z.

Q
Moreover, the function  (which is unique) exists if and only if the compatibility

condition

(16) Jf~(£7;xx)dm:—th@ixx)dS

Q r

is satisfied.

Remark 4.1. The proof of the existence of weak solutions I am presenting is
based on some kind of artificial compressibility method. In fact, the term Ap has
been added to the divergence equation. This tool will greatly simplify the problem
for two reasons:

1. The resulting variational problem is coercive over the set of all tangential
vector fields, and not only on the subspace of divergence-free functions;

2. The use of functions without prescribed divergence allows us to use the same
as test functions. This will be of particular interest for proving higher reqularity,
since the classical Nirenberg translation method [114] can be used directly.

Obviously the price to be paid is that the estimates (cf. (18)) we obtain directly are
not independent of 1. One has to use in a clever way some well-known inequalities
concerning a function and its derivatives (as those proved by Duvaut and
Lions [58]) in order to recover results independent of A > 0.

Remark 4.2. The use of function spaces without a constraint on the
divergence is particularly important also in view of the numerical analysis
and implementation of numerical schemes for the Stokes problem. The reader
can find details on the numerical implementation and additional (with re-
spect to the Laplacian, which seems apparently similar) problems invol-
ving the Stokes system, e.g., in Girault and Raviart [72] and Brezzi and
Fortin [43].



[23] SOME RESULTS ON THE NAVIER-STOKES EQUATIONS, ETC. 23
The first result I am recalling is the following.

Theorem 4.1. Assume that
fedHY, gel*Q), acHY*I) and be HYXD),

where b is tangential to I'. In the special case (i.e., if Q2 is symmetric and if f = 0)
assume also the (necessary) compatibility condition (16). One has the following
results:

(@) If 4 > Othe problem (13)-(14) has a unique weak solution (u,p) € H: x L*(Q).
Moreover, the following estimate in terms of the data holds true:

2 2 — 2 2 Y 2 2
i + Alpl* + 1Pl < ef Py + lalls o + 1617 2.0 +5lgll™ + llallyz.r)-

(b) If 2> 0 and (15) holds, the problem (13)-(14) has a unique weak solution
(u,p) € HL x L4(Q), where L3(Q) := {f € L*(Q) : [ fdx = 0}. If 2 = 0the pressure
p is unique up to a constant. Moreover, it holds

lealf + @+ DIpI* < eFEy + gl + lallf o+ 18171 2,r)-

(c) Inthe special case (hence Z # {0}) the general solution is given by (u + z, ),
where (u, p) is the particular solution described in points (a) or (b) (hence u is or-
thogonal to Z ) and z is an arbitrary element of Z.

Here, the symbol [ f1_1 denotes the norm of f as an element of (H)'.

Proof. 1 give asketch of the proof of the most important steps, while complete
details can be found in [14, Sec. 2]. To write the weak formulation we formally
multiply (13) by a smooth vector field ¢ tangential to the boundary and we observe
that (u, p) is a solution if and only if

B, $) —ipv-gbdx :if¢dx+l(b—ﬂu)¢ds,

where

Blu,$) == J [v VAUV + (1 — v)(V - u)(V - ¢)} da
Q

= [+ uvw - wle+ [0 gas
0 r

and we recall that V3f := (1/2)(Vf + VfT). In order to impose the value of the
normal component of the velocity, we reduce the problem to an homogeneous one by
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taking a vector w such that

V-w=g in Q,
w-n =0 on I,
wll; < (lelly 2 + [lgID-

This can be done in several (rather standard) ways’, for instance by solving the di-
vergence equation by the Bogovskii formula or as in [14, § 8]. Hence, by setting

U=w-+0,
we obtain that V = (v,p) € H lz x L? must satisfy the following equality
(17) 0, (V, ®) = L(®),
for all & = (¢,y) € H}, x L?, where
a,(V,®) := B,$) = (p, V- ¢) + f{v,8) + XHp,v) + (V- v,w),
L(®) := =Bw,$) + (f,¢) = fw,$)p + (0,8)r + (9,9) — (V- w,p).

To study the variational problem (17) we need the following result.

Lemma 4.1. Forall 2 > 0 the bilinear form a,(., .) is continuous and coer-
cive in (H', x LXQ))* and the linear operator L is continuous on H!, x L*(Q).

Proof. The continuity of L is proved by a direct computation, since by using
the explicit expression of B(., .) one obtains directly

IL(D)| < c(|ally o+ [f1a + ([0l 12 DIVEN +cllally o rllvll + llgliv.
and in the case that (15) holds, one can also prove that

\L(P)| < eLf 11 + llgll + Nlally o + 1100l Z1 o IV

The verification of the other property concerning the bilinear form is slightly more
complicated. We first observe that the following vector identity holds true: Assume
that v € H!, then

B@,v) = v || Vol + ||V - v|* — vjamkvivk ds.
r

9 Observe that when we do not assume (15) it is enough to take any lifting from HY/2(I") to
HY(Q). Condition (15) is needed in the case 1 = 0, or if we want to pass to the limit as 1
vanishes. In the special case one has also to construct w such that it belongs to H?, but this can
be done simply projecting the function w previously constructed.
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The proof is obtained with an integration by parts. First one gets the same equality,
but with the boundary term v [ djvpvin; dS. Next, one can smoothly extend the

r
normal unit vector field n to a small neighborhood of I” (see for instance Necas [113]
for Lipschitz prolongation concerning C%!-boundaries) and, by observing that v is
tangential and that v - n vanishes identically™® on I", we get

0=@-V)W-n) = v;0;(vgny) = v;(Ovp)ny, + vivr(Omg) on I
With this result we can reduce the order of the boundary term. Hence it follows that
Jeg=co(Q):  Bw,v) > 7| Vo|* — cov|v]%,
with

_ v, if >0,
V=
v+ U, if —v<u<O.

Next, we observe that by a rather standard compactness argument (see [130]) the
following inequality holds true
Ve>0 INeN: || <e|Vv|+NBwv) VveH.,.
Consequently, it follows that
B(,v) + cov [l > 7| Vo],

and the left-hand side is a norm on H' . Having at disposal these tools one can show
(some work has to be done, cf. [14, p. 1090] for further details) that for each fixed
A>0

@, (V,V) > er|Vol* + 2| p]?,

and this proves the coercivity of the bilinear form a,, for any given /. O

By using the Lax-Milgram lemma one obtains that, for each fixed 4 > 0 there
exists a unique V, = (v;,p,) € le x L?(Q) which satisfies (17). By using (v, p,) as
test function we also get

C
A8)  IVoulP + Hpal < e[ Py +llal o + 1012 +5 ol + 1P

and the estimate is depending of /. It is clear that if @ = g = 0, i.e., the classical
incompressible Stokes system, one can obtain directly an information on the velocity

10 We will use several times in the sequel such identities.
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v;, since the norm of this therm is not depending on 4. In particular since
a;(V,, @) = L(P)

and the problem is linear it is easy to see that there exists a sequence 4, — 0 and a
functionv € H! _ suchthatv;, — v, which s solution of the problem with 2 = 0. In this
process, which is nevertheless standard, one is loosing all information on the pressure,
which can be recovered by De Rham theorem in some weak (distributional) sense.

It is now clear that passing to the limit keeping also the information on the
pressure will greatly improve the result. Clearly, in the non-homogeneous case the
situation is even more difficult since this argument does not work even for the ve-
locity, this is why we study the non-homogeneous case in order to focus on a possible
variational treatment of the constraint on the divergence.

In order to prove the estimate in the statement (a) of Theorem 4.1, we observe
that

jpiv ‘pde = Bw;, ) — (f,4),
Q

hence
Vp; =f +vM; +uV(V-v;), inthe sense of H ! := (Hy(Q))'.
This implies that
IVPilly < Lf1a + O+ (Vs + [lwlly),

and now we use in a crucial way the following result.

Proposition 4.1. Let be given p € L*(Q). There exists a constant c depending
only on Q2 such that

(19) Bl < elVpll_y,  ¥pe L.

The classical proof of this result can be found in Duvaut and Lions [58] and
Tartar [134]. A simplified and self-contained proof can be found also in Beirdo da
Veiga [14, 16]. See also Bourgain and Brezis [40]. Observe also that this is the “easy”
version of this inequality, since we need it for a function we know a-priori to be in
L2(Q). Stronger results with the same estimate for distributions with first deriva-
tives in L2(Q) are known, see Neéas [112].

By using the estimate we know on v; we can add (19) to both sides of (18) to get
the desired estimate. Moreover, if the compatibility condition (15) holds true (note
that this is not needed if 4 # 0) we can prove in the same way that

IV el + Hpal < o[ L2+ gl + el o, + 10IE 1.
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and the estimate of statement (b) follows by adding again to both sides the estimate
on p in L?(Q) coming from (19). Note also, that p = p since, by using as test function
the couple (¢, w) = (0,1), one gets

indx: Jgdac— JadS:O.

Q Q I

Once one has proved those estimates, one can also handle the case 2 = 0. Being the
norm of V, independent of / one can take sub-sequences A; — 0" such that
V,, = ;. p,,) weakly convergesto V = (v,p) € H!, x L2(Q). By passing to the limit
it follows that '

ay(V, D) = L(D).

The limit V' = (u, p) is unique because the solution of the Stokes problem with 4 = 0

is unique. In fact, the energy estimate gives B(u,u) =0, hence wu = 0.

Consequently, [pV -¢de =0, hence Vp =0 in H !, but being the mean value
Q

of p zero, it follows that p = 0. O
In the case of more regular data one can prove the following result.

Theorem 4.2. Assume that I is of class C>1. Let J.and the data f, g, a, and b
satisfy the conditions assumed in one of the cases considered in Theorem 4.1, and
let (u,p) be the corresponding weak solution. Assume moreover that

fel*Q), geH'(Q), acH*I) and be HYXI).
Then the couple (u, p) belongs to H*(Q) x H'(Q). Moreover, in case (b), it holds
lullz + A + DlplF < £ + gl + lall3or + 111520,

where ¢ is independent of 1. In case (a), the above estimate is satisfied by replacing ¢
by c(4), where c(A) tends to infinity as A goes to zero. In the special case, the above
estimates are satisfied by the particular solution uw € H %_Z, 1.e., by the solution u for

which (u,z) = 0. Clearly, the solutions uy = u + z are reqular, as well.

Proof. 1donot give the proof of this result which is rather technical even if it is
elementary in the approach. I would like just to give the main idea in the simplified
case of the domain with a flat boundary, since it is illuminating on the techniques one
has to use also in general cases. Nevertheless, the proof in a general domain requires
several tricks and a very complete and detailed proof is given in [14, § 3-6]. Observe
also that obtaining a bound in L?(Q) for the second order derivatives of the velocity
and for the first order derivatives of the pressure is the hardest part in the study of
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the Stokes problem. With this at disposal, and if the data are smoother, one can prove
further regularity. In particular, the estimates obtained concern the so-called reg-
ularity up-to-the boundary, which is a result technically much harder than local or
wnterior results.

The first step is rather standard and consists in the construction of a weak solution
with an arbitrary support. This is clearly needed in order to localize and obtain the
local estimates in each open set of a finite covering of Q. One needs to derive the
variational formulation satisfied by (6v, Op), where 0 is a function of class C(l)’l(Rg). In
fact (Qv, Op) will turn out to be a weak solution in £2 of a problem with modified data, but
the modified data keep the same regularity of the data of the problem. It is clear that in
the interior of the support of 0, if (Gv, Op) is regular, then also (v, p) is regular. This is
accomplished if we are able, for each xy € Q, to prove regularity of (9v, Op) for some 0
with support containing ay. If y belongs to the interior of Q and by choosing 6 with
support small enough (not touching ") one can reduce the problem to the interior one.

The case in which xy € I" is more delicate. In this case one can write, in a small
neighborhood of xy, the boundary as the graph of a smooth function; next one can
flatten the boundary in the usual way by means of an invertible smooth transfor-
mation. Let us write (1, 22, 43) = (&', x3). Then, there is a positive real a and a real
function w3 = h(x), of class C® defined on the ball {x € R? : [«/| <a}, such that the
points « for which x5 = h(x’) belong to I', the points such that h(x') <x3<a + h(x')
belong to Q, and the points x such that —a + h(x') <ag <h(x') belong to the com-
plementary of Q. The change of variables which flattens the boundary is defined by
y="Tx

W1, Y2, y3) = (1, 22,203 — h(x))

and we set f(y) := f(T~(y)). What is different from the usual Dirichlet problem is
that we do not have to preserve the zero value of the velocity on the boundary, but
one need to send tangential vector fields on I into tangential vector fields on
{x3 = 0}. If we do not take care of this property we cannot have consistent results:
We need to use a co-variant transformation which sends tangential vector fields on I”
into vector fields on 23 = 0 such that the third component vanishes. Such a change of
coordinates is given by

v =), for j =1,2,
v3(y) = v3 — (B1h)v1 — (Doh)v2.

Then one can use the translations in the horizontal directions, while some care is
needed to obtain information in the directions which are orthogonal to the boundary.

In order to show one main computation, which is erucial for the proof, I consider a
much simpler problem, but which nevertheless furnishes the main ideas in order to
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treat the previous case. I consider the flat case, where one has not to make the change
of coordinates'” and in particular I consider the problem in Ri ={xeR®: x3>0}.
For full details see [16].

We apply the translation method and we can do this in the horizontal directions.
Let 7 = 1,2 be fixed and let & # 0. Define the translation operator by

7,2(x) = 2(x + he)),

where ¢; is the j-element of the canonical basis of R? defined by lejl; = ;5. In the
variational formulation set ¢ = t_;¢ and v = v_,w. Take the difference with the
variational formulation with test function @ = (¢, w) and use the change-of-variables
identity

Jrhvzdac = Jvr,hzdaﬁ.

Q Q

aV-V N\ Jul-L
“( D ‘p)< D ’¢>’

and by using the properties of the bilinear form a(., .) and of L we obtain

It follows that

VQHV(rh,v —)?

¥ = p|?
7 5

v+ [ul)?

2
< [0+ lblygl + 1ale+ (142 )11+ Bher |

v+ |
In particular this follows since ||7,9 — g|| < &|0; g|| and also using similar estimates
for a. The regularity of the data and classical (cf. [42]) results on Sobolev spaces
concerning the equivalence between Sobolev norms and L?-norms of differential
quotients, imply that

7| V2| 5 )2|| Vipl®

|+ 1D Tl + lally o + (1 n

2
U+ BBl

' Tn the case Q = R3 there is also a small technical complications due to the fact that the
problem does not have a Varlatlonal formulation in H?, but only in the space H 1 which is the
closure with respect to the semi-norm || Vo||. Functions in H ! do not belong to L2(R ), but just
lo L5( R3 ). At this point this is inessential, since we want to study second order derivatives of
the Velocity.
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Here V% denotes the second order derivatives, except for 8%, while V,, denotes
the horizontal gradient, i.e., first order derivatives except 0d3. To recover the
regularity of the remaining derivatives, we cannot use the elementary tool that
works for the Poisson equation —Au = f: In that case one simply writes by
comparison

B = Fu + dgu — f,

and it is possible to estimate 8§u in terms of quantities form the right-hand side
which are in L?(Q) by the previous step.

If we use exactly the same tool for the Stokes problem, we will have in the
right-hand side also the term dsp for which we do not have any estimate, yet. To
this end we consider 2 x 2 linear system obtained by taking the 3rd scalar equation
together with the equation obtained by differentiation of the 4th equation with
respect to s

— (v + 1) Bug + Osp = fi + vayug + n (V) - wy) == F,
RBus + 1.0sp = 39 — (V) - uy) := G,

where 4, is the Laplacean with respect to the first two variables, and obviously
uy, := (ug,uz). This algebraic linear system in the unknown (Bgug, d3p) has always a
unique solutions since its determinant is

1=+ < —1.

The previous result, obtained with the translation method, shows that both F and
G belong to L*(2). We can now solve the system with respect to the unknowns 65
and Osp obtaining them as a linear (continuous) combination of F, G € L*(Q),
hence showing the desired result.

This does not end yet the proof, since we are still missing the regularity of the
terms

6§u1 and 8§u2.

To obtain such terms we take the first two equations and we observe that, by com-
parison,

2 2
vaguj——vZé?ﬁujJrﬂ@(Z&kuk) +8jp—J§~, j=12.
k=1 k=1
Since previous results proved that the right-hand side belongs to L?(Q), this finally
shows that all second order derivatives of the velocity and all first derivatives of the
pressure are square summable. The precise estimate for these quantities in terms of
the data follows from the proof, and the details are left to the reader. O
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4.3 - Further remarks on strong solutions

We give now an alternative proof of the regularity result, at least in the flat case.
The proof here is given in the case f = 1= ¢ =0 and it is taken from results of
Borselli in her thesis [39] and by myself [30]. The proof is based on the application of
the curl operator and on standard regularity results for the Poisson problem.'? The
main advantage of the technique we introduce is that one can study also the non
Hilbertian case. In particular, estimates in LY(Q), q # 2 for second derivatives of u
and first derivatives of p can be obtained, by assuming as starting point just classical
the W24-regularity for the Poisson equation, under different boundary conditions,
see Bers, John, and Schechter [28]. In particular, in this case one can avoid the
complicated technique of singular integrals needed to deal with the Dirichlet pro-
blems as in [47]. See also Simader and Sohr [126] for another approach to the
Dirichlet problem for the Laplacean and the Stokes operators.

Here to avoid technicalities at infinity, we assume that the domain instead of
Q= Ri is the “cube” Q =1-1, 112 x 10, 1[, with the flat boundary I" = Iy U Iy,
where

Fi:{aceR3:|x1\,|xg\<l, xgzi}, for 1=0,1,

while the problem is assumed periodic (with period 2) in the other two directions. We
also define «' := (x1,x2) and we call “x’-periodic” any function that is periodic with
period 2 in both x; and x2. We impose the following Navier’s (slip without friction)
boundary conditions on I

—Oqu! = at on Iy Hul=0  on 7y,
(20) —dgu* =a*  on Tl duZ=0  on Iy,
—ud=b on I'y =0  onl},

where a' and b are given functions. The Navier’s boundary conditions become the
above ones (20) since the outer unit vectoris n = (0,0, ( — 1Y on I';, the domain is
flat, and f = 0. For simplicity we set homogeneous boundary conditions on /7.

Remark 4.3. In this case there are problems of possible non-uniqueness,
even if there is no axial symmetry. In fact, if (u, p) is a solution also (u + ug, p + po)
with ug := (c1,¢2,0,) and py := c3, for ¢; € R is a solution. Hence, to have un-
iqueness, we fix the mean value of u',u? and p equal to zero. In this functional
setting the usual Poincaré-Sobolev inequalities still hold true.

12 Related results can be found also in Bae and Jin [7], by a different method, based on
suitable reflections of u and p.
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Here the subscript “# " denotes vector fields with the first two components with
vanishing mean value, while “x " denotes scalar fields with vanishing mean value.

Theorem 4.3. Let (u,p) be a weak solution of the Stokes problem with
the boundary conditions (4). Let be given, for 1<q< + oo, f € Li(Q),
at € WHYa9(ry), and b e W2Y/249(ry), such that ffl—&— fa =0, for i=1,2

and j bdS = 0. Then, there exists a unique solutwn of the Stokes problem
(12)20) such that (u.p) < Wi (Q) x Wy'(Q) and

[ulleq +1IPllg < ClC, @ 0o

for some C = C(q, Q,v) > 0, where we set

2
1(F 0o = 1l Loy + Z ' | wi-vaacry) + 10Nl we-1/aacry)-
i—1

We recall that, while the L?(Q2) results can be obtained by the translation method,
the L7-estimates need probably in a substantial way the use of potential theory and of
Green functions. In the case of slip boundary conditions one can prove in an elementary
way the LY-estimates by using as starting block the same results for the Laplace
equation. The interest for solutions with derivatives in L9(Q) is motivated by the fact
that in exterior domains the L?(Q) setting is not satisfactory in many situations, see
Galdi [65, 66]. Another situation in which one needs to deal naturally with L9-solutions
is the problem of existence of very-weak solutions. These solutions satisfy the equation
with all derivatives transferred on the test function, by suitable integration by parts.
Hence, one can speak of Li-very-weak solutions of the Stokes and Navier-Stokes
equations. For reasons due to the nonlinear term and restrictions deriving from
Sobolev embeddings, for the (non-linear) Navier-Stokes 3D equations one is forced to
consider very-weak solutions in L9(Q2) with ¢ > 3. Recent results concerning very-
weak solutions with different boundary conditions in the stationary (linear and non-
linear case) are those by Galdi, Simader, and Sohr [69], Kim [88], and myself [30].

Proof. [Proofof Theorem 4.3] We know in advance that a unique weak solution
of the Stokes problem exists, and we need just to prove that it has stronger reg-
ularity properties. If one wish can justify rigorously all calculations by using the
translation method, or by approximating the solution with Galerkin approximate
functions (u,, p,) and then showing estimates uniform in 7.

By taking the curl of (12) we write the equation satisfied by « and, since
curl(Vp) = 0, then

—vdw = curl f
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that is a (vector) Poisson problem. By using the same calculations seen in Section 2.2
we get

wy = Goug— 03Uz = o on Iy,
we = guy — Oy = —op on Iy,
Oswg = —Oiwy — e = Ooog — Orap on Iy,

where dooy — A1z € W1/9(Ig). The three components of the vorticity can be treated
separately and hence we have three uncoupled Poisson problems. The first two with
Dirichlet boundary conditions and the third one with Neumann conditions.™ It is
easy to see that the compatibility conditions for the Neumann problem are auto-
matically satisfied and with the standard regularity results for the Poisson pro-
blem [28] we obtain

w € WH(Q).
Next, we use the identity,

curlcurlu = —du + V(V - u),

and since V - u = 0 we get the equality that has a very relevant role in the theory of
incompressible fluids.

(21) —Au = curl w.

In the whole space this is the main tool to recover regularity on the gradient of u by
that of the vorticity. In fact, in R® the Biot-Savart law implies

w(x) = —% J (Vﬁ) x (e +y)dy.
R3

One has an explicit expression of % in terms of @ via the integral representation for
the solution of the Poisson equation.

In our setting the Poisson equation for « is supplemented by the boundary
conditions (20) and we have other three uncoupled Poisson equations: We have two
Neumann problems (for %, and ug) and a Dirichlet problem for u3. Again the stan-
dard regularity for the Laplace equation gives

u € W24Q).

13 This observation have bee used in [17] to solve the (vector) equation (21) by means of
the Green functions in the half-space, under different boundary conditions. Apart technical
complications due to the flattening of the boundary, this is the technique used to study
problem (32) as we will see later on.
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Finally, the regularity of the pressure is obtained by comparison, since
Vp =vdu + f € LUQ),

ending the proof. |

Note added in proof. I have been recently informed that similar results,
for the Stokes problem with Navier boundary conditions have been proved by
C. Amrouche and his coworkers. Their proof is based on a different and more
general approach which uses the theory of vector potentials.

5 - The time-evolution problem

In this section I recall some results concerning the time-evolution problem. Both
the linear and the non-linear cases present more or less the same difficulties (in
terms of existence and uniqueness) of the corresponding problem with Dirichlet
boundary conditions. In the previous section we considered solution with prescribed
divergence ¢ € L?(Q). This was functional to a better understanding of the proofs,
but here we come back to the setting we have in mind of incompressible fluids.
Hence, from now on all solutions will be divergence-free and we introduce a couple of
spaces to better study the problem. The space H is the usual one in the treatment of
the Navier-Stokes equations:

H:={vel*Q): V-v=0and (v -n)r =0},

where the divergence is in the sense of distribution and the normal trace is intended
in the sense of H-Y/2(I"). In addition, if we set

G = {Vp ip € H;(.Q)},

then L2(Q) = H & G.
The second space we need is slightly different from the usual one, since in the no-
slip case it is a subspace of H(l)(Q). Here we define

Vi={veH(Q): V-v=0},
with norm ||v[;, = || V).

In a standard way we can define the linear operator A : V — V' by the identity

(Au,v) = a(u,v) := vJVSuVSv + p<u,v >r, Yu,veV.
Q

The results of the previous section show that A is an homeomorphism from V onto V'
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and we can consider the restriction (as an unbounded operator) to H, with domain
DA)={veV: Ave H}.
Moreover, we have also the following characterization of the domain of A
DA)={veH*Q): V-v=0, @-n) =0, and fv. + Z(w) =0},
and that the operator A satisfies
Au = —PAu,

where P is the projection operator L*(Q) — H. The regularity results for the sta-
tionary problem can be reformulated as follows: if f € H (and g = 0, a = 0), then the
unique weak solution (u, p) of (13)-(14) belongs to D(A) x H}#(.Q). Moreover, it also
turns out that A is a self-adjoint maximal monotone operator. See also [42] for a

review of maximal monotone operators and the application to evolution problems.
Hence, we have the following result, see [18].

Proposition 5.1. The operator A is maximal monotone and self-adjoint in
H. In particular, it is also generator of an analytical (and compact) semigroup of
contractions in H.

5.1 - The linear problem

With the results proved in the previous section one can successfully treat the
time-dependent problem

g —vau +Vp =f in 10, 7] x Q,
(22) V-u=0 in ]0, 7] x Q,
w(0, 2) = up(x) in Q,
under the slip boundary conditions
u-n=0 on I x]0,T1],
Pu.+T(m)=0 on I x]0,T]

Definition 5.1. We say that a couple (u,p) is a weak solution of (22) with the
slip conditions 3) if u(t) € V for a.e. t € (0,T), if up = u(0), and if

%wm) oy J Vou - Voda + Blu,v) = (f,0),
Q

forallv € V, in the sense of D'(10, T).
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The time-evolution boundary value problem of (22) with slip boundary conditions
can be also written as an abstract (functional) equation as follows

(jl—?—f—Au:f in H,

u(0) = uyg.

The properties of A imply in a standard way that if uy € D(4) and f € CY(0,T; H),
then there is a unique solution u € C(0, T; D(A)) N C1(0, T; H) of the initial boundary-
value problem. The usual techniques allow us to study also the nonlinear problem

%—i—Au—i—P[(u-V)u]:f in H,

M(O) = Uy,

and to prove existence of strong solutions for small data.

Theorem 5.1. Letf € L*(0, +oo; LA(Q)) and uy € V. There exists a positive T
such that the problem (1)-(3) has a unique solution (u,p) satisfying

w € LA0, T; H*(Q)) N W20, T; LA(Q)),
p € L0, T; H4(Q)).

In addition, if the data are small enough (in terms of the viscosity) the solution is
global in time.

It is clear that for our interest concerning flows with extremely small viscosity,
such a result is not satisfactory, so there is need to study larger classes of (weak)
solutions, which are global in time. Consequently, it is also worth studying some
notions classical for the Navier-Stokes equation. In particular, one would like to have
the existence of weak solutions, the energy inequality, and the enstrophy balance.

5.2 - The nonlinear problem: Weak and strong solutions

In this section it will be studied the time-evolution problem by means of (gen-
eralized) energy estimates. Here, we obtain a couple of differential inequalities sa-
tisfied by smooth solutions, which can be used to obtain a-priori estimates on
Galerkin approximate functions and to prove existence results by standard techni-
ques. We first derive some integrations by parts formulas that will be used in the
sequel. In particular in this section we use as boundary conditions (4).

We start with an identity involved in the energy budget, see Beirdo da Veiga and
Berselli [24].
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Lemma5.1. Letu and ¢ be two smooth enough vector fields, tangential to the
boundary I'. Then it follows

(23) — szi ¢ dx = JVWV@ dx — J(w X n); ¢; dS + Jgﬁi uy, Oy, dS,
Q Q T T

where v = curl u.

Proof. We use index notation and &, is the totally anti-symmetric Ricci ten-
sor. We observe that, for i =1,2, 3,

[w x nl; = ey wj mi, = &jje (Ejim Opthm) Mg = (Ot Fim — Ok, Oit) Mg Ot on .
Hence
(24) g O — Ny, Oy, = [ x 1, on I

Since u is tangential to the boundary, it follows that (z- V) (u - n)r = 0, for each
vector field 7 tangential to the boundary. A straightforward argument (¢ is tan-
gential, as well) shows that (¢ - V) (- n) - vanishes, i.e.,

ng ¢i &;uk = —U (]52 61j’l’Lk on F,

(the reader can compare it also with the results in the proof of Lemma 4.1). Finally,
by using the classic Gauss-Green formula, and the above identities on I” we deduce
formula (23). O

The second identity is concerned with the vorticity field. In particular, we have
seen in Section 2.2 that in the flat case one can freely integrate by parts the
Laplacian of w, since no boundary terms arise. Here we show the counterpart of this
result in a general domain, which is still tractable, but gives rise to some lower order
terms.

Lemma 5.2. Assume that u is divergence-free and that on I" the slip condi-
tions (4) hold true. Then

0w
(25) ~an @ = (i ergy + eaji oy + Sxji Sapy) 05 O Oy

In particular, exists ¢ = c(Q) such that
(26) —JAa) code > J|Va)|2dx— ¢ J|a)|2dS.
Q Q T

Proof. The vorticity w is parallel to the normal unit vector on I". Hence
(t-V)(w x g)} r = 0 for each vector field t tangential to the boundary. Since on the
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boundary w is orthogonal to tangent vectors, it follows that w x V[ (w x n); ] = 0 for
1=1,2,3, on I'. In more explicit coordinates we can write, for 7, « = 1,2,3,

(27) Eijke Eapy Wj ak(a)/; ny) = O, on [

Hence, by considering Eq. (27) for (¢, 2) equal to (1,1), (2,2), and (3,3) we get, re-
spectively:

N3 g O3we + Mo w3 otz — Mo e 33 — N3 w3 oo + ELjk €1y W (B 8]6’}%/ =0,
ny w3 01wz + Mg w1 3wy — Mg w3 01wy — Ny W1 RWs + &, Eap, W wp O,y = 0,
N2 1 82(01 =+ 11 w2 81602 — N1 62602 — N2 W2 81601 + 83jk Sgﬁy wj w/; Bkn, =0.

Next, by adding term-by-term, the above equations together with

(ng we oz — Mg o Dawe)+ (Mg w3 Dsws — N3 w3 J3w3)
+ (1 w1 011 — My w1 Or1) = 0,

we show that on I”
ni y, Ojep, — (w; 1) Ok i) + (exjk e1p) + Eajik 25, + e3jk; €3py) W) wp Ty, = 0.

Finally, since V - @ = 0 we get (25). Equation (26) follows by appealing to the well
known Green’s formula

- de ~ode = J|Vw|2doc— Ja—w-wdS,
on
Q Q T
since (25) shows that
Je=¢(Q)>0: ‘aaa)iloc) co() | < clo@)?, Veel.

O

We give now the following precise definition of the classes of solutions we con-
sider

Definition 5.2 (Weak solution a Ila Leray-Hopf). We say that
w € L>0,T; H)NL*0,T;V) is a weak solution to (1)-(4) if the two following con-
ditions hold:
i) For each ¢ € C>([0,T] x Q) satisfying V -¢ = 01in Q x [0,T], (T) = 0 in L,
and ¢-n=00n I x[0,T]

é-Vn-udSdt

S

T
J(—u ¢+ WuVe+ (u- V)ue) d dt+vJ
2 0

uo(x) Pz, 0) da;

0 — N—
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ii) There exists ¢ = c¢(Q2) > 0 such that the energy estimate
¢
luct)||* + VJ V(s[> ds < ||uol® €*,
0
1s satisfied for all t € [0, T).

In order to understand a little bit more about the meaning of this definition let us
derive the energy balance.

Lemma5.3. Letubeasmooth solution of (1)-(4) in [0, T]. Then, there exists a
positive constant ¢ = c(Q) such that
1d

J uffde + v J IVl dar — ve J uf2ds < 0.

Q Q r

Proof. The proof follows immediately by taking the scalar product of (1) with
u, by integrating over 2, and by using results of Lemma 5.1. Note again that the first
order derivatives of the (extended) normal unit vector n are uniformly bounded,
since the domain is smooth. O

We also observe that the inequality can be proved to be true also for weak so-
lutions, by means of standard arguments of approximation and of semi-continuity of
the norm, see [54, 67].

Next, we give the definition of strong solution.

Definition 5.3 (Strong solution). We say that a weak solution u is strong in

[0, 7] if
Vu € L0, T; L*(Q)) N L*0, T; H\(Q)) .

We say that a weak solution u is strong in [0, T1[ if u is strong in [0, T for each
T< T1.

Trace theorems imply that for strong solutions the condition @ x n = 0 holds in
H-Y2(I). In addition, standard tools (following the same lines of the proof in [54])
show uniqueness of strong solutions in the much wider class of weak solutions.

To show existence of strong solutions, a very interesting tool in the setting we are
exploring is that of using the vorticity equation: By applying the curl operator to (1)
we get

o+ - VYo —vdo = (- V)u in Q2 x 10,71,
(29)
V-o=0 in Q x 10, T1,
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supplemented with the boundary conditions #-n=wxn=0 on I". In order to
deduce the enstrophy balance, we take the scalar product of (29); with w, and we
integrate over 2. By appealing to (26) we obtain the following result.

Lemma 5.4. Letu be a strong solution of (1)-(4) in [0, T. Then, there exists a
positive constant ¢ = c(Q) such that

1d

J(w-V)u-wdm

cozdac—i—v szdac—cv wzdS<
| | =

Q Q

Inequality (30) allows us to bound (at least for small times/small data) the vor-
ticity in natural function spaces. It is also well known, that the presence in the right-
hand side of the vortex stretching term (that, at least at first glance, behaves in the
same way as ||a)||§) is the main obstacle in proving global existence results for strong
solutions, even for the Cauchy problem in R?.

To employ inequality (30) we must observe that it concerns the L?(€2)-norm of the
vorticity and of its first order derivatives, while the definition of strong solutions
involves the full gradient of %. In order to deduce suitable estimates we shall show
that it is possible to bound the gradient of velocity, by the curl (at least in the L?(Q)-
setting). More precisely, we have the following result.

Lemma 5.5. Letu €V be a function satisfying (4). Then, there exists a po-
sttive constant ¢ = ¢(Q2) such that

B 3 [1veP < @ [pde + [ oa
2 ) )
In addition, if o € HY(Q), then u € HX(Q) and its H*(Q)-norm can be bounded by

||z

Proof. SinceV-u = 0inQ,we write again (21) and in particular we have that

u satisfies the system
—Au = curlw  in Q,

(32) u-n=0 on I,
woxn=0 on I

Next, we multiply both sides of the first equation (32) by u, and integrate over Q. By
appealing to Lemma 5.1 it follows that

JIVu|2 dx + Juiuk Oy, dS = qurlw- ud.

Q r Q
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This last equation can be written in the equivalent form

(33) J|Vu|2 de + Juiuk iy dS = J(w ) - udS + J|w|2dm.

Q r r Q

The boundary integral from the right-hand side of (33) vanishes and the smoothness
of I" implies that the absolute value of the second integral from the left-hand side
of (33) is bounded by a multiple of | lu|? dS. Hence, the standard trace inequality
implies (31). r

The L2-regularity of second order derivatives follows by standard arguments.
Similar estimates in L9(Q) can be obtained, by multiplying by |u\q_2u and
performing the same integration by parts. Related calculations are also sketched
in Section 7. O

Remark 5.1. The arguments of this section are the same as in [24] and we
observe that, in order to use inequality (31), we need a bound for the L?(Q)-norm of
u to ensure the H'-a-priori estimate for the solution. Since we are considering the
time-evolution problem, the above bound follows from the energy estimate.
However, we observe that if Q2 is convex, then this last device is superfluous since
the integrand that appears in the surface integral in the left-hand-side of (33) is
(almost) everywhere non-negative.

A relevant role in this approach is played by the estimates of # and Vu in terms of
w, also by explicit formulas with Green matrices. These are obtained by a precise
analysis of the system (32), or more generally of the system

—Mu=f in Q,
u-n=0 onl,
oxn=0 onl

which falls in the class of Petrovskii elliptic systems. We recall that in Petrovskil’s
systems different equations and unknowns have the same “differentiability order,”
see in [129, p. 126]. This fact allows us to obtain a representation formula with a
single Green’s matrix. The importance of these systems is also due to the fact that
they are a relevant subclass of Agmon-Douglis-Nirenberg [4] (ADN) elliptic sys-
tems, and they share the same properties of self-adjoint ADN systems. In addition,
for these systems the H?-regularity can be used to prove the full regularity of so-
lutions, provided that the data are smooth.

The explicit verification that this system satisfies the requirements is done
in [24]. I do not reproduce it here, but for the reader’s convenience I observe that —on
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the contrary— the Stokes problem
—Mu+Vp=f inQ,
V-u=0 1in Q,
u-n=0 onl,
oxn=0 onl,
is not of Petrovskil type. There is a difference between proving existence of smooth
(u, p) and proving suitable relations between velocity and its curl. For an introduc-
tion to the above subject we recommend the reader to look up in the proof of
Proposition 2.2 in [138], where the Stokes system is considered under the Dirichlet
boundary condition: The Stokes system is still not of Petrovskii type also in this case.

5.3 - Existence of solutions

I conclude this section by giving a sketch of the proof of the existence results for
weak and strong solutions.

By using standard techniques, one can approximate the problem (for instance via
a Galerkin method) and then one can prove a-priori estimates independent of the
regularization. In fact, by taking into account the trace inequality and of (28)-(30) we
prove the following differential inequalities:

~ <
3 e+ [Vl < @ ul’?

1d

saillol® + 3 IVol < c@lol + | [@ Du-oda

Q

Next, one can estimate the last term from the right-hand side of the second differ-
ential inequality as follows:

J(wV)u-wd% < ol Vullzlolls,
Q
and with the standard tools of interpolation and Sobolev inequalities one obtains

j@ V)u- wde| < C[llolf ol + lubllo]” ol ]
Q

Next, by using also the energy inequality we get the following estimates:

= <c(Q
5 Sl + 219l < @l

1d
2dt

(3 o] ||w||

ol +—\|le| <C(Q)< + ol +||w||>
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and by using Poincaré-type estimates (see also Lemma 7.1) especially the second
one can be improved to

1d 2V 2 ||(0H6 2

- — < = .

5 ol + 2 Vol < c(fz)( ol

This is enough to show that u € L>(0,T;L*(Q))NL*0,T; H'(Q)) and that
w € L>0,T*; LA(Q)) N L0, T*; H(Q)), for a positive T* depending on the data.
With the techniques introduced by Hopf [75], (see, e.g. ref. [54, 138]) one can easily
show the following result.

Proposition 5.2. Let uy € H be given. Then, for each T > 0 there exists at
least one weak solution of the 3D Nawier-Stokes equations (1) with the boundary
conditions (4) in [0, T']. In addition, if uy € V then theve is a T* = T*(||Vug|,v) > 0
such that a unique strong solution exists in [0, T*[.

Related question are treated by Girault [71] with an approach using vector-va-
lued potentials. In addition, with a different variational formulation, existence and
uniqueness of weak solutions to the stationary (Navier-)Stokes equations with the
“non-standard” boundary conditions (4) can be given in simply connected domains.
For related question of non-uniqueness, see Foiag and Temam [62] with the char-
acterization of curl/div-free vector fields in non-simply connected domains.

From Lemma 5.5 it follows that if we are able to bound the L2(Q)-norm of the curl
of a weak solution u, we are also able to bound the full gradient of this solution.
Beside the physical meaning of the vorticity, this is the mathematical reason for the
use of the vorticity equation. The precise analytical study of the vorticity equation
and of the relation between « and @ has been motivated by the technicalities needed
to prove the following regularity criterion in [24].

Theorem 5.2. Let Q@ C R?® be an open, bounded set with boundary I' of class
C32, for some o > 0. Suppose that ug € V and u is a weak solution to (1)-(4) in
[0, T]. Let “/” denote the angle between two unit vectors, identified with the length of
a geodesic connecting them on a spherical unit surface. Define

o) wly,t) )
|, )] ooy, D)

0(x,y,t) := 1(

and suppose either that there exist f € [1/2,1] and g € L*(0, T; L*(Q)), where

2 3 1 . 4
& 5—/))—5 with a€|:2ﬁ—_1700:|,
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such that
sin 0(x, y,t) < g(t,x)|x — y|ﬂ, a.e. x,y € Q,{a.e. t €10, TI,
or that there exists i € 10,1/2] such that

sin O(x, y,t) < cle — y|ﬁ, a.e. x,y € ae tel0Tl
and that
3
w e LX0,T; L} (Q)), with s = —— .
( (2) Fr1
Then, the solution u is a strong solution in [0, T], hence it is smooth.

This result is the extension of the geometrical criterion introduced by Constantin
and Fefferman [53], and subsequently improved in [23], to the bounded domain case.
A simplified argument in the flat case can be found in [17], while remarks concerning
the open problem with the Dirichlet boundary conditions can be found in [19].
Roughly speaking, the results of Theorem 5.2 show that if the vorticity does not
change too much its direction (regardless its size), then the solution remains smooth.
For instance this happens in the two dimensional case, where we know that the
vorticity is a scalar, always orthogonal to the plane of motion. Related results linking
regularity under geometrical assumptions on direction of vorticity and velocity, can
be found in [29, 31] and Vasseur [141].

6 - On a possible modeling of turbulent phenomena

As we described in the introduction, certain interest for the Navier-type
boundary conditions comes also for LES modeling. In this section I recall the results
of Berselli and Romito [34], presenting the main ideas of the proof, and I also an-
nounce a new result.

6.1 - Setting of the problem

To better explain the problem, let us consider two dimensional case. We recall
that the 2D Navier-Stokes equations and the limit as the viscosity vanishes in the
case of homogeneous slip boundary conditions has been also recently studied by
many authors, see especially the work of Clopeau, Mikeli¢, and Robert [49], Lopes
Filho, Nussenzveig Lopes, and Planas [103], Mucha [110], and Kelliher [85]. We
shall study the following boundary-initial value problem (we set v = 1 for simplicity
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and the equations are accordingly normalized):

o — M+ w-VYu+Vp=f in Q2 x]0,T],
V-u=0 in Q x 10,71,

(35) u-n=o’G(x,t) on I" x 10, T1,
u-t+an-Vu-t=0 on I x 10,71,
w(x, 0) = up(x) in Q.

The above problem with y = 2 describes the experiment in [10], where o > 0 re-
presents the characteristic pore size and the system is laminar.

Note that a similar problem, but involving the Smagorinsky—Ladyzhenskaya
turbulence model, together with a nonlinear dependence on u of the friction
coefficient, has been studied in [115] but there the normal datum G is not allowed
to depend on the time variable (cf. also Eq. (8)). As explained in Section 3.2,
following ideas developed by Layton [96] our main interest was to describe time-
dependent phenomena. Hence, we looked for weak hypotheses on G(x,t) with
respect to the time variable (without any essential restriction on the space reg-
ularity) nevertheless allowing us to prove existence of weak solutions to the
Navier—Stokes equations, see Theorem 6.1. This is motivated by the attempt of
describing detachment of the boundary-layer and other phenomena which are
inherently not stationary. In particular, in [34] our analysis focused mainly on two
main points:

1) To show the existence of weak solutions in the sense of Leray and Hopf (since
we do not want to deal with any weaker concept of solution);
2) To use the most elementary tools of functional analysis.

These two goals were motivated by the fact that we wanted to consider solutions in a
very standard sense (the same we explained in the previous section) and results were
also oriented to an audience of applied mathematicians.

Remark 6.1. In the case of non-homogeneous no-slip conditions, several
results of existence and uniqueness of other “less-standard” classes of solutions can
be found in Amann [5].

Our assumption of a non vanishing normal datum can be justified with the
following argument: Suppose that we have a fictitious boundary /'y and we want to
impose a condition on it in order to resolve numerically the equation in a smaller
domain ©2; C @ that rules out the boundary-layer (see Figure 2 below).
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Boundary Layer Boundary Layer

A B
r

Fig. 2. The fictitious boundary.

We have to require, by the incompressibility of the flow, that

V- -udx = J u-ndS =0
{ABCD} 9{ABCD}

for each (also curvilinear or infinitesimal) “rectangle” {ABCD} touching the bound-
ary I" as in the figure. Since the behavior of the flow is not known, in general we have

J u-nds = — J u-nds + J u-nds| #0,
{CD} {BC} {DA}

while the line integral over the segment {AB} vanishes, because on the “physical
boundary” I both the Navier and no-slip conditions impose that % - n = 0. This may
justify the introduction of a non vanishing normal flux, also with very low regularity
properties, namely, the same shared by the trace of a turbulent flow in the boundary-
layer region.

The main result is an existence and uniqueness theorem for weak solutions of the
2D Navier—Stokes system (35), with boundary conditions (9).

Theorem 6.1. Assume that Q C R is smooth and bounded, that G belongs to
Hit “0,T; Hi(I)), for some ¢ > 0, and that the compatibility condition (10) is sa-
tisfied. Assume that f € L*((0,T) x Q) and uy € H. Then, there exists a unique
weak solution

we L>0,T;H)NL*0,T;V),
of problem (35), with y = 1.

6.2 - The linear time-evolution problem

As used in many similar problems, the first step is a very precise analysis of a
linearized problem:
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Oz — A2+ Vqg=0 in Q x 10, T1,

V.z2=0 in Q@ x 10,7,
(36) zn=0agG on I x 10,71,
on-Véz-t4+z-z=0 on I x]0,T1,

2(x,0) = G(x,0) in Q,

where G is a suitable lifting of G. In fact, we define G and IT to solve

—AG+VII =0 in Q x 10,71,

V-G=0 in Q% 10,71,
(37)

G-n=oagGx,t) on I" x 10, T1],

on-VG-t+G-7=0 on I x]0,T1,
where the time-variable in system (37) is just a parameter. The same regularity
results of the previous section show the following result.

Proposition 6.1. Let be given G € H'/?t¢(0, T; H'/2(I")), satisfying the com-
patibility condition (10). Then, there exists a unique G solution of (37) such that
Gla,t) € HY*(0,T; H(Q)).

Moreover, there is a constant Cy, depending only on Q, such that
IVG|| + [1T]] < Coler + )Gl -
Notice also that, in the sequel it will be enough to have
(38) G(x,t) € HY?7(0, T; L*(Q)) N L*(0, T; H(Q)).

In a classical way we treat the nonlinear problem as a perturbation of the linear
system (36) and, by introducing the new unknowns,

Z(x,t) = z(x,t) — G(x, 1) and Qx,t) = qx,t) — I(x,1),
we are reduced to a homogeneous problem for (Z, Q):

W7 —AZ+VQ =—8G 1in Qx10,T],

V-Z=0 in Q x 10, T1],

(39) Z-n=0 on I x 10,71,
on-VZ-t+7Z-7=0 on I x]0,T1,
Z(x,0) =0 in Q.

The above problem is not completely standard: The right-hand side is not enough
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smooth, but in addition it does not have the properties which make possible to treat it
in an “usual” way. For instance, one can note that 9;G does not belong to the domain
of the Stokes operator, since 9;G - n # 0 and this is the main difficulty. In fact, if this
term belongs to the domain of A, then one can use some integration by parts in the
Duhamel formula

t
Z(t) = J —9,G(s) e A9 (g
0

and shift the problems in the time variable into a requirement of more space reg-
ularity of G. This is for example one of the main techniques used in stochastic Pde’s.
The hypotheses we have on G (and consequently on () are then responsible for a
different approach. The main result is summarized here.

Theorem 6.2. Assume that (G, II) is a solution to system (37), with G sa-
tisfying the regularity property (38). Then, there exists a unique solution (z,q) to
system (36) such that

z € L0, T; LA(Q)) N L0, T; H(Q)) N H= (0, T; LA(Q)).
Moreover,

T
1
£)]12 (Vs 2, 1 ) 2)d 2
sup [ + [ (1924 2 2l) ds + 2

T
<C (IIGIIZ%M(O’T;LZ(Q)) - J V*G(s)|? ds) .
0

Proof. We show essentially how to derive the a-priori estimates, stressing the
point where the regularity of G plays a significant role.

Since we just know that 9,G € H ’5“'(0, T;L?(Q)), we introduce a sequence
{GN}yen C HY(R; L*(Q)) of approximate functions such that

(@ GV, — Gin H*(0,T; LXQ)), as N — oo,

®) [10GN 120071209 = N-

By the results of the previous section, we know that there exists a Hilbert basis
{¢,, } e of the space V, made of smooth functions, such that

an'vs¢n'z+¢n'£:0'
n
Now, let ZQ’ tx)=>" Cf;’_ ¢ (x) be the solution of the following (finite-dimen-
k=1
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sional) linear system of ordinary differential equations for 2’ Pk

d 1 d
a2 s | v e [@ o6 0--5 [6¢¥ -

Q Q r Q

for te€(0,7) and k=1,...,n and with jZf;’(ac,O)~¢k(ac)dac:0. By using a
Q

standard argument this system of ODEs has a unique solution Z¥
€ L0, T; LX(Q)) N L*(0, T; H(2)) and by using ZV itself'® as test function one
easily obtains the following estimate:

T

s 1
sup [1Z¥ @) + j(w V)t 4 |Z£Y<s>||2r) ds < C1G™ I pasiany,
0<t<T 0 o

with a constant C, depending only on Q.

The difficulties come from the fact that this estimate, is uniform in %, but not uniform
in N due to property (b) of the approximate sequence {G" } 5. Hence, we need other a
priori estimates on the solutions Z¥ of the finite-dimensional problem. We again mul-
tiply the equations by Z, but now we estimate the right-hand side in the following way:

T

1
sup 1Z¥ @)% + j(uvssz(snz 1 ||Zﬁ’<s>|2r) s
0<t<T o

IN

0
T
(40) J J HG" - ZN dr ds
0Q

N

[ereadl 1z

H 40,1, L2(©) | 0, T512(2)

N N
< ||G ||Ifé+g(0,T;L2(Q))HZn ”I‘réﬂ(O,T;LZ(Q)) .
We need now an uniform estimate (with respect to both % and N) of ZY in the space
H: %*'5(07 T: L*(Q)). We shall use the Fourier transform characterization of the norm of
fractional Sobolev spaces and if

v [7 frtenT),
"o elsewhere,

4 The index N concerns the smoothing of G, while the index 7 is the dimension of
the subspace of V' in which we look for approximate functions.
15 This is obtained by multiplying each equation by the term Cfx  and summing over k.
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we can write the following equality:

d (> stz s 1>
Q Q r
d [~
-5 | @00 [¢Y0) - o - 1) @D+ 6¥ (1) -4,
Q Q Q
foreachk = 1,...,n,where J( - )is the usual Dirac’s delta function. By passing to the

frequency variable ¢, (Zg denotes the Fourier transform of Eff ) the above equation
reads as follows:

—ifjifj-¢k+JVSEg-VS¢k+H2§X-¢de
Q Q r

&[0 4+ 650 4 - e [(2N D)+ 6¥ 1) 4,

Q Q Q

=N ~
Consequently, by multiplying by Z, (the complex conjugate of ZY) we get -with
some integration by parts-

~ _ 1 -
—LEZY QP + IV QI+ 12 Ol

- ifJ@N 2N + JGN(O) N _eiel J(zfy(T) +GN(T))- 2.
Q Q
We take the imaginary part and multiply both sides of the previous formula by

A _ 1 . . .
|f|2“1, with 1< 5 so that, by using Young’s inequality, one gets

EPHIZY @7 < CIEPHIGN | + CIEP*2(|GN (D] + 12N (D] + |G )] 2.

In order to estimate the integral | |§|21HZ£ZV (©)|? dé, we split it into two parts: the

R
“inner” integral and the “outer” one. By the above estimate, we prove that

| ez @pae < ¢ [1er16ve
Iel>1 R
HCUGN I + 12+ 1N O | 1P

[<I>1

The first term on the right-hand side is controlled by C||GY ||iéﬂ,(o — while (40)
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implies that

123 (D)|* < Clla™)| 1231

HE(0.T;LAQ) HE“(0.TLAQ)

Next, [|GN(0)|| is bounded by ||G(0)|, and finally, by using the Morrey inequality
HY?+0,T) c C([0, T]), we get

N N
16V < 1GM g

Observe that for the validity of the Morrey inequality it is essential that ¢ > 0 and
observe also that the last integral is finite due to 1<1/2.

The inner part is estimated as follows, by using Parseval’s theorem, Poincaré
inequality, and estimate (40):

T
j 2N |2 de < jm 12de = jHZ;V(t)szt
0

[¢]<1 R
T
<c|vza
0

N N
< OGN o g 2ion 12 N ipsio 20y

In conclusion, by collecting all of the above estimates we finally get that, for each

1
e € (0, é)’ there exists a constant C, depending only on 2 and ¢, such that

12 < C|GY|

Héfg(O.T;LZ(Q)) - H%”(O.T;LZ(Q))’

which, together with (40), shows that Zy is bounded, uniformly in » and N, in the
spaces H:#(0, T; L2(2)), L>=(0, T; L2(2)), and L0, T; H\(Q)).

As usual, it is possible to extract a (diagonal) sub-sequence converging weakly in
L?(0,T; V), weaklyx in L>(0, T; H), and strongly in L2((0, T) x ) to the unique so-
lution Z of problem (39) with the required estimates in terms of the data. O

Remark 6.2. This approach with the Fourier transform with respect to the
time variable is used, for instance, in Lions [101] to prove estimates on the fractional
derivative of the solution. One main difference between [101] (and to our knowledge
all previous works involving fractional derivatives for the Navier-Stokes equations)
and our result is that the starting point is the existence of a weak solution, on which it
18 possible to prove additional estimates. On the contrary, in our case the existence of
a weak solution derives from the fractional derivative estimates itself and at present
it does not seem possible to prove the usual existence results without this trick.
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From the proof it is clear that the result holds also for 2 C R". The restriction to
the two dimensional case is present when we consider the full non-linear problem,
due to the usual limitations in estimating the convective term; see also Remark 6.3.

6.3 - The nonlinear problem

We finally consider the nonlinear problem and we end the proof of Theorem 6.1.
Again, we make use of an auxiliary problem: We introduce the new variables

U=u—-=z and P=p-—q,

where (z, q) is the solution to the linear time-evolution problem (36), and the pair
(U, P) solves the following problem:

U =AU +[(U +2)-VI(U+2)+ VP =f in Q2 x]0,T],

V-U=0 in Q x 10,71,

(41) U-n=0 on I x 10,71,
on-VU-1+U-t1=0 on I" x 10, T1,
Ux,0) = ug(x) — G(x,0) in Q.

By virtue of Theorem 6.2, the existence Theorem 6.1 for the nonlinear problem is a
straightforward consequence of the following proposition.

Proposition 6.2. Assume that (G,II) is a solution to system (37), with
G € H(0,T; L2(Q)) N L*0, T; H(Q)). Then, there exists a unique solution

U e L>0,T; HyNnL*0,T;V)

to problem (41). Moreover, the following estimate holds true: For all0 <t < T

t

1
sup [V + [ (IVT@IE + 1U@3) do
0<s<t 0 &

t
< HMO - G(',O)HZeA(t) + CJ(”]('(J)HZ + ||VZ(O’)||2||Z(0')||)eA(t)7A(U) dO',
0

where
t

AW = Ct+ C(L+ 2l ranen) | IV ds
0

and C is a constant depending only on Q.
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Proof. To prove the necessary a-priori estimate, we multiply (41) by U and
integrate by parts to get

3 UV U = [0 +2)- 910 +2do + [ £ U e

Q Q

The estimation of the integral involving f is straightforward, since it is bounded by
If]? + ||U||. We estimate the nonlinear term in from the right-hand side by using
the Gagliardo-Nirenberg inequality

(43) Jully < Clluel 1V ?, Y e HY(Q).

Note that such an inequality is a little bit more general than the so-called
LadyZhenskaya imequality (cf. [92, § 1]), because here the functions are not van-
ishing on the boundary of 2 and the constant C depends on Q.

Next, we observe that since V- U = 0 and U - n = 0, then

JU~(U~V)Udm:0 and J(U‘V)z~Udac:—J(U~V)U'zdac,

Q Q Q

and, by using repeatedly (43), we get

|01 +2- 10+ 2da] < 200LIIT + |01V

Q
1
§||VU|| + Clll U1 + el V2l Ul
1
§||VU|| + CllPIv=lP|UIP + Clllf vl U]
1
§||VU|| +CA+ PIV2IP| U + ClIValPl2]).

By Theorem 6.2, z € L>(0,T;H) N L0, T;V), both terms (1+ |2*)|Vz|* and
|Vz||%||z|| are integrable in time. Consequently by Gronwall’s lemma, we can deduce
that U is bounded in L>(0, T'; H) and L?(0, T'; V). Moreover, formula (42) also follows.
Finally, uniqueness of the solution can be proved by using similar arguments.
Indeed, if ¢/ is the difference between two solutions U; and Uy, one easily gets

<
5 dtIIUII (U213 + ll2lly + V2] e

and, since U(0) = 0, from Gronwall’s lemma it follows that &/ = 0. O

Remark 6.3. In the proof of the result of this section we used in a funda-
mental way estimate (43). In the three-dimensional case this inequality is no
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longer true. Instead, it holds that
el e < Cllul | Vul* Ve HY@),

which in this case can be used to prove just local existence of weak solutions. The
global result proved in the two-dimensional case depends in an essential manner
on the stronger estimate, and this is the critical difference between the two cases.

In ref. [34] we also studied the behavior of the solution as the parameter o — 0
(other convergence results, under similar assumptions, have been also proved
in [85]). In view of the considerations of the previous section, one can expect that, as
the boundary-layer becomes thinner and thinner, the solutions will look closer and
closer to the classical solutions corresponding to the no-slip boundary condition.
Indeed, this is the case, as shown by Theorem 6.3.

Let u, be the solution of (35) (we emphasize the dependence on « in this frame-
work) and let v be the solution to the Navier—Stokes equations with the same initial
value and no-slip boundary conditions. We have

Uy = v+ O),

so that the “no-slip solution” represents the average behavior, once one neglects the
effect at the boundary. The term u, — v can be seen as the “fluctuation term”, which
takes into account the nontrivial dynamies at the boundary. The error estimate we
derive is consistent with the first step in the homogenization procedure employed by
Jager and Mikeli¢ [77] to obtain the law of Beavers and Joseph.

Theorem 6.3. AssumeuycV, G¢e H%”(O, T; H%(F)) satisfying the compat-
wility condition (10), and f € L*((0,T) x Q). Then

T
1 2
sup [lug —v|* + J(HVS(ua — V)P + = || (g — v) - r||2r> dt = O(e).
0<t<T 0 <

In particular, u, converges to v in L>(0, T; L?(Q)) and L*(0,T; H'(Q)).

We do not give the proof of this result, but we refer to [34] for further details,
which nevertheless use the same functional tools employed before.

I take now the opportunity of presenting a new result. As we will see in the next
section with more details, in the two dimensional case one can treat the problem of
existence of weak solutions for the Euler equations, by means of a suitable van-
ishing viscosity limit: One has to approximate the Euler equations, by the Navier-
Stokes ones, with the slip boundary conditions « - n = w = 0 on I" (recall that in two
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dimensions the vorticity is a vector only with the third component different from
zero), see also Section 7.1. This tool (without appealing to the stream function) has
been used for the time-evolution case, first by Bardos [8] treating also non-
homogeneous data, see also Secchi [124] for further extensions in the flat case. The
results of this section (by using the same approach) can be adapted to prove also
the following result.

Theorem 6.4. Assume that Q C R® is smooth and bounded, that
Gge H%“(O, T; H%(F ), for some & > 0, and that the compatibility condition (10) is
satisfied. Assume that f € L?((0,T) x Q) and wy € H. Then there exists a weak
solution

we L®0,T;H)NL*0,T;V),

of the Euler system
O+ -VYu+Vp=f inQx]10,T],
V-u=0 in Q x 10,71,
u-n = ogx,t) on I x 10,71,
u(e, 0) = uo(x) in Q.

The technical improvement concerns relaxing to G € HY/2+(0, T; HY/*(I')), the
condition G € H'(0,T; H/2(I)) required in the previous references [8, 124]. The
details of the proof, which is nevertheless a straightforward application of the
technique explained in this section, will appear in [36].

7 - Vanishing viscosity limits

In this section I consider some of the problems related with vanishing viscosity
limits for the Navier-Stokes equations. To this end, in this section I will write ex-
plicitly the dependence on the viscosity
uy —vau" + @' - V)uw' +Vp' =f in Q x 10,71,

(44) , .
V-u=0 in Q x 10, T].

In particular, when v | 0 the Navier-Stokes equations converge “formally” to the

Euler equations:

utE+(uE~V)uE+VpE =f in Q x 10, T1,
V-ufP=0 inQx10,T],

and the boundary condition associated to the Euler’s boundary value problem
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is simply
P n=0 on I x10,T].

It is clear that, in the case of the Dirichlet boundary conditions, the problem of
the convergence of " (solution to the Navier-Stokes equations with viscosity
v > 0) to u” (solution to the Euler equations) involves a singular limit for a change
of order of the boundary conditions and the tangential part of the velocity may
develop large gradients. On the other hand, also in the whole space (hence no-
boundaries) the problem presents some difficulties. The limit as v — 0 has been
probably studied for the first time in this simplified setting by Swann [133], even
if he points out that other better results are known in the two dimensional case.
We will turn later to the 2D case. In the same years Kato [81] proved related
results. Roughly speaking, the main idea is that if one takes enough derivatives of
the equation (D* for a multi-index o such that |«| > 3), and multiplies the Euler (or
Navier-Stokes) equations by D*u suitable integration by parts of the convective
term show that

J D - V)uD'ude| < ¢ J D" | |\DPul | D*u| dee,  for 0 < |8 <al.
R? R?
This takes place because the term
J (u - V) D*uD*udx
R?

vanishes, and the term with |«| + 1 derivatives is canceled out. By using the
Sobolev embedding H3(R?) < W1(R?), one can show that, if |«| = 3, it follows

1d, .2 12 3
E%Hu g + vilw' [z < Cllu (g,
5 q 1035 < Cllu”||s,

where the constant C does not'® depend on v. These two differential inequalities
can be used to show (for instance by means of the Galerkin method) local ex-
istence of a solution of both the Euler and Navier-Stokes equations belonging to

16 The constant does not depend on v, since we do not use the Laplacian term in the left-
hand side to “absorb” the highest derivatives of u. This can be done if |«| > 3. Compare this
estimate with (34).
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L0, T*; H3(R?)), for some T* > 0 depending only on the H3-norm of the initial
datum. Observe also that solutions in this class are classical and unique. See also
the details in Temam [135, 136] with similar calculations in a bounded domain for
the Euler equations, also in the non-hilbertian setting with ug € W2%(Q), for
q > 3.

With this approach, since %" is bounded uniformly, we can extract a sequence
v, 1 0 such that " converges weakly™® in L>°(0, T*;H3(R3)) to some u. Then, un-
iqueness shows that the whole family %" converges to the solution of the problem
with v=0, ie., that u =«%, and that the convergence takes place also in
C(0, T; H34(R®) N L0, T; H3(R®)), for all finite p.

These results of weak convergence are very interesting and generally rather
difficult to be obtained. Nevertheless, they are not completely satisfactory, since the
Hadamard well-posedness requires (among other results) to find a space X such that
the initial datum u, € X is the same for all viscosities (also v = 0) and to prove

w —uf asv |0 in C0,T"X),

with strong convergence. As pointed out by Kato [84] this is generally the most
difficult part in the theory of evolution equations. A sharp result have been proved by
Ebin and Marsden [59], but they needed to work in the much more regular spaces
H5(R®), with s > 13/2.

The sharp convergence result, with the initial datum in the space H3(R?), has
been later obtained by Kato [82] as by-product of a more general result on his
“perturbation theory” for abstract equations. Simpler proofs, based on a delicate
smoothing of the initial data, have been also given by Beirao da Veiga [12] and
Masmoudi [106], who studied also the fractional case HS(RS), with s > 5/2 (re-
member that H>2(R?) is the critical space for proving local existence for the
Euler equations). For Inviscid limits for non-smooth vorticity see also
Constantin and Wu [55]. We also wish to quote the nice review papers by Beirao
da Veiga [20, 21]. Related perturbation results have been also proved in
Constantin [51], while a different approach -based on fractional powers of the
Stokes operator- is also presented in [54]. In presence of boundaries none of this
convergence results is known and we expect also that they are not correct, recall
the condition (11) proved by Kato.

Moreover, it is known since long time that (with appropriate boundary
conditions) the 2D problem in a smooth and bounded domain can be treated
successfully. In fact, results of Lions [101] and of Bardos [8] can be used to
show existence of weak solutions for the Euler equations, with a perturbation
argument in terms of the viscosity. Anyway, there is need of using the Navier’s-
type slip-without-friction boundary conditions.
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7.1 - A two dimensional result

In this section I give some details concerning the 2D case, to explain why it is
considerably less difficult than the 3D one. We first recall that the Cauchy problem
has been studied by Golovkin [73] and McGrath [104]. We also observe that in 2D the
curl is the same as the gradient after a rotation of n/2. Recall in fact that in 2D
vorticity w is a scalar and

w = 81%2 — Bgul.
We consider the 2D Navier-Stokes (for simplicity, with vanishing external force) in a
smooth and bounded domain Q C R?, with Navier-type boundary conditions

w — v’ + @' - V)u' + Vp' =0 in Q x 10,71,
V-u =0 in Q x 10, T],

u -n=20 on I" x 10,71,

' =0 on I x 10, T1].

(45)

The boundary-initial value problem can be studied by defining the bilinear form
a(u,v) =v J VuVvdx +v J k(s)u(s)v(s)dS
Q T
where k is the curvature of the domain. The weak formulation is then: find u(t) € V

a.e., such that

% Ju”(t)vdoc + a,(u"(t),v) + J(u" V) u' -vde =0 YveV.
Q Q

By using the trace-type estimate
| k@ as < v + e
T

one obtains directly the energy balance
d
7 w7+ vl Ve[ < v Clu]?.
This shows the following bounds, uniformly in v > 0,
w' € L0, T;LAQ) and  vu' € LX0,T; H(Q)).

Next, by taking the curl one gets the scalar equation (the two dimensional equation
does not have the vortex stretching term in the right-hand side)

o, + @ - V)o' —vde" = 0.



[59] SOME RESULTS ON THE NAVIER-STOKES EQUATIONS, ETC. 59

Next, testing with @ and standard integration by parts (since " = 0 on I') give

1d

2 _
2 dt =0

lo|[* + v[| Vo'

We obtain, again with a bound independent of v > 0, that
o' € L0, T; LX(Q)).

The next step is to show that the bound on w implies the same on Vu. In fact, by
considering the elliptic system (which is the 2D counterpart of (32))

—M =V+ta'
u-n=20
o' =0

where V+ = (0z, —0), by using u itself as test function one obtains immediately
IVa|[* < C@(llol* + fle|)-
With this one proves that
u' e L0, T; L*(Q)) N L*0, T; H(Q)), uniformly in v > 0.

Hence, we can extract (one can use the Aubin-Lions argument, see [101] or the
Friederichs inequality, see Hopf [75]) a sub-sequence {u'" }, . strongly converging
to u® in L2(Q x (0, T)), in such a way that

S

J(u"” V) u'" -vdedt —
Q

S —_

J(uE W)Ul vdedt.
Q

The function % turns out to be a (possibly non-unique) weak solution of the 2D Euler
equations. The use of the vorticity equation is crucial here, but what is crucial is also
the fact that the boundary condition prevents from

... generation of vorticity on the boundary.

If the initial datum is smoother (say with bounded vorticity) one can prove unique-
ness, while the critical (non-fractional) Hilbert space for existence and uniqueness of
smooth solutions is H2(Q).

Convergence in stronger norms, for strong solutions, have been proved recently
in [25]. In particular, in this last reference the authors use the same technique in-
troduced by Xiao and Xin [148] of taking successive powers of the operator curl, and
multiplying by appropriate test functions, in order to obtain estimates on higher-
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order derivatives. In the sequel we will use the following notation:
w = curlu, {=curlow = curl®u, and y=curl{ = curl® u.

The notation is the same in both 2D and 3D case, and one has also to remember that
in 3D they are all vector fields, while in 2D they have several vanishing components
and these functions are considered as two dimensional vectors (v and {) or scalars (w
and y). In particular, with the above quantities one can define equivalent norms, due
to the following result.

Lemma 7.1. Let u € W9(Q) a vector valued function. Then, we have the
Sfollowing inequalities, for s € N

”uHs.q < C(”CUYWHSA,(] + HV : u”sfl,q + Hu ' g“sfl/q,q,l“ + ”uHsfl,q)’
|ulls, < Cllearlull;_q, ifu-n=0onT,

”un] S C(”curluusfl,q + HV ’ u”s—l,q + H’M/ X n”sfl/q,q,l" + ”uHs—l,q)'

For the proof and links also with the topological (Betti numbers) properties of Q,
see Bourguignon and Brezis [41], Xiao and Xin [148], and von Wahl [146]. In [25] the
following convergence result is proved.

Theorem 7.1. Let be given a smooth, bounded, and simply connected Q C R*
and let be given a divergence-free uy € W>4(Q), with q > 3/2 satisfying the slip
boundary conditions u-n = w = 0 on I'. Then, for all positive T > 0 there exists a
unique solution to both the Euler and Nawvier Stokes equations and

w —uf  weakly* in  L>0,T; W?9(Q)).

In particular, in [25] the authors derived suitable a-priori estimates, by using as
test function in the equation satisfied by w and ¢, the quantities |w|? 2w and |¢]?7%,
respectively. The sharp convergence results have been recently proved in [35], by
using the same approach with the curl operator, together with suitable approxima-
tion of the initial datum, see also [12, 106, 99]. For the sake of completeness, this is
one of the results which will appear in [35].

Theorem 7.2. Under the same hypotheses of the previous theovem it holds

w —uf in L0, T; W?4(Q)).

Moreover, in the 2D case the fact that the domain is flat is not relevant, and we do
not give further details, but in the next section we study a little bit the 3D case.
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7.2 - Differential inequalities: the 3D flat case

In this section, we explain how to use (in some cases) the estimates on w and ¢,
to show high-order estimates on the solution. In particular, we try to focus on the
main formulas of integration by parts which are needed. From now on we set in
the 3D case and we do not give any further detail on the simpler 2D case, where
flat and non-flat can be treated in the same way. This idea has been used in [148] in
the L?(Q) case (¢ = 2) and in [25, 26] in the general case. The first estimate is
obtained by writing the vorticity equation and by using as test function |w|q72a).
With suitable integration by parts and by using that V - 4 = 0 and u is tangential
on the boundary one gets

e R
Q

< J|w|q|Vu|dac +v J\w|q_28icq,~gicq,~ das|.
r
In the same way one obtains the estimate for ¢ = curl® «
1d g 22q-—3) 12
g di <l + VT,[ |VIC]E" dae
Q

< annaq‘ﬂw do+ v j 7205 n,G; dS|.
Q I

A similar estimate can be also obtained for y, but here we consider just the first two
inequalities and these can be employed to study existence of strong solutions in
W24(Q), with ¢ > 3. As one can understand the main difficulty concerns the
boundary integrals since the other integrals are more or less the usual ones that one
has to control also in the space-periodic case. One first result, which makes relevant
the difference between the flat and non-flat case, is the following:

Lemma 7.2. Let us assume that ug =w; =wz =0 on the boundary
I'={x3 =0} of Ri(in the flat case they are exactly the slip-without-friction con-
ditions (4)). Then, as we have previously seen, dsw3 = 0 on I and moreover

Bicojgiwjzo onF,
{3=0 on I

In addition, if o satisfies the vorticity equation for the Navier-Stokes equations,
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with any positive viscosity, then

[eurl {]; =[eurl o =0 on I,
0;(in; =0 on I

Proof. The first two conditions are checked by a direct computation, while the
result on curl{ is obtained by observing that

veurl { = —vAdw = -y — (u - V) + (o - V) u.

Hence, restricting this equality on the boundary, taking the first two components,
and using the previously proved properties of the boundary values of w, one gets also
the second set of conditions. O

By using standard tools, especially the Sobolev embedding H'(Q) c L%(Q) ap-
plied to the function |{ |% and the cancellation of all the boundary integrals, one easily
gets the following result.

Proposition 7.1. Assume that q > 3, then

d
g NEllg + e vIIZls, < elat + evliZl,
with constants independent of the viscosity.

Standard results on Bernoulli ordinary differential equations applied to the dif-
ferential inequality satisfied by Y (t) = ||C(t)||g, imply then local boundedness of |||,
Local boundedness means that Y (¢) is bounded in some interval [0, Ty], which is non-
vanishing and whose size is independent of v (and depends mainly on Y (0)). By using
this estimate together with Lemma 7.1, one obtains a uniform bound for %" in
L>(0, To; W>4(Q)) and standard arguments of compactness imply the following re-
sult (cf. [25]).

Theorem 7.3. Assume that ¢ > 3 Then, it follows
w —ub in L0, To; W29(Q))
u — uf in C0,To; WH9(RQ)), for 0<s<2,

where u¥ is the unique solution to the Euler equation with the same initial datum
of the Navier-Stokes equations.

This result is not completely satisfactory, since the sharp convergence is missing.
The sharp results has been recently obtained by myself and Spirito [35].
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Theorem 7.4. Assume that uy € W>4(Q) is divergence-free and satisfies the
boundary conditions (4). Then

w —uf i L0, To; W*(Q).

Full details of this result (whose proof is too long to be reproduced here) will
appear in a forthcoming paper.

Remark 7.1. The same (sharp) convergence results can be obtained also by
assuming the initial datum is in W4(Q), with q > 3 /2 (now the critical space is
W?33/2(Q)) with the corresponding strong convergence in L>(0, To; W39).

7.3 - The 3D generic case

The main difference between the flat case and the non-flat case is that in the non-
flat case the various boundary integrals do not vanish identically and one has to work
much more to have results similar (in any case weaker) to those of Lemma 7.2. We
explain the main differences and we show some preliminary results.

Remark 7.2. In the 2D case such a difference does not hold, hence one can
freely integrate by parts also in the non-flat case, making the two dimensional
problem much easier to be handled (in addition to the others reasons which are
well-kmown). This is the reason why we are skipping most of the details in the two
dimensional case.

In this section we show some formulas needed in the integration by parts. Results
are taken mainly from [24, 25, 26, 148]. First recall the elementary vector identity
which holds for each smooth enough (say in W4(Q)) vector field »

(46) v=m-v)n+@mxv) xn on I.

Hence (n x v),; determines completely the projection of v on the (local) tangent
plane to I". Therefore, we shall call (n x v)|, the tangential component of v|,.
We start by stating the counterpart of Lemma 7.2.

Lemma 7.3. Let Q be smooth and bounded and let be given a smooth u sa-

o » . 0
tisfying the boundary conditions (4). Then, concerning the term — 6_(;1) - we have

the identity (25), which allows integration by parts asin (26). Concemz?ng {=curlw
we have the following result
{(-n=0.
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Proof. The proof of the latter inequality, follows from a change of coordinates.
Let us fix xy € I" and set a reference frame, such that e; and ey are tangential to I,
while e3 = n and they are a right-hand triple of unit vectors. The curl is invariant by
change of coordinates and consequently we have that

{-n=(curlw)-n=D.(nxw) =0,

where D, is a linear combination of derivatives in the tangential directions (more
precisely d1we — dewy in the new reference frame). O

By using this lemma the situation seems still similar to that we encountered in the
flat case: The boundary integrals are vanishing or they can be estimated by standard
trace inequalities, since there is a way to reduce the order of leading terms. The next
lemma reveals the subtle difference between the two situations.

Lemma 7.4. Letthe boundary I be a surface of class C*, with k > 2. Then, for
any point xy € I, the component of (u - V)w — (o - V)u along any tangential di-
rection T has the form

(- V) w) — (- V)u) (@) - (o) = ayj(aco)u; (o) w;i(o), wy €T,
where the coefficients a;; are of class C* on I'. Consequently,
(47) veurll -7 = —v(dw) - T = a;u; w; on I
Proof. This result has been proved in [26]. I give here a slightly different proof,
since I think it will be useful to understand it in order to try to find additional results for

a problem which still presents some relevant open questions. First, let us observe that
since u is a tangential vector field and w x n is identically zero on the boundary, then

% =0 on I
We write this with the summation convention to obtain
0 = uy Oyegji wj i) = e g (Ory) My + i, wy w; (Opnye),
and we observe now that, by the previous formula
(- V) @) x 0], = &g ug (r05) me = —eg, wy ; (D) on I
Let us treat now the term (o - V) u: We start observing that since u is a tangential

vector field and « - n is identically zero on the boundary, then

ow-n)
o

0 on I,
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for any tangential vector z. Since w || n we also obtain
oxVu-n=0 on I
We write again the latter equality in coordinates
0 = ik w; Op(uyny) = egjp; wj (Tpur) My + Egjr; @ g ().
By using (24) and by observing that w || n we can write that
&ijie 0 (Opup) ny = &g, w; (Opur) my = g3, j (Opuy) oy,
and next we observe that on I”
—[((w- V) u) x n], = —e o (Opuy) mie = e, oy (Opu) nj = —egj 57 (Fpny).
This finally proves that

(48) (- V) — (- V)u) x 1], = — e w [(Ong) + (O] on I
O

The main effect of the result of Lemma 7.4 is that we can reduce the order of
relevant terms in the boundary integral (in a way similar to what we have previously
used in 5.1), but this time the identity (47) implies that we lost the multiplication by
v. By using the same type of identities used in the proof of Lemma 5.1 (now it is clear
why it is becoming so important) and using the crucial fact that { is tangential to the
boundary we obtain that

—vJAC-Cdac = vJ|VC\2dx— vJ(C X g)-CdS—i—vJC-Vg-CdS.
Q Q T T
Next, by multiplying by |{ |HC the equation satisfied by { we get the following dif-
ferential inequality, for all v > 0
1d 2(2g - 3) J
flad e

L@ VI da

1118+ v

< | |[Vu||Vol/d| T [ Vul de + v
Q

J 2 0m) £ ¢ dS
A

)

v J|C|q_1A(ac)|u| | dS
I

with a smooth function A(x). Observe again that there is no v to multiply this
boundary term, which nevertheless does not contain derivatives of {. Clearly, by a
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trace inequality the first boundary integral can be estimated by

2
|2,r

) j 72 0m) & G dS| < ov)e, = Ov]lick
r

4,2 4,2

< ColIcEIE + vIvICRI

q
< OV[IZIE + VIV ICE3.

Concerning the other boundary integral, when we pass from the boundary to the
interior of 2 with trace inequalities, we get (with the standard Sobolev machinery) a
term involving |V|{ \%|2 integrated over Q. To absorb this term in the left-hand side,
we need to multiply and divide by some power of v and the resulting inequality is the
following:

q(q+3)

1d 1 C
q dt €115 + evliclg, < elllg™ +eviiclg +—= Iy ™ -

\)q+1

This inequality allows us to prove existence of solutions bounded in W24(Q) for each
given positive v. Unfortunately the life-span turns out to be dependent of v itself and
a-priori it is not bounded from below in terms of v. This inequality -beside being
useful to prove existence of classical solutions for the Navier-Stokes equations- is of
no use when studying the limits as v — 0.

This is the main difference between the two cases and at present this seems to be a
technical point very hard to be overcome, see also Beirdo da Veiga [22]. Moreover, while
in the flat case (by a suitable induction argument [26]) one can prove estimates for
essentially all ||curl® u|| o (With k£ > 2) in the general case it seems difficult also to obtain
the estimates for y = curl® u, even if we have some partial results in this direction.

I finally present another new result which I recently obtained in collaboration
with S. Spirito in [35]. By using a perturbation argument we are able to show ex-
istence of strong solutions to the Navier-Stokes equations in L>(0, Ty; W24(Q))
under the assumptions that: a) the viscosity is small enough and b) the initial datum
is more regular. Taking inspiration from for instance the work of Constantin [51], we
have the following result.

Theorem 7.5. Assume that uy € W4(Q) is divergence-free and satisfies the
boundary conditions (4). Let [0,To] > 0 the non-empty interval of existence for
smooth solutions to the Euler equations with initial datum uy. Then, there exists
vo > 0, such that for all 0<v<y

[0’ @) — uE @ ||y < 12, Vit e [0, Tl
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We are requiring more regularity on the initial datum and this allows to have a
smoother solution of the Euler equations. We use then the solution u” to show
existence of %" (with bounds independent of v) by showing that they are “close.” In
fact, the difference u* — u¥ satisfies a differential system, with initial datum equal
to zero and which is similar to the Navier-Stokes system. These two facts allow us to
derive suitable estimates, which nevertheless give also an order of convergence in
terms of v. Details of the proof, which requires some new tools with respect to the
previous literature, will appear in the forthcoming paper [35].
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